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The associativity of n-dimensional copulas in the sense of Post is studied. The
structure of associative n-dimensional copulas is clarified. Recall that for n ∈
N, n ≥ 2, a function C : [0, 1]n → [0, 1] is called an n-dimensional copula (n-
copula, for short) if it satisfies the properties:

(C1) C(x1, . . . , xn) = xi whenever ∀j 6= i, xj = 1,

(C2) C(x1, . . . , xn) = 0 whenever 0 ∈ {x1, . . . , xn},

(C3) the n-increasing property, i.e., ∀x,y ∈ [0, 1]n, xi ≤ yi, i = 1, . . . , n, it
holds

∑

J⊂{1,...,n}

(−1)|J|C
(

uJ
1 , . . . , uJ

n

)

≥ 0, where uJ
i =

{

xi, if i ∈ J,

yi, if i /∈ J.

By the Post definition of associative n-ary functions [4], an n-copula C is asso-
ciative whenever for all x1, . . . , xn, . . . , x2n−1 ∈ [0, 1] it holds

C (C(x1, . . . , xn), xn+1, . . . , x2n−1) = C (x1, C(x2, . . . , xn+1), xn+2, . . . , x2n−1)

= . . . = C (x1, . . . , xn−1, C(xn, . . . , x2n−1)) .

We show that associative n-copulas are n-ary extensions of associative 2-dimen-
sional copulas with special constraints. The main result solves an open problem
formulated by R. Mesiar in [1].
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