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Effect algebras

An effect algebra is a system (E , 0, 1,⊕), where 0, 1 ∈ E are
constants, ⊕ is a partial binary operation on E such that:

(E1) if a⊕ b is defined, then b ⊕ a is defined and a⊕ b = b ⊕ a;

(E2) if a⊕ b and (a⊕ b)⊕ c are defined, then a⊕ (b ⊕ c) is
defined and a⊕ (b ⊕ c) = (a⊕ b)⊕ c;

(E3) for every a ∈ E there is unique a⊥ ∈ E such that a⊕ a⊥ = 1;

(E4) if a⊕ 1 ∈ E , then a = 0.

Covers many different algebraic structures: MV-effect algebras,
OMPs, orthoalgebras, etc.

Foulis & Bennett, 1994



Hilbert space effect algebras

Effect algebras are an algebraic model of Hilbert space effects:

E (H) = {E ∈ B(H), 0 ≤ E ≤ I}

I measurements on a quantum system in the Hilbert space
formalism

I important special property - spectrality:

for a ∈ E (H) there is a family {pa,λ}λ∈[0,1] of projections such
that

a =

∫
λdpa,λ



Spectral resolution in Hilbert space effect algebras

Assume dim(H) <∞.

Any effect a ∈ E (H) has eigenvalues λi ∈ [0, 1], with
eigenprojections pi ∈ P(H). Then

pa,λ =
∑

i ,λi≤λ
pi

and we have

a =

∫
λdpa,λ =

∑
i

λipi .



Spectral resolution in Hilbert space effect algebras

Let a ∈ E (H). The spectral resolution of a is the unique family of
projections {pλ}λ∈[0,1] such that

I 1 = p1 ≥ pλ ≥ pµ for 1 ≥ λ ≥ µ (nondecreasing),

I
∧
λ>µ pλ = pµ (right continuous),

I pλa = apλ ( commutativity),

I pλa ≤ λpλ, p⊥λ a ≥ λp⊥λ .

Further, a is uniquely determined by {pa,λ} and a commutes with
b iff pa,λ commutes with pb,µ for all λ and µ.

Question
What are the additional structures and/or properties of E needed
to obtain this?
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Spectrality in effect algebras?

For convex effect algebras:

I spectral duality in order unit spaces (Alfsen-Schultz, 1976, 2003)

I contexts - finite resolutions of the unit (Gudder, 2019; AJ &

Plávala, 2019)

We will work in general effect algebras, using an approach started
in (Gudder, 2006; SP, 2006), inspired by spectrality in partially
ordered unital abelian groups (POUAG) (Foulis, 2003-2005).
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Compressions and compression bases in effect algebras

Let E be an effect algebra.

A compression is an additive map J : E → E such that

a ≤ J(1) ⇐⇒ J(a) = a, a ≤ J(1)⊥ ⇐⇒ J(a) = 0.

Properties:

I J is idempotent

I focus of J: J(1) is a principal element:

a, b ≤ p, ∃a⊕ b =⇒ a⊕ b ≤ p.

I J has a supplement J ′: ImJ = KerJ ′, ImJ ′ = KerJ.

I J ′(1) = J(1)⊥.

Gudder, 2006; SP, 2006
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Compressions and compression bases in effect algebras

A compression base: {Jp}p∈P

I a collection of compressions

I Jp(1) = p, for all p ∈ P

I P ⊆ E a subalgebra

I if p, q ∈ P, p ↔ q (Mackey compatible), then

∃r ∈ P such that JpJq = JqJp = Jr .

Elements of P are called projections.

Gudder, 2006; SP, 2006



Properties of compression bases

I P is an OMP,

I For a ∈ E ,

a = Jp(a)⊕ Jp⊥(a) ⇐⇒ a↔ p ⇐⇒ Jp(a) = a ∧ p.

I bicommutant of a:

P(a) = {p ∈ P : p ↔ a, ∀q ∈ P, q ↔ a =⇒ q ↔ p}.

a Boolean subalgebra in P
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Examples of compression bases

Any effect algebra E can be endowed with compression bases that
can be ordered by inclusion:

I Trivial (minimal): {J0 = 0, J1 = id}.
I Central: P = Γ(E ) the center of E :

Jp(a) = p ∧ a, p ∈ Γ(E ).

I There always exist maximal compression bases.

I E can have different (maximal) compression bases with the
same P.



Examples of compression bases

I Hilbert space effects E (H): unique (maximal) compression
base with

P = P(H), Jp(a) = pap.

I Effect algebras with RDP (MV-effect algebras): the central
compression base is the unique (maximal) compression base.

I Direct product of compression bases: given a family of effect
algebras Ei with compression bases {Ji ,p}p∈Pi

, i ∈ I ,

P = Πi∈IPi , Jp = Πi∈I Jpi , p = (pi ) ∈ ΠiPi

is a compression base in Πi∈IEi .
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Examples of compression bases

I The horizontal sum of Hilbert space effect algebras

E = E (H)⊕̂E (H).

I Let ϕ be a faithful state on E (H) (ϕ(a) = 0 implies a = 0).

I We construct a compression base with P = P(H)⊕̂P(H) and

J(p,0)(a, 0) = (Jp(a), 0), J(p,0)(0, a) = (ϕ(a)p, 0)

J(0,p)(a, 0) = (0, ϕ(a)p), J(0,p)(0, a) = (0, Jp(a)).

I we obtain many different compression bases with the same P.
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Spectrality: projection cover property

(E , {Jp}p∈P) - an effect algebra with a fixed compression base.

Definition (Gudder, 2006)

(E , {Jp}p∈P) has the projection cover property if for any a ∈ E ,
there is a projection cover: a◦ ∈ P such that

a ≤ p ⇐⇒ a◦ ≤ p, ∀p ∈ P.

In this case, P is an OML.



Spectrality: b-property

Definition (SP, 2006)

(E , {Jp}p∈P) has the b-property if for all a ∈ E , q ∈ P,

a↔ q ⇐⇒ P(a)↔ q.

For a, b ∈ E , we say that a commutes with b (aCb) if
P(a)↔ P(b).

Lemma
Assume the b-property. Then for p ∈ P,

aCp ⇐⇒ a↔ p.
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Spectrality: b-comparability

Definition (SP, 2006)

(E , {Jp}p∈P) has the b-comparability property if

I it has the b-property

I for all a, b ∈ E , aCb, we have

∃p ∈ P(a, b), Jp(a) ≤ Jp(b), Jp⊥(b) ≤ Jp⊥(a).

Lemma
Assume the b-comparability property. Then any a ∈ E has a
splitting projection:

p ∈ P(a) : Jp(a) ≤ Jp(1− a), Jp⊥(a) ≥ Jp⊥(1− a)

“Jp(a) ≤ 1/2” “Jp⊥(a) ≥ 1/2”
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Spectrality

Definition (SP, 2006)

(E , {Jp}p∈P) is spectral if it has both the projection cover and the
b-comparability property.

Consequences (necessary conditions):

I P = S(E ) := {p ∈ E , p is sharp} is an OML,

I E is covered by C-blocks

C (B) := {a ∈ E , a↔ B} for a block B ⊆ P

≡ maximal sets of mutually commuting elements

I any C-block is a spectral MV-effect algebra

I any a ∈ E has a largest splitting projection
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Binary spectral resolutions

Let a ∈ E . By repeated applications of splitting, we construct a
family of projections

{pa,λ(w)}w∈{0,1}∗ ,

indexed by binary fractions

λ(w) =
n∑

i=1

wi2
−i , w ∈ {0, 1}n

- the binary spectral resolution of a.



Characterization of the binary spectral resolution

Let E be archimedean and spectral. The binary spectral resolution
{pλ(w)}w∈{0,1}∗ is the unique family in P

I 1 = p1 ≥ pλ ≥ pµ for 1 ≥ λ ≥ µ,

I
∧
λ>µ pλ = pµ,

I pλ ↔ a for all λ,

I For n, w ∈ {0, 1}n, put

uw := (pλ(w)+2−n) ∧ p′λ(w) ∈ P,

then fw (Juw (a)) exists in [0, uw ], for the partially defined map

fw = fwn ◦ · · · ◦ fw1 , f0(b) = 2b, f1(b) = (2b⊥)⊥.



Spectral resolution in C-blocks

Another way to construct a spectral resolution for a ∈ E :

I a is contained in a C-block C - a spectral MV-effect algebra

I C is the unit interval in a unital `-group G

I C is spectral iff G is spectral =⇒ there is the rational
spectral resolution of a in G (Foulis):

{pCa,λ}λ∈Q∩[0,1]
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Spectral resolution in C-blocks

I this spectral resolution does not depend on the choice of C

I for binary fractions - the previous construction

pCa,λ(w) = pa,λ(w), w ∈ {0, 1}∗.

I right continuity:

pCa,λ =
∧

λ(w)>λ

pa,λ(w), λ ∈ Q ∩ [0, 1].



Dependence on the compression base

Theorem
Assume that E with {Jp}p∈P is spectral. Let {J ′p}p∈P′ be another
compression base with P ′ = S(E )(= P). Then

I E with {J ′p}p∈P′ is spectral

I the spectral resolutions are the same.



Further properties of spectral resolutions

If E has a separating family of states, then

I Any a ∈ E is uniquely determined by its binary spectral
resolution

I a ∈ E is compatible with q ∈ P if and only if pa,λ(w) is
compatible with q for all binary fractions λ(w).

I we have

“a =

∫
[0,1]

λdpa,λ”



Examples

I E (H) is spectral.

I E with RDP is spectral =⇒ E must be lattice ordered (i.e.
an MV-effect algebra).

I A monotone σ-complete MV-effect algebra is spectral.

I Any Boolean algebra is spectral.

I An OMP is spectral =⇒ it is a Boolean algebra.

I The horizontal sum E (H)⊕̂E (H) is spectral.
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Convex effect algebras

An effect algebra is convex if for every a ∈ E and λ ∈ [0, 1] there is
an element λa ∈ E such that

(C1) µ(λa) = (λµ)a.

(C2) If λ+ µ ≤ 1 then λa⊕ µa ∈ E and (λ+ µ)a = λa⊕ µa.

(C3) If a⊕ b ∈ E then λa⊕ λb ∈ E and λ(a⊕ b) = λa⊕ λb.

(C4) 1a = a.

Theorem
Any convex effect algebra is affinely isomorphic to the interval
[0, u] in an ordered vector space (V ,V+) with an order unit u.

If (V ,V+, u) is an order unit space, we say that E is (strongly)
archimedean.

(Gudder et al., 1999)
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Convex effect algebras

Let E be a convex effect algebra, with corresponding ordered
vector space (V ,V+, u).

I E is spectral ⇐⇒ V is (Foulis) spectral (as a POUAG)

I If E is archimedean and spectral, then E is also strongly
archimedean.

I If E is strongly archimedean, then any compression is also
affine and extends to a positive linear operator on V .

I A convex MV-effect algebra is spectral ⇐⇒ it is monotone
σ-complete.

I The notion of spectral duality for order unit spaces (Alfsen and

Schultz, 1976, 2003) is strictly stronger than Foulis spectrality .
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Schultz, 1976, 2003) is strictly stronger than Foulis spectrality .
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Example: Generalized spin factors

A generalized spin factor is an order unit space defined from a
Banach space (X , ‖ · ‖) (Berdikulov and Odilov, 1994):

V = R× X , V+ = {(α, x), ‖x‖ ≤ α}, u = (1, 0)

Let (X , ‖ · ‖) be reflexive. Then

I V is Foulis spectral ⇐⇒ (X , ‖ · ‖) is strictly convex.

I A is is spectral duality ⇐⇒ (X , ‖ · ‖) is strictly convex and
smooth.
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Spectrality of interval effect algebras

E is an interval effect algebra if E ' [0, u] in a POUAG (G , u)

→ (the universal group of E ).

I Question: E is spectral
?⇐⇒ G is spectral (in Foulis sense)?

I True for

- MV-effect algebras
- archimedean divisible (convex) effect algebras

I False in general.

Counterexample: the horizontal sum E (H)⊕̂E (H)

(an interval effect algebra which is spectral but its universal
group is not unperforated hence not spectral).
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