Monotone relations and effect algebras

Gejza Jenča

Slovak University of Technology Bratislava

September 7, 2021

This research is supported by grants VEGA 2/0142/20 and 1/0006/19, Slovakia and by the Slovak Research and Development Agency under the contracts APVV-18-0052 and APVV-16-0073.

Gei		

< ロ > < 同 > < 三 > < 三 >

The definition

Definition

Let P, Q be posets. A relation $f \subseteq P \times Q$ is monotone relation from P to Q if and only if, for every $p_1, p_2 \in P$ and $q_1, q_2 \in Q$,

 $p_2 \ge p_1$ and $f(p_1, q_2)$ and $q_2 \ge q_1$ imply $f(p_2, q_1)$

We write $f: P \rightarrow Q$ for a monotone relation f from P to Q.

Example

Let *P*, *Q* be posets. Both the universal relation $P \times Q \subseteq P \times Q$ and the empty relation $\emptyset \subseteq P \times Q$ are monotone.

イロト イヨト イヨト イヨト 二日

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

• Draw the Hasse diagram of Q.

크

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

- Draw the Hasse diagram of Q.
- Draw the Hasse diagram of P over the diagram of Q.

臣

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

- Draw the Hasse diagram of Q.
- Draw the Hasse diagram of *P* over the diagram of *Q*.
- Draw some additional lines between elements of *P* and elements of *Q*,

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

- Draw the Hasse diagram of Q.
- Draw the Hasse diagram of *P* over the diagram of *Q*.
- Draw some additional lines between elements of *P* and elements of *Q*, so that the resulting picture is a Hasse diagram of a poset *C*.

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

- Draw the Hasse diagram of Q.
- Draw the Hasse diagram of *P* over the diagram of *Q*.
- Draw some additional lines between elements of *P* and elements of *Q*,so that the resulting picture is a Hasse diagram of a poset *C*.
- This poset then determines a monotone relation $f_C \subseteq P \times Q$ given by the rule $f_C(p, q)$ if and only if $q \leq_C p$.

September 7, 2021

4/27

For every monotone mapping $f: P \to Q$, there is a monotone relation $\hat{f}: P \to Q$ given by

 $\widehat{f}(p,q) \Leftrightarrow f(p) \geq q$

Let P, Q, R be posets, let $f: P \rightarrow Q$ and $g: Q \rightarrow R$ be monotone relations. The composite relation $g \circ f \subseteq |P| \times |R|$ is given by the rule

 $(g \circ f)(p, r)$ if and only if f(p, q) and g(q, r) for some $q \in Q$.

It is easy to check that the composite relation of two monotone relations is monotone and that the operation of composition is associative.

- 本部 トイヨト イヨト - ヨ

For a poset *P*, the *identity monotone relation* is the relation $id_P: P \rightarrow P$ given by the rule

 $\operatorname{id}_P(x, y) \Leftrightarrow x \ge y$

It is easy to see that for every monotone relation $f: P \longrightarrow Q$, $f = id_Q \circ f = f \circ id_P$.

(本間) (本語) (本語) (二語)

The category of posets and monotone relations, denoted by **RelPos**, is a category whose objects are posets and morphisms are monotone relations.

ヨト・イヨト

The direct product \otimes of posets is a bifunctor from **RelPos** × **RelPos** to **RelPos**. Indeed, for a pair of monotone relations $f : A \rightarrow B$ and $g : C \rightarrow D$ the monotone relation $(f \otimes g) : A \otimes C \rightarrow B \otimes D$ by the rule

 $(f \otimes g)((a, c), (b, d)) \Leftrightarrow f(a, b) \text{ and } g(c, d)$

イロン イボン イヨン 一日

- Fix a 1-element poset and call it **1**.
- $(RelPos, \otimes, 1)$ is a symmetric monoidal category
- For cographs, we have $cog(f \otimes g) = cog(f) \times cog(g)$.

A *dual object* to an object A of a symmetric monoidal category $(\mathcal{C}, \otimes, I)$ is an object A^* such that there are morphisms $\eta_A \colon I \to A^* \otimes A$ and $\epsilon_A \colon A \otimes A^* \to I$ such that the diagrams

commute. The morphisms η_A and ϵ_A are called *coevaluation* and *evaluation*, respectively.

• If A^* and A^+ are dual objects of an object A, then $A^* \simeq A^+$.

크

イロト イヨト イヨト イヨト

- If A^* and A^+ are dual objects of an object A, then $A^* \simeq A^+$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product (Vect(K), ⊗, K). A vector space V has a dual iff V is finitely dimensional;

- If A^* and A^+ are dual objects of an object A, then $A^* \simeq A^+$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product (Vect(K), ⊗, K). A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.

- If A^* and A^+ are dual objects of an object A, then $A^* \simeq A^+$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product (Vect(K), ⊗, K). A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.
- Modules over a commutative ring: *M* has a dual iff *M* is a finitely generated projective module.

- If A^* and A^+ are dual objects of an object A, then $A^* \simeq A^+$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product (Vect(K), ⊗, K). A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.
- Modules over a commutative ring: *M* has a dual iff *M* is a finitely generated projective module.
- By fixing a chosen dual for each object, taking a dual can be made to a contravariant functor *: C → C^{op}.

- If A^* and A^+ are dual objects of an object A, then $A^* \simeq A^+$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product (Vect(K), ⊗, K). A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.
- Modules over a commutative ring: *M* has a dual iff *M* is a finitely generated projective module.
- By fixing a chosen dual for each object, taking a dual can be made to a contravariant functor *: C → C^{op}.
- So, for a morphism $f: A \to B$ there is a dual morphism $f^*: B^* \to A^*$.

(本間) (本語) (本語) (語)

- If A^* and A^+ are dual objects of an object A, then $A^* \simeq A^+$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product (Vect(K), ⊗, K). A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.
- Modules over a commutative ring: *M* has a dual iff *M* is a finitely generated projective module.
- By fixing a chosen dual for each object, taking a dual can be made to a contravariant functor *: C → C^{op}.
- So, for a morphism $f: A \to B$ there is a dual morphism $f^*: B^* \to A^*$.

(本間) (本語) (本語) (語)

Definition

A symmetric monoidal category is *compact closed* if every of its objects has a dual.

The category of finite-dimensional vector spaces FinVect(K) is compact closed.

크

Theorem

- (RelPos, ×, 1) is a compact closed category.
- The dual object of a poset A is the dual poset of A.
- For cographs: $cog(f^*) \simeq (cog(f))^*$.

• **FinVect**(\mathbb{C}) is compact closed.

3

イロン イヨン イヨン イヨン

- **FinVect**(\mathbb{C}) is compact closed.
- FinHilb (finite dimensional Hilbert spaces) is compact closed as well.

크

- **FinVect**(\mathbb{C}) is compact closed.
- FinHilb (finite dimensional Hilbert spaces) is compact closed as well.
- What do we gain if we equip vector spaces with an inner product?

- **FinVect**(\mathbb{C}) is compact closed.
- FinHilb (finite dimensional Hilbert spaces) is compact closed as well.
- What do we gain if we equip vector spaces with an inner product?
- We gain the Riesz representation theorem, which means that every object V of FinHilb is equipped with a canonical isomorphism V → V*.

- **FinVect**(\mathbb{C}) is compact closed.
- FinHilb (finite dimensional Hilbert spaces) is compact closed as well.
- What do we gain if we equip vector spaces with an inner product?
- We gain the Riesz representation theorem, which means that every object V of FinHilb is equipped with a canonical isomorphism V → V*.
- On categorical level, every morphism f: V → U is equipped with another morphism f[†]: U → V such that f^{††} = f.

A *dagger category* is a category C equipped with an functor $\dagger: C \to C^{op}$ that is identity on objects and satisfies $f^{\dagger\dagger} = f$ for every morphism f of C. In fact, the \dagger functor can be characterized a mapping on the class of morphisms of C that has the following properties:

•
$$(\mathrm{id}_H)^\dagger = \mathrm{id}_H$$

•
$$(f \circ g)^{\dagger} = g^{\dagger} \circ f^{\dagger}$$

•
$$f^{\dagger\dagger} = f$$

- **RelPos** is probably *not* a dagger category.
- However, there is a partial solution:

臣

- **RelPos** is probably *not* a dagger category.
- However, there is a partial solution: we can replace **RelPos** with a category of self-dual posets with a fixed isomorphism ': A → A*.

An *involution* on a poset P is mapping ': $P \rightarrow P$ satisfying the following conditions.

- For all $x, y \in P$, $x \leq y$ if and only if $y' \leq x'$.
- For all $x \in P$, x'' = x.

A poset equipped with an involution is called *involutive poset*, or *poset* with involution.

The category **RelPosInv** has posets equipped with involutions for objects and monotone relations for morphisms. Note that the morphism in **RelPosInv** do not interact with the involutive structure at all. However, the involutive structure on objects allows us to flip the morphisms: if $f: A \rightarrow B$ is a monotone relation, then there is a monotone relation $f^{\dagger}: B \rightarrow A$ given by the rule

$$f^{\dagger}(b,a)=f(a',b').$$

It is easy to check that f^{\dagger} is a monotone relation. Moreover, **RelPosinv** equipped with \dagger is a dagger category.

Theorem (GJ) **RelPosInv** is a dagger compact category.

Gei		

3

A *Frobenius structure* in a symmetric monoidal category $(\mathcal{C}, \otimes, I)$ is an object A equipped with a monoid structure (A, ∇, e) and a comonoid structure (A, Δ, c) such that the following diagram commutes

A Frobenius structure is a *dagger Frobenius structure* if $\nabla = \Delta^{\dagger}$ and $m = c^{\dagger}$. Clearly, every dagger Frobenius structure is completely determined by its (co)monoid structure.

September 7, 2021

Theorem (Vicary)

Dagger Frobenius structures in **FinHilb** are H*-algebras.

Gei		

Problem

What are dagger Frobenius structures in **RelPosInv**?

I do not know, but I have nice examples!

za .	

3

- An *effect algebra* is a partial algebra $(E, \oplus, 0, 1)$ with a binary partial operation \oplus and two nullary operations 0, 1 satisfying the following conditions.
- (E1) If $a \oplus b$ is defined, then $b \oplus a$ is defined and $a \oplus b = b \oplus a$.
- (E2) If $a \oplus b$ and $(a \oplus b) \oplus c$ are defined, then $b \oplus c$ and $a \oplus (b \oplus c)$ are defined and $(a \oplus b) \oplus c = a \oplus (b \oplus c)$.
- (E3) For every $a \in E$ there is a unique $a' \in E$ such that $a \oplus a'$ exists and $a \oplus a' = 1$.
- (E4) If $a \oplus 1$ is defined, then a = 0.

イロト イポト イヨト イヨト 二日

For every effect algebra *E*, there is a (clearly monotone) relation $\Delta: E \longrightarrow E \otimes E$ given by the rule

$$\Delta(x,(a,b)) \Leftrightarrow x \ge a \oplus b$$

Moreover, there is a monotone relation $c: E \rightarrow I$ given by $c = E \rightarrow I$ (the total relation).

Theorem (GJ)

For every effect algebra E, (E, Δ, c) is a comonoid that gives rise to a dagger Frobenius structure on E.

