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Effect algebras

An effect algebra is a system (E,0,1,®), where 0,1 € E are
constants, @ is a partial binary operation on E such that:

(E1) if a® b is defined, then b & a is defined and a® b= b & a;

(E2) if a® b and (a @ b) @ c are defined, then a® (b® ¢) is
defined and a® (b® c) =(a® b) ® c;

(E3) for every a € E there is unique a* € E such that a ® at = 1;
(E4) ifa® 1€ E, thena=0.

Covers many different algebraic structures: MV-effect algebras,
OMPs, orthoalgebras, etc.

Foulis & Bennett, 1994



Hilbert space effect algebras

Effect algebras are an algebraic model of Hilbert space effects:

E(H)={Ee€B(H), 0<E<I}

P> measurements on a quantum system in the Hilbert space
formalism

P important special property - spectrality:

for a € E(H) there is a family {pa x}re[o,1) of projections such

that
2= [ dpa



Spectral resolution in Hilbert space effect algebras

Assume dim(H) < oo.

Any effect a € E(H) has eigenvalues \; € [0, 1], with
eigenprojections p; € P(H). Then

Par= Y Pi

PN

and we have

a= /Adpa,x = Z Aipi.



Spectral resolution in Hilbert space effect algebras

Let a € E(H). The spectral resolution of a is the unique family of
projections {px}re[o,1] Such that

» 1=p; > py>p, for 1> X > p (nondecreasing),
> Axs, Pr = pu (right continuous),

> pya = apy ( commutativity),

> pra < Apy, pya > Apy.

Further, a is uniquely determined by {p, »} and a commutes with
b iff p, » commutes with py, ,, for all A and p.
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Let a € E(H). The spectral resolution of a is the unique family of
projections {px}re[o,1] Such that

» 1=p; > py>p, for 1> X > p (nondecreasing),
> Axs, Pr = pu (right continuous),

> pra = apy (commutativity),

> pra < Apa, pf\-a > /\pf\-. multiplication? constants?

Further, a is uniquely determined by {p, »} and a commutes with
b iff p;  commutes with py, , for all A and p. 77

Question
What are the additional structures and/or properties of E needed
to obtain this?
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Spectrality in effect algebras?

For convex effect algebras:
P spectral duality in order unit spaces (Alfsen-Schultz, 1976, 2003)

P contexts - finite resolutions of the unit (Gudder, 2019; AJ &
Plavala, 2019)

We will work in general effect algebras, using an approach started
in (Gudder, 2006; SP, 2006), inspired by spectrality in partially
ordered unital abelian groups (POUAG) (Foulis, 2003-2005).
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Compressions and compression bases in effect algebras

Let E be an effect algebra.

A compression is an additive map J: E — E such that

a<J(1) < J(a) = a, a<J)t <= Ja)=o.

Properties:

» Jis idempotent
» focus of J: J(1) is a principal element:

a,b<p, dadb = adb<p.

» J has a supplement J: ImJ = KerJ', ImJ’ = KerJ.
> J'(1) = J(1)*.

Gudder, 2006; SP, 2006



Compressions and compression bases in effect algebras

A compression base: {Jp}pep

» a collection of compressions

» Jp(l)=p, forall pe P

» P C E a subalgebra

» if p,q € P, p <+ q (Mackey compatible), then

3r € P such that JyJg = JgJp = J.

Elements of P are called projections.

Gudder, 2006; SP, 2006



Properties of compression bases

» P isan OMP,
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» P s an OMP,
» For a € E,

a=Jy(a)®J(a) = acp = Jpla)=aAp.



Properties of compression bases

» P s an OMP,
» For a € E,

a=Jp(a) D Jyu(a) <= a<rp = Jp(a)=aNp.
» bicommutant of a:
P(a)={peP:p+a, Vge P,g+a = q<+ p}.

a Boolean subalgebra in P



Examples of compression bases

Any effect algebra E can be endowed with compression bases that
can be ordered by inclusion:

» Trivial (minimal): {Jp =0, ; = id}.

» Central: P =T(E) the center of E:

Jo(a) =pAa, p € (E).

» There always exist maximal compression bases.

» E can have different (maximal) compression bases with the
same P.
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» Hilbert space effects E(#): unique (maximal) compression
base with
P = P(H), Jp(a) = pap.
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Examples of compression bases

» Hilbert space effects E(#): unique (maximal) compression

base with
P = P(H), Jp(a) = pap.

» Effect algebras with RDP (MV-effect algebras): the central
compression base is the unique (maximal) compression base.

» Direct product of compression bases: given a family of effect
algebras E; with compression bases {J; p}pep,. i € 1,

P="MciPi, Jp=Nicidp, p=(pi) € N;P;

is a compression base in ;¢ E;.
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Examples of compression bases

» The horizontal sum of Hilbert space effect algebras
E = E(H)DE(H).
» Let ¢ be a faithful state on E(H) (¢(a) = 0 implies a = 0).
» We construct a compression base with P = P(H)®P(H) and
-/(p,O)(a7 O) (Jp(a)v 0)7 J(p,O)(Oa a) = ((,0(3),0, 0)
J(O,p)(av 0) (07 @(a)p), J(O,p)(oa a) = (Oa Jp(a))

> we obtain many different compression bases with the same P.



Spectrality: projection cover property

(E,{Jp}pep) - an effect algebra with a fixed compression base.

Definition (Gudder, 2006)

(E,{Jp}pep) has the projection cover property if for any a € E,
there is a projection cover: a° € P such that

a<lp <= a°<p, Vpe P.

In this case, P is an OML.



Spectrality: b-property

Definition (SP, 2006)
(E,{Jp}pep) has the b-property if for all a € E, g € P,

a<rq < P(a) < q.

For a, b € E, we say that a commutes with b (aCb) if
P(a) «» P(b).



Spectrality: b-property

Definition (SP, 2006)
(E,{Jp}pep) has the b-property if for all a € E, g € P,

a<rq < P(a) < q.

For a, b € E, we say that a commutes with b (aCb) if
P(a) «» P(b).

Lemma
Assume the b-property. Then for p € P,

aCp <= a+ p.



Spectrality: b-comparability

Definition (SP, 2006)

(E,{Jp}pep) has the b-comparability property if
» it has the b-property
> for all a,b € E, aCb, we have

Ip € P(a,b),  Jp(a) < Jp(b), Jyu(b) < J,1(a).



Spectrality: b-comparability

Definition (SP, 2006)

(E,{Jp}pep) has the b-comparability property if
» it has the b-property
> for all a,b € E, aCb, we have

3p e P(a,b), Jp(a) < Jp(b), Jpe(b) < Jpu(a).

Lemma
Assume the b-comparability property. Then any a € E has a
splitting projection:

pe P(a): Jp(a) < Jp(1— a), Jpi(a) = (1 —a)
“Jp(a) <1/2" “Jpr(a) > 1/2"
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b-comparability property.

Consequences (necessary conditions):
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Spectrality

Definition (SP, 2006)
(E,{Jp}pep) is spectral if it has both the projection cover and the
b-comparability property.

Consequences (necessary conditions):

» P=S(E):={pecE, pissharp}isan OML,
» E is covered by C-blocks

C(B):={a€ E,a<» B} forablock BCP

= maximal sets of mutually commuting elements
» any C-block is a spectral MV-effect algebra
> any a € E has a largest splitting projection



Binary spectral resolutions

Let a € E. By repeated applications of splitting, we construct a
family of projections

{pa,)\(w)}we{o,l}* ;

indexed by binary fractions
AMw) = Z w2~ w € {0,1}"
i=1

- the binary spectral resolution of a.



Characterization of the binary spectral resolution

Let E be archimedean and spectral. The binary spectral resolution
{Pr(w) }we{o,13+ is the unique family in P

> 1l=p1>pyx>pyforl> A=y,
> AospPr=pPu
> py < aforall )\,
» For n, w € {0,1}", put
tw = (Pa(w)+2-7) A Pr(w) € P,
then f,,(J,, (2)) exists in [0, uy ], for the partially defined map

fw =Tw, 90 fwl, fb(b) = 2b, fl(b) = (QbL)L



Spectral resolution in C-blocks

Another way to construct a spectral resolution for a € E:

P> ais contained in a C-block C - a spectral MV-effect algebra
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Spectral resolution in C-blocks

Another way to construct a spectral resolution for a € E:

P> ais contained in a C-block C - a spectral MV-effect algebra
» ( is the unit interval in a unital ¢-group G

> C is spectral iff G is spectral = there is the rational
spectral resolution of a in G (Foulis):

c
{Pa At reqr(o,1]



Spectral resolution in C-blocks

» this spectral resolution does not depend on the choice of C

» for binary fractions - the previous construction

pa(—:)\(w) = pa,)\(w)a w e {Oa 1}*

P right continuity:

pi)\ = /\ Pax(w)> Aen [0, ].]
A(w)>A



Dependence on the compression base

Theorem
Assume that E with {Jp},cp is spectral. Let {J,},cp/ be another
compression base with P’ = S(E)(= P). Then

> E with {J}}pcpr is spectral
» the spectral resolutions are the same.



Further properties of spectral resolutions

If E has a separating family of states, then

> Any a € E is uniquely determined by its binary spectral
resolution

> a € E is compatible with g € P if and only if p, \(w) is
compatible with g for all binary fractions A(w).

9= [ dpu
[0,1]

> we have
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Examples

» E(H) is spectral.

E with RDP is spectral = E must be lattice ordered (i.e.
an MV-effect algebra).

» A monotone o-complete MV-effect algebra is spectral.

v

v

Any Boolean algebra is spectral.

v

An OMP is spectral = it is a Boolean algebra.



Examples

vy

vvyyy

E(H) is spectral.

E with RDP is spectral = E must be lattice ordered (i.e.
an MV-effect algebra).

A monotone o-complete MV-effect algebra is spectral.
Any Boolean algebra is spectral.

An OMP is spectral = it is a Boolean algebra.
The horizontal sum E(H)OE(H) is spectral.



Convex effect algebras

An effect algebra is convex if for every a € E and A € [0, 1] there is
an element A\a € E such that

(C1) p(ra) = (Au)a.

(C2) f A4+ p <1then \a® pa€ E and (A + p)a = Aa® pa.
(C3) If a® b€ E then Aa® Ab € E and A(a® b) = Xa® Ab.
(C4) la=a.

(Gudder et al., 1999)



Convex effect algebras

An effect algebra is convex if for every a € E and A € [0, 1] there is
an element A\a € E such that

(C1) p(ra) = (Au)a.

(C2) f A4+ p <1then \a® pa€ E and (A + p)a = Aa® pa.
(C3) If a® b€ E then Aa® Ab € E and A(a® b) = Xa® Ab.
(C4) la=a.

Theorem
Any convex effect algebra is affinely isomorphic to the interval
[0, u] in an ordered vector space (V, V1) with an order unit v.

If (V, VT, u)is an order unit space, we say that E is (strongly)
archimedean.

(Gudder et al., 1999)
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Convex effect algebras

Let E be a convex effect algebra, with corresponding ordered
vector space (V, VT u).

>

>

E is spectral <= V is (Foulis) spectral (as a POUAG)

If E is archimedean and spectral, then E is also strongly
archimedean.

If E is strongly archimedean, then any compression is also
affine and extends to a positive linear operator on V.

A convex MV-effect algebra is spectral <= it is monotone
o-complete.

The notion of spectral duality for order unit spaces (Alfsen and
Schultz, 1976, 2003) is strictly stronger than Foulis spectrality .
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A generalized spin factor is an order unit space defined from a
Banach space (X, || - ||) (Berdikulov and Odilov, 1994):

V=RxX, V'"={(a,x), ||x]|<a}, uv=(1,0)
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Example: Generalized spin factors

A generalized spin factor is an order unit space defined from a
Banach space (X, || - ||) (Berdikulov and Odilov, 1994):

V=RxX, V'"={(a,x), ||x]|<a}, uv=(1,0)
Let (X, || - ||) be reflexive. Then

» V is Foulis spectral <= (X, || -||) is strictly convex.

» A s is spectral duality <= (X, || -||) is strictly convex and
smooth.
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Spectrality of interval effect algebras

E is an interval effect algebra if E ~ [0, u] in a POUAG (G, v)

— (the universal group of E).

. : ? . : :
» Question: E is spectral <= G is spectral (in Foulis sense)?

» True for
- MV-effect algebras
- archimedean divisible (convex) effect algebras
> False in general.
Counterexample: the horizontal sum E(H)SE(H)

(an interval effect algebra which is spectral but its universal
group is not unperforated hence not spectral).



