ON THE STRUCTURE OF ASSOCIATIVE n-DIMENSIONAL COPULAS

Anna Kolesárová ${ }^{1}$ and Andrea Stupňanová ${ }^{2}$
${ }^{1}$ Institute IAM, Faculty of Chemical and Food Technology, Slovak University of Technology, Sk-812 37 Bratislava, Slovakia
e-mail:anna.kolesarova@stuba.sk
${ }^{2}$ Department of Mathematics, Slovak University of Technology, Radlinského 11, Sk-813 68 Bratislava, Slovakia
e-mail:andrea.stupnanova@stuba.sk

The associativity of n-dimensional copulas in the sense of Post is studied. The structure of associative n-dimensional copulas is clarified. Recall that for $n \in$ $\mathbb{N}, n \geq 2$, a function $C:[0,1]^{n} \rightarrow[0,1]$ is called an n-dimensional copula (n copula, for short) if it satisfies the properties:
(C1) $C\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ whenever $\forall j \neq i, x_{j}=1$,
(C2) $C\left(x_{1}, \ldots, x_{n}\right)=0$ whenever $0 \in\left\{x_{1}, \ldots, x_{n}\right\}$,
(C3) the n-increasing property, i.e., $\forall \mathbf{x}, \mathbf{y} \in[0,1]^{n}, x_{i} \leq y_{i}, i=1, \ldots, n$, it holds

$$
\sum_{J \subset\{1, \ldots, n\}}(-1)^{|J|} C\left(u_{1}^{J}, \ldots, u_{n}^{J}\right) \geq 0, \text { where } u_{i}^{J}= \begin{cases}x_{i}, & \text { if } i \in J \\ y_{i}, & \text { if } i \notin J\end{cases}
$$

By the Post definition of associative n-ary functions [4], an n-copula C is associative whenever for all $x_{1}, \ldots, x_{n}, \ldots, x_{2 n-1} \in[0,1]$ it holds
$C\left(C\left(x_{1}, \ldots, x_{n}\right), x_{n+1}, \ldots, x_{2 n-1}\right)=C\left(x_{1}, C\left(x_{2}, \ldots, x_{n+1}\right), x_{n+2}, \ldots, x_{2 n-1}\right)$
$=\ldots=C\left(x_{1}, \ldots, x_{n-1}, C\left(x_{n}, \ldots, x_{2 n-1}\right)\right)$.
We show that associative n-copulas are n-ary extensions of associative 2-dimensional copulas with special constraints. The main result solves an open problem formulated by R. Mesiar in [1].

Acknowledgement. The support of the grant VEGA 1/0198/09 and the project APVV - 0073-10 is kindly acknowledged.

References

[1] R. Mesiar and P. Sarkoci: Open problems posed at the 10th International Conference on Fuzzy Set Theory and Appl. (FSTA' 2010), Liptovský Ján, Slovakia. Kybernetika 46 (2010) 585-598.
[2] R. Mesiar and C. Sempi: Ordinal sums and idempotents of copulas. Aequationes Math. 79 (1-2) (2010) 39-52.
[3] R.-B. Nelsen: An Introduction to Copulas. Second edition. Springer Science and Business Media, New York 2006.
[4] E.-L. Post: Polyadic Groups. Trans. Amer. Math. Soc. 48 (1940) 208350.

