Monotone relations and effect algebras

Gejza Jenča
Slovak University of Technology Bratislava

September 7, 2021

This research is supported by grants VEGA 2/0142/20 and 1/0006/19, Slovakia and by the Slovak Research and Development Agency under the contracts APVV-18-0052 and APVV-16-0073.

The definition

Definition

Let P, Q be posets. A relation $f \subseteq P \times Q$ is monotone relation from P to Q if and only if, for every $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$,

$$
p_{2} \geq p_{1} \text { and } f\left(p_{1}, q_{2}\right) \text { and } q_{2} \geq q_{1} \text { imply } f\left(p_{2}, q_{1}\right)
$$

We write $f: P \longrightarrow Q$ for a monotone relation f from P to Q.

Example

Let P, Q be posets. Both the universal relation $P \times Q \subseteq P \times Q$ and the empty relation $\emptyset \subseteq P \times Q$ are monotone.

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

- Draw the Hasse diagram of Q.

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

- Draw the Hasse diagram of Q.
- Draw the Hasse diagram of P over the diagram of Q.

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

- Draw the Hasse diagram of Q.
- Draw the Hasse diagram of P over the diagram of Q.
- Draw some additional lines between elements of P and elements of Q,

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

- Draw the Hasse diagram of Q.
- Draw the Hasse diagram of P over the diagram of Q.
- Draw some additional lines between elements of P and elements of Q,so that the resulting picture is a Hasse diagram of a poset C.

It is instructive to visualize a monotone relation between two disjoint finite posets P and Q in the following way.

- Draw the Hasse diagram of Q.
- Draw the Hasse diagram of P over the diagram of Q.
- Draw some additional lines between elements of P and elements of Q,so that the resulting picture is a Hasse diagram of a poset C.
- This poset then determines a monotone relation $f_{C} \subseteq P \times Q$ given by the rule $f_{C}(p, q)$ if and only if $q \leq_{C} p$.

For every monotone mapping $f: P \rightarrow Q$, there is a monotone relation $\widehat{f}: P \longrightarrow Q$ given by

$$
\widehat{f}(p, q) \Leftrightarrow f(p) \geq q
$$

Let P, Q, R be posets, let $f: P \longrightarrow Q$ and $g: Q \longrightarrow R$ be monotone relations. The composite relation $g \circ f \subseteq|P| \times|R|$ is given by the rule

$$
(g \circ f)(p, r) \text { if and only if } f(p, q) \text { and } g(q, r) \text { for some } q \in Q .
$$

It is easy to check that the composite relation of two monotone relations is monotone and that the operation of composition is associative.

For a poset P, the identity monotone relation is the relation $\mathrm{id}_{P}: P \rightarrow P$ given by the rule

$$
\operatorname{id}_{P}(x, y) \Leftrightarrow x \geq y
$$

It is easy to see that for every monotone relation $f: P \longrightarrow Q$, $f=\operatorname{id}_{Q} \circ f=f \circ \mathrm{id}_{P}$.

The category of posets and monotone relations, denoted by RelPos, is a category whose objects are posets and morphisms are monotone relations.

The direct product \otimes of posets is a bifunctor from RelPos \times RelPos to RelPos. Indeed, for a pair of monotone relations $f: A \longrightarrow B$ and $g: C \rightarrow D$ the monotone relation $(f \otimes g): A \otimes C \rightarrow B \otimes D$ by the rule

$$
(f \otimes g)((a, c),(b, d)) \Leftrightarrow f(a, b) \text { and } g(c, d)
$$

- Fix a 1-element poset and call it $\mathbf{1}$.
- (ReIPos, $\otimes, \mathbf{1}$) is a symmetric monoidal category
- For cographs, we have $\operatorname{cog}(f \otimes g)=\operatorname{cog}(f) \times \operatorname{cog}(g)$.

A dual object to an object A of a symmetric monoidal category $(\mathcal{C}, \otimes, I)$ is an object A^{*} such that there are morphisms $\eta_{A}: I \rightarrow A^{*} \otimes A$ and $\epsilon_{A}: A \otimes A^{*} \rightarrow I$ such that the diagrams

commute. The morphisms η_{A} and ϵ_{A} are called coevaluation and evaluation, respectively.

- If A^{*} and A^{+}are dual objects of an object A, then $A^{*} \simeq A^{+}$.
- If A^{*} and A^{+}are dual objects of an object A, then $A^{*} \simeq A^{+}$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product $(\operatorname{Vect}(K), \otimes, K)$. A vector space V has a dual iff V is finitely dimensional;
- If A^{*} and A^{+}are dual objects of an object A, then $A^{*} \simeq A^{+}$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product $(\operatorname{Vect}(K), \otimes, K)$. A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.
- If A^{*} and A^{+}are dual objects of an object A, then $A^{*} \simeq A^{+}$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product $(\operatorname{Vect}(K), \otimes, K)$. A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.
- Modules over a commutative ring: M has a dual iff M is a finitely generated projective module.
- If A^{*} and A^{+}are dual objects of an object A, then $A^{*} \simeq A^{+}$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product $(\operatorname{Vect}(K), \otimes, K)$. A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.
- Modules over a commutative ring: M has a dual iff M is a finitely generated projective module.
- By fixing a chosen dual for each object, taking a dual can be made to a contravariant functor $*: \mathcal{C} \rightarrow \mathcal{C}^{O P}$.
- If A^{*} and A^{+}are dual objects of an object A, then $A^{*} \simeq A^{+}$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product $(\operatorname{Vect}(K), \otimes, K)$. A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.
- Modules over a commutative ring: M has a dual iff M is a finitely generated projective module.
- By fixing a chosen dual for each object, taking a dual can be made to a contravariant functor $*: \mathcal{C} \rightarrow \mathcal{C}^{O P}$.
- So, for a morphism $f: A \rightarrow B$ there is a dual morphism $f^{*}: B^{*} \rightarrow A^{*}$.
- If A^{*} and A^{+}are dual objects of an object A, then $A^{*} \simeq A^{+}$.
- Consider the symmetric monoidal category of vector spaces equipped with the tensor product $(\operatorname{Vect}(K), \otimes, K)$. A vector space V has a dual iff V is finitely dimensional;
- the dual object of V is then simply the usual linear dual of V.
- Modules over a commutative ring: M has a dual iff M is a finitely generated projective module.
- By fixing a chosen dual for each object, taking a dual can be made to a contravariant functor $*: \mathcal{C} \rightarrow \mathcal{C}^{O P}$.
- So, for a morphism $f: A \rightarrow B$ there is a dual morphism $f^{*}: B^{*} \rightarrow A^{*}$.

Definition

A symmetric monoidal category is compact closed if every of its objects has a dual.

The category of finite-dimensional vector spaces FinVect (K) is compact closed.

Theorem

- (ReIPos, $\times, \mathbf{1}$) is a compact closed category.
- The dual object of a poset A is the dual poset of A.
- For cographs: $\operatorname{cog}\left(f^{*}\right) \simeq(\operatorname{cog}(f))^{*}$.
- $\operatorname{FinVect}(\mathbb{C})$ is compact closed.
- FinVect (\mathbb{C}) is compact closed.
- FinHilb (finite dimensional Hilbert spaces) is compact closed as well.
- FinVect (\mathbb{C}) is compact closed.
- FinHilb (finite dimensional Hilbert spaces) is compact closed as well.
- What do we gain if we equip vector spaces with an inner product?
- FinVect (\mathbb{C}) is compact closed.
- FinHilb (finite dimensional Hilbert spaces) is compact closed as well.
- What do we gain if we equip vector spaces with an inner product?
- We gain the Riesz representation theorem, which means that every object V of FinHilb is equipped with a canonical isomorphism $V \rightarrow V^{*}$.
- FinVect (\mathbb{C}) is compact closed.
- FinHilb (finite dimensional Hilbert spaces) is compact closed as well.
- What do we gain if we equip vector spaces with an inner product?
- We gain the Riesz representation theorem, which means that every object V of FinHilb is equipped with a canonical isomorphism $V \rightarrow V^{*}$.
- On categorical level, every morphism $f: V \rightarrow U$ is equipped with another morphism $f^{\dagger}: U \rightarrow V$ such that $f^{\dagger \dagger}=f$.

A dagger category is a category \mathcal{C} equipped with an functor $\dagger: \mathcal{C} \rightarrow \mathcal{C}^{\text {op }}$ that is identity on objects and satisfies $f^{\dagger \dagger}=f$ for every morphism f of \mathcal{C}. In fact, the \dagger functor can be characterized a mapping on the class of morphisms of \mathcal{C} that has the following properties:

- $\left(\mathrm{id}_{H}\right)^{\dagger}=\mathrm{id}_{H}$
- $(f \circ g)^{\dagger}=g^{\dagger} \circ f^{\dagger}$
- $f^{\dagger \dagger}=f$
- RelPos is probably not a dagger category.
- However, there is a partial solution:
- RelPos is probably not a dagger category.
- However, there is a partial solution: we can replace RelPos with a category of self-dual posets with a fixed isomorphism ' $: A \rightarrow A^{*}$.

An involution on a poset P is mapping ' $: P \rightarrow P$ satisfying the following conditions.

- For all $x, y \in P, x \leq y$ if and only if $y^{\prime} \leq x^{\prime}$.
- For all $x \in P, x^{\prime \prime}=x$.

A poset equipped with an involution is called involutive poset, or poset with involution.

The category RelPosInv has posets equipped with involutions for objects and monotone relations for morphisms. Note that the morphism in RelPosInv do not interact with the involutive structure at all. However, the involutive structure on objects allows us to flip the morphisms: if $f: A \rightarrow B$ is a monotone relation, then there is a monotone relation $f^{\dagger}: B \longrightarrow A$ given by the rule

$$
f^{\dagger}(b, a)=f\left(a^{\prime}, b^{\prime}\right)
$$

It is easy to check that f^{\dagger} is a monotone relation. Moreover, RelPosInv equipped with \dagger is a dagger category.

Theorem (GJ)
RelPosInv is a dagger compact category.

A Frobenius structure in a symmetric monoidal category $(\mathcal{C}, \otimes, I)$ is an object A equipped with a monoid structure (A, ∇, e) and a comonoid structure (A, Δ, c) such that the following diagram commutes

A Frobenius structure is a dagger Frobenius structure if $\nabla=\Delta^{\dagger}$ and $m=c^{\dagger}$. Clearly, every dagger Frobenius structure is completely determined by its (co)monoid structure.

Theorem (Vicary)
Dagger Frobenius structures in FinHilb are H^{*}-algebras.

Problem
 What are dagger Frobenius structures in RelPosInv?

I do not know, but I have nice examples!

An effect algebra is a partial algebra $(E, \oplus, 0,1)$ with a binary partial operation \oplus and two nullary operations 0,1 satisfying the following conditions.
(E1) If $a \oplus b$ is defined, then $b \oplus a$ is defined and $a \oplus b=b \oplus a$.
(E2) If $a \oplus b$ and $(a \oplus b) \oplus c$ are defined, then $b \oplus c$ and $a \oplus(b \oplus c)$ are defined and $(a \oplus b) \oplus c=a \oplus(b \oplus c)$.
(E3) For every $a \in E$ there is a unique $a^{\prime} \in E$ such that $a \oplus a^{\prime}$ exists and $a \oplus a^{\prime}=1$.
(E4) If $a \oplus 1$ is defined, then $a=0$.

For every effect algebra E, there is a (clearly monotone) relation $\Delta: E \rightarrow E \otimes E$ given by the rule

$$
\Delta(x,(a, b)) \Leftrightarrow x \geq a \oplus b
$$

Moreover, there is a monotone relation $c: E \rightarrow I$ given by $c=E \rightarrow I$ (the total relation).

Theorem (GJ)

For every effect algebra $E,(E, \Delta, c)$ is a comonoid that gives rise to a dagger Frobenius structure on E.

