#### Tensor product of effect algebras as a Kan extension arXiv:1705.06498 to appear in <u>Order</u>

#### Gejza Jenča

Slovak University of Technology Bratislava

January 31, 2018

Gejza Jenča

Tensor products of EAs

January 31, 2018 1 / 24

## A category

- Objects
- Morphisms
- Composition
- Identity



< A

æ

< ∃→

### The category (poset) of real numbers



## Effect algebras

- Commutative, cancellative, positive, unital partial abelian monoids.
- Independently introduced in 1990's by researchers from Italy, Slovakia, US.
- They generalize (in a useful way) MV-algebras, orthomodular lattices, Boolean algebras.
- 839 citations of the basic paper by Foulis and Bennett



### A category with a nice subcategory

We consider in this talk only full subcategories, this makes things easier.



## Everybody likes ${\mathbb Q}$



イロン 不聞と 不同と 不同と

- 2

#### Everybody likes finite Boolean algebras

# We shall write $2^{[n]}$ for the powerset of $\{1, \ldots, n\}$ .



### An object A in $\mathcal{D}$



イロト イヨト イヨト イヨト

- 2

# Erm, let's say... $\pi$



イロン 不聞と 不同と 不同と

- 2

# Erm, let's say... A



・ロト ・聞と ・ 国と ・ 国と

Ξ.

#### Arrows from $\mathcal C$ to A

- We shall look at the arrows from objects of C to A.
- There can be many arrows from *c* to *A*, in general.



#### Look, Dedekind cuts!



3

12 / 24

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

#### Finite observables

- An arrow 2<sup>[n]</sup> → A is called a finite A-valued observable.
- These are easy to describe by finite decompositions of the unit of *A*.



 $C \uparrow A$ : arrows as objects

• Objects: all  $\mathcal{D}$ -arrows  $c \to A$ , where  $c \in C$ .



э

#### $C \uparrow A$ : morphisms of arrows are commutative triangles

- Morphisms:  $f: g \to g'$  means that  $g = g' \circ f$ .
- Composition: pasting of triangles.



## $FB \uparrow A$

- Objects: decompositions of unit in *A*.
- Morphisms: refinements.



< A

æ

→ ∃ →

#### $C \uparrow A$ : what does it say about A?

 We may look at various properties of A and determine whether they are reflected by categorical properties of C ↑ A.



#### **FB** $\uparrow$ *A*: what does it say about *A*

#### Theorem

An effect algebra A is an orthoalgebra if and only if for every pair of morphisms  $f_1, f_2 : g \to g'$  in  $C \uparrow A$  there is a coequalizing morphism  $q : g' \to u$  such that  $q \circ f_1 = q \circ f_2$ .



#### Can we reconstruct A from **FB** $\uparrow$ A?

Yes!

• There is an obviously defined "projection" functor  $P : \mathbf{FB} \uparrow A \to \mathbf{FB}$  that takes every observable  $g : 2^{[n]} \to A$ to its domain  $2^{[n]}$ .

#### Theorem

A is the colimit of the diagram

$$FB \uparrow A \xrightarrow{p} FB \hookrightarrow EA$$



Can we reconstruct  $\pi$  from  $\mathbb{Q} \uparrow \pi$ ?



$$\pi = \sup\{x \in \mathbb{Q} \colon x \le \pi\}$$



æ

글 > : < 글 >

Transferring structure from  ${\mathcal C}$  to  ${\mathcal D}$ 

- Suppose that C is equipped with some sort of "tensor product" a monoidal structure (C, \*, I, α, λ, ρ), satisfying the usual axioms.
- Can we extend  $\ast$  from  ${\mathcal C}$  to  ${\mathcal D}$  in a universal way?



January 31, 2018

21 / 24

Transferring structure from  ${\mathcal C}$  to  ${\mathcal D}$ 



For  $A, B \in \mathcal{D}$ 

$$A \otimes B = \operatorname{colim}(\ \mathcal{C} \uparrow A \times \mathcal{C} \uparrow B \xrightarrow{\rho \times \rho} \mathcal{C} \times \mathcal{C} \xrightarrow{*} \mathcal{C} \longrightarrow \mathcal{D} \ )$$

This is the left Kan extension

$$\otimes = \operatorname{Lan}_{E \times E}(E \circ *)$$

where *E* is the inclusion  $\mathcal{C} \to \mathcal{D}$ 

Transferring structure from FB to EA

• There is a monoidal structure on FB

 $2^{[n]} * 2^{[m]} = 2^{[n] \times [m]}$ 

• This is the free product of Boolean algebras.



#### Theorem

 $\otimes$  is the tensor product of effect algebras, introduced in 1995 by Dvurečenskij.

| (seiza | Jenča |
|--------|-------|
|        |       |

- < ∃ →

э

23 / 24

< 47 ▶

### Transferring the structure from ${\mathbb Q}$ to ${\mathbb R}$

- $\bullet\,$  There is a monoidal structure on  $\mathbb Q$  the product of rational numbers.
- For  $a, b \in \mathbb{R}$ , the left Kan extension colimit becomes

$$a \otimes b = \sup\{x.y: x, y \in \mathbb{Q}, x \leq a, y \leq b\}$$

• This is just the product of real numbers.