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Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering
Slovak Technical University

Summer School of General Algebra and Ordered Sets 2014



Unitization and symmetrization of
non-commutative partial �����abelian monoids

Gejza Jenča
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Effect Algebras
Foulis and Bennett [1994], Kôpka and Chovanec [1994], Giuntini and Greuling [1989]

An effect algebra is a partial algebra (E ;⊕,0,1) satisfying the
following conditions.

(E1) If a⊕ b is defined, then b ⊕ a is defined and a⊕ b = b ⊕ a.
(E2) If a⊕ b and (a⊕ b)⊕ c are defined, then b ⊕ c and

a⊕ (b ⊕ c) are defined and (a⊕ b)⊕ c = a⊕ (b ⊕ c).
(E3) For every a ∈ E there is a unique a′ ∈ E such that

a⊕ a′ = 1.
(E4) If a⊕ 1 exists, then a = 0



Morphisms of effect algebras

I A mapping f : A→ B of effect algebras is a morphism if it
preserves all existing sums, 0 and 1.

I This gives us the category of effect algebras EA.
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Basic relationships

Let E be an effect algebra.
I Neutral element: a⊕ 0 = a.
I Cancellativity: a⊕ b = a⊕ c ⇒ b = c.
I Partial difference: If a⊕ b = c then we write a = c 	 b. 	 is

well defined and a′ = 1	 a.
I Positivity: a⊕ b = 0 implies a = b = 0.
I Poset: Write b ≤ c iff ∃a : a⊕ b = c; (E ,≤) is then a

bounded poset.
I Domain of ⊕: a⊕ b is defined iff a ≤ b′ iff b ≤ a′.



Important subclasses

The class of effect algebras is (essentially) a common
superclass of several classes of algebras:

I orthomodular lattices
I orthoalgebras
I MV-algebras
I Boolean algebras



Generalized effect algebras

A generalized effect algebra is a partial algebra (A;⊕,0,1)
satisfying the following conditions.

(GE1) If a⊕ b is defined, then b ⊕ a is defined and a⊕ b = b ⊕ a.
(GE2) If a⊕ b and (a⊕ b)⊕ c are defined, then b ⊕ c and

a⊕ (b ⊕ c) are defined and (a⊕ b)⊕ c = a⊕ (b ⊕ c).
(GE3) Neutral element: a⊕ 0 = a.
(GE4) Cancellativity: a⊕ b = a⊕ c ⇒ b = c.
(GE5) Positivity: a⊕ b = 0 implies a = b = 0.



Morphisms of generalized effect algebras

I A mapping f : A→ B of generalized effect algebras is a
morphism if it preserves all existing sums and 0.

I This gives us the category of generalized effect algebras
GEA.

I There is a forgetful functor U : EA→ GEA.
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Unitization of generalized effect algebras
Hedlíková and Pulmannová [1996]

Theorem
For every generalized effect algebra A there is an effect algebra
E(A) and an embedding of generalized effect algebras
ηA : A→ UE(A).

I The range of ηA is and ideal of UE(A).

I UE(A) is a disjoint union of ηA(A) and {(ηA(x))′ : x ∈ A}.
I If A is upper-bounded, then UE(A) ' A× 2, where 2 is the

2-element Boolean algebra.
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Where does the unitization construction come from

Theorem
E is a left adjoint functor to U.

Moreover, the adjunction is
monadic.

Corollary
Let A,B be generalized effect algebras. let f : A→ UE(B) be a
morphism. There is a unique morphism of effect algebras
u : E(A)→ E(B) such that

UE(A) u // UE(B)

A

ηA

OO
f

99

commutes.
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Corollary
The unitization construction preserves colimits.

In particular,

E(A⊕ B) ' E(A)⊕ E(B),

where on the left side ⊕ is the 0-pasting and on the right side ⊕
is the 0,1-pasting.
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Pseudo effect algebras (PEAs)
Dvurečenskij and Vetterlein [2001a,b]

An pseudo effect algebra is a partial algebra (E ;⊕,0,1)
satisfying the following conditions.

(PE1) If a⊕ b and (a⊕ b)⊕ c are defined, then b ⊕ c and
a⊕ (b ⊕ c) are defined and (a⊕ b)⊕ c = a⊕ (b ⊕ c).

(PE2) For every a ∈ E there are unique elements a−,a∼ ∈ E
such that a⊕ a∼ = a− ⊕ a = 1.

(PE3) If a⊕ b exists, then there are c,d ∈ E such that
a⊕ b = c ⊕ a = b ⊕ d = 1.

(PE4) If a⊕ 1 or 1⊕ a exist, then a = 0.



Generalized pseudo effect algebras (GPEAs)

An pseudo effect algebra is a partial algebra (E ;⊕,0,1)
satisfying the following conditions.

(GPE1) If a⊕ b and (a⊕ b)⊕ c are defined, then b ⊕ c and
a⊕ (b ⊕ c) are defined and (a⊕ b)⊕ c = a⊕ (b ⊕ c).

(GPE2) If a⊕ b exists, then there are c,d ∈ E such that
a⊕ b = c ⊕ a = b ⊕ d = 1.

(GPE3) If a⊕ b = a⊕ c or b ⊕ a = c ⊕ a, then b = c.
(GPE4) a⊕ 0 = 0⊕ a = a.
(GPE5) If a⊕ b = 0, then a = b = 0.



Is there a unitization?

Problem
Can every GPEA be embedded, as an ideal, into a PEA?



A unitization result
Foulis and Pulmannová [2014]

Theorem
Let P be a GPEA, suppose that there is an automorphism
γ : E → E (called unitizing automorphism) such that

γa⊕ b exists iff b ⊕ a.

Then P admits a nice unitization E(P).



The adjunction generalizes to the non-commutative
case

I There is a category “GPEAS equipped with an unitizing
automorphism”, call it GPEAγ.

I There is a forgetful functor U : GPEA→ GPEAγ; the
unitizing automorphism for U(E) is just x 7→ x−−.

I The unitization construction F : GPEAγ → GPEA is a
functor left adjoint to U.



Symmetric pseudo effect algebras

Definition
An pseudo effect algebra is called symmetric if, for all elements
a, a∼ = a−.
A symmetric pseudo effect algebra need not be commutative.



A canonical automorphism
Foulis and Pulmannová [2014]

Lemma
In a pseudo effect algebra, x 7→ x−− is an automorphism.



Symmetrization functor

Theorem

1. There is an action of Z on every PEA E such that x 7→ x−−

is the action of 1 ∈ Z.

2. The orbits of this action determine a (strong) congruence
≡ on E such that E/ ≡ is symmetric.

3. The correspondence E 7→ E/ ≡ determines a functor S
from PEA to the category of symmetric pseudo effect
algebras (SPEA) called symmetrization.

4. This functor is left adjoint to the inclusion of symmetric
pseudo effect into PEA.

5. It is an idempotent functor: S2 ' S.
6. SPEA is a reflexive subcategory of PEA, S being the

reflection.
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