Tensor product of effect algebras as a Kan extension arXiv:1705.06498 to appear in Order

Gejza Jenča

Slovak University of Technology Bratislava
January 31, 2018

A category

- Objects
- Morphisms
- Composition
- Identity

The category (poset) of real numbers

- Objects: real numbers
- Morphisms: $a \leq b$
- Composition:
$(b \leq c) \circ(a \leq b) \Longrightarrow(a \leq c)$
- Identity: $a \leq a$

Effect algebras

- Commutative, cancellative, positive, unital partial abelian monoids.
- Independently introduced in 1990's by researchers from Italy, Slovakia, US.
- They generalize (in a useful way) MV-algebras, orthomodular lattices, Boolean algebras.
- 839 citations of the basic paper by Foulis and Bennett

A category with a nice subcategory

We consider in this talk only full subcategories, this makes things easier.

Everybody likes \mathbb{Q}

Everybody likes finite Boolean algebras

We shall write $2^{[n]}$ for the powerset of $\{1, \ldots, n\}$.

An object A in \mathcal{D}

Erm, let's say... π

Erm, let's say... A

Arrows from \mathcal{C} to A

- We shall look at the arrows from objects of \mathcal{C} to A.
- There can be many arrows from c to A, in general.

Look, Dedekind cuts!

Finite observables

- An arrow $2^{[n]} \rightarrow A$ is called a finite A-valued observable.
- These are easy to describe by finite decompositions of the unit of A.

$\mathcal{C} \uparrow A$: arrows as objects
- Objects: all \mathcal{D}-arrows $c \rightarrow A$, where $c \in \mathcal{C}$.

$\mathcal{C} \uparrow A$: morphisms of arrows are commutative triangles
- Morphisms: $f: g \rightarrow g^{\prime}$ means that $g=g^{\prime} \circ f$.
- Composition: pasting of triangles.

$\mathrm{FB} \uparrow A$
- Objects: decompositions of unit in A.
- Morphisms: refinements.

$\mathcal{C} \uparrow A$: what does it say about A ?
- We may look at various properties of A and determine whether they are reflected by categorical properties of $\mathcal{C} \uparrow A$.

FB $\uparrow A$: what does it say about A

Theorem

An effect algebra A is an orthoalgebra if and only if for every pair of morphisms $f_{1}, f_{2}: g \rightarrow g^{\prime}$ in $\mathcal{C} \uparrow A$ there is a coequalizing morphism $q: g^{\prime} \rightarrow u$ such that $q \circ f_{1}=q \circ f_{2}$.

Can we reconstruct A from $\mathrm{FB} \uparrow A$?

- Yes!
- There is an obviously defined "projection" functor
$P: \mathrm{FB} \uparrow A \rightarrow \mathrm{FB}$ that takes every observable $g: 2^{[n]} \rightarrow A$ to its domain $2^{[n]}$.

Theorem

A is the colimit of the diagram
$\mathrm{FB} \uparrow A \xrightarrow{p} \mathrm{FBC} \mathrm{EA}$

Can we reconstruct π from $\mathbb{Q} \uparrow \pi$?

Yes, because

$$
\pi=\sup \{x \in \mathbb{Q}: x \leq \pi\}
$$

Transferring structure from \mathcal{C} to \mathcal{D}

- Suppose that \mathcal{C} is equipped with some sort of "tensor product" - a monoidal structure ($\mathcal{C}, *, I, \alpha, \lambda, \rho$), satisfying the usual axioms.
- Can we extend $*$ from \mathcal{C} to \mathcal{D} in a universal way?

Transferring structure from \mathcal{C} to \mathcal{D}

For $A, B \in \mathcal{D}$

$$
A \otimes B=\operatorname{colim}(\mathcal{C} \uparrow A \times \mathcal{C} \uparrow B \xrightarrow{p \times p} \mathcal{C} \times \mathcal{C} \xrightarrow{*} \mathcal{C} \longleftrightarrow \mathcal{D})
$$

This is the left Kan extension

$$
\otimes=\operatorname{Lan}_{E \times E}(E \circ *)
$$

where E is the inclusion $\mathcal{C} \rightarrow \mathcal{D}$

Transferring structure from FB to EA

- There is a monoidal structure on FB

$$
2^{[n]} * 2^{[m]}=2^{[n] \times[m]}
$$

- This is the free product of Boolean algebras.

Theorem
Q is the tensor product of effect algebras, introduced in 1995 by Dvurečenskij.

Transferring the structure from \mathbb{Q} to \mathbb{R}

- There is a monoidal structure on \mathbb{Q} - the product of rational numbers.
- For $a, b \in \mathbb{R}$, the left Kan extension colimit becomes

$$
a \otimes b=\sup \{x \cdot y: x, y \in \mathbb{Q}, x \leq a, y \leq b\}
$$

- This is just the product of real numbers.

