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in the student competition SVOČ.
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1 Preliminaries

The main topic of this article is a special type of constructions of triangular norms and uninorms. First

we recall some important definitions and statements.

Definition 1.1. [3] A triangular norm T (t-norm for short) is a commutative, associative, monotone

binary operator on the unit interval [0, 1], fulfilling the boundary condition T (x, 1) = x, for all x ∈
[0, 1].

Uninorms were introduced by Yager and Rybalov in 1996 as a generalization of triangular norms and

conorms [7].

Definition 1.2. [7] An associative, commutative and increasing operation U : [0, 1]2 → [0, 1] is called

a uninorm, if there exists e ∈ [0, 1], called the neutral element of U , such that

U(e, x) = U(x, e) = x for all x ∈ [0, 1].

There exist various constructions of t-norms, and we will deal with a method of constructing t-norms

which gives the new t-norm from a previously known t-norm and a unary function ϕ.

Proposition 1.3. [3] Let ϕ : [0, 1] → [0, 1] be a non-decreasing function and T : [0, 1]2 → [0, 1] be a

t-norm. Then the function defined by

Tϕ(x, y) =

{

min{x, y}, if max{x, y} = 1,

ϕ(−1)[T (ϕ(x), ϕ(y))], otherwise,

is a t-norm. Note, that ϕ(−1) is a pseudo-inverse, which is a monotone extension of the ordinary inverse

function and ϕ(−1)(x) = sup{z ∈ [0, 1];ϕ(z) < x}.

We can similarly construct uninorms:

Proposition 1.4. [2] Let ϕ : [0, 1] → [0, 1] be a continuous, bijective function, and let there exist e′ such

that e′ = ϕ−1(e), where e is the neutral element of a given uninorm U. Then the function

Uϕ(x, y) = ϕ−1[Ue(ϕ(x), ϕ(y))]

is a uninorm with the neutral element e′.
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In this paper we will discuss the invariants of ϕ−transformation of t-norms and uninorms. It means,

we will look for the uninorms and the bijective functions ϕ such that

ϕ(U(x, y)) = U(ϕ(x), ϕ(y)).

Finally, we include some necessary notions.

Definition 1.5. [3] Let T : [0, 1]2 → [0, 1] be a t-norm. Then a function δn : [0, 1] → [0, 1] defined as

δ1(x) = x, δn+1(x) = T (δn(x), x), for x ∈ [0, 1], n ∈ N,

is called the diagonal function of a t-norm T . The set of all diagonal functions of given t-norm T is

denoted as ∆T = {δn : n ∈ N}.

Definition 1.6. A t-norm T is called Archimedean if it has the Archimedean property, i.e., if for each x, y

in the open interval (0, 1) there is a natural number n such that δn ≤ y.

In this paper we deal with a specific class of uninorms, called simple uninorms.

Definition 1.7. [2] A uninorm U : [0, 1]2 → [0, 1] is called simple, if there exists left or right neighbor-

hood of y for every (x, y) ∈ [0, e)× (e, 1], where uninorm U has constant values, i.e.

∀(x, y) ∈ [0, e)× (e, 1], ∀y1, y2 ∈ U+
ε (y) : U(x, y1) = U(x, y2) (U−

ε (y)).

2 Invariants of transformation on the set [0, e)× (e, 1]

In our investigation of invariants of uninorm transformations we start with the set [0, e)× (e, 1].

Definition 2.1. [2] Let U : [0, 1]2 → [0, 1] be a uninorm with the neutral element e. Then we define

S(U) = {(ai, bi)× (ci, di); i = 1, · · · , n;n ∈ N} as a system of the sets, such that

∀J ∈ S(U) and ∀(x1, y1), (x2, y2) ∈ J : U(x1, y1) = U(x2, y2).

Moreover for every J must exists αJ ∈ H(J), such that

∀p ∈ D(J) : U(p, αJ) 6= U(x, αJ), where x ∈ [0, e) \D(J).

Definition 2.2. [2] Let U : [0, 1]2 → [0, 1] be a uninorm with the neutral element e. Then we define

the set Mx(U) = {(a1, b1), . . . , (an, bn)} as a set of x-coordinate discontinuities of uninorm U on

[0, e)× (e, 1]. Similarly we define the set of y-coordinate discontinuities as My(U).

The following theorem deals with the properties of transformation function ϕ in the discontinuity

points of given uninorm.

Theorem 2.3. [2] Let U : [0, 1]2 → [0, 1] be a simple uninorm andMx(U) be a finite set of x-coordinate

discontinuities of uninorm U . Further we consider nondecreasing bijection ϕ : [0, 1] → [0, 1]. Then if

the original uninorm is formed by the ϕ-transformation, then ∀(ai, bi) ∈Mx(U) : ϕ(ai) = ai.

The proof is based on an examination of the cases ϕ(ai) > ai and ϕ(ai) < ai. Note that in a very

similar way we can prove this statement for the set My(U), i.e, that ∀(x, y) ∈ My(U) : ϕ(y) = y. The

following example shows the importance of finiteness of the set Mx(U) from the previous theorem.

Example 2.4. Let us consider continuous bijective function f : [0, 1] → [0, 1] given by following formula

f(x) =

{

3

√

x
4 if x ≤ 1

2 ,

x otherwise.
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Further more consider a uninorm U∗ : [0, 1]2 → [0, 1] with neutral element e = 1
2 given as:

U∗(x, y) =



































1 if min{x, y} > 1
2 ,

min{x, y} if max{x, y} = 1
2 ,

max{x, y} if min{x, y} = 1
2 ,

f i+1
(

1
4

)

if max{x, y} > 1
2 and

min{x, y} ∈ (f i
(

1
4

)

, f i+1
(

1
4

)

] for i ∈ Z,

0 otherwise.

We study transformation given by the function ϕ = f . Here we show only the most interesting case of

proving the invariance. Therefore we assume x ∈
(

ϕi(14), ϕ
i+1(14)

]

, y ∈
(

1
2 , 1

]

. Then

U∗(ϕ(x), ϕ(y)) = ϕi+2

(

1

4

)

= ϕ ◦ ϕi+1

(

1

4

)

= ϕ(U∗(x, y)).

Other cases could be proved similarly. The uninorm U∗ with the function ϕ give us an example of a

ϕ-transformation, in which the fixed points of the function ϕ in discontinuities of U∗ are not necessary

for invariant.

Theorem 2.5. [2] Let U : [0, 1]2 → [0, 1] be a simple uninorm and ϕ : [0, 1] → [0, 1] be a continuous

bijective function. If the original uninorm is formed by the ϕ-transformation, then

∀J ∈ S(U) : ϕ(sup Jx) = sup Jx and ϕ(inf Jx) = inf Jx.

Proof. The proof is based on generating the set M(U) using an iteration of the function ϕ. Since the set

S(U) is finite, the set M(U) is finite as well and hence there exists a fixed point of the function ϕ at the

points inf Jx and sup Jx for J ∈ S(U).

Corollary 2.6. [2] Let U : [0, 1]2 → [0, 1] be a simple uninorm, ϕ : [0, 1] → [0, 1] be a continuous

bijective function and My(U) be a finite set. If the original uninorm is formed by the ϕ-transformation,

then the interval (e, 1] can be divided into subintervals Ii = (yi, yi+1] for which ϕ(yi) = yi holds.

Theorem 2.7. [2] Let U : [0, 1]2 → [0, 1] be a simple uninorm, Ii = (yi, yi+1] be sub-intervals from

Corollary 2.6 and a function ϕ : [0, 1] → [0, 1] be a continuous bijection for which ϕ(yi) = yi holds.

Further we assume a function ψi(x) = U(x, yi) for x ∈ [0, e) and y ∈ Ii. Then the original uninorm on

the set [0, e)× (e, 1] is formed by the ϕ-transformation iff

ϕ ◦ ψi(x) = ψi ◦ ϕ(x), ∀x ∈ [0, e), i ≤ n, (1)

where n is the number of intervals.

Proof. We use the definition of a ϕ-tranformation and the previous corollary. In short we get

ϕ ◦ ψi(x) = ψi ◦ ϕ(x) ⇔ ϕ(U(x, y)) = U(ϕ(x), y) ⇔ ϕ(U(x, y)) = U(ϕ(x), ϕ(y))

for x < e, y ∈ Ii.

If we denote a set of all functions ϕ, satisfying equation (1) as Fi, then a set of all functions Fϕ

forming the original uninorm by the ϕ-transformation on the set [0, e)× (e, 1] is given as follows

ϕ ∈ Fi ⇔ ϕ ◦ ψi(x) = ψi ◦ ϕ(x) and Fϕ =
n
⋂

i=0

Fi.

In the following text we deal with solving the functional equation (1). Functions satisfying this equation

are called as permutable functions.

43



Uncertainty modelling 2015

2.1 Chebyshev polynomials

The first partial solution of equation (1) is composed of Chebyshev polynomials.

Definition 2.8. [6] Chebyshev polynomials of the first kind Tn are defined by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), for n > 0.

Chebyshev polynomials of the second kind Un are defined by

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x), for n > 0.

Theorem 2.9. [5] Let Tn be the Chebyshev polynomial of the first kind, then for x ≥ 0, x ∈ R and

α = arccos(x) is Tn(cosα) = cos(nα).

Theorem 2.10. [5] The roots of the polynomial Tn (Un) are given by

xk = cos

(

π

2

2k − 1

n

)

,

(

xk = cos

(

π
k

n+ 1

))

, for k ∈ {1, . . . , n}.

Theorem 2.11. [5] Let Tn be the Chebyshev polynomial of the first kind. Then its derivative is as follows

T ′
n(x) = nUn−1(x),

where Un−1 is Chebyshev polynomial of the second kind .

We will now look for such Chebyshev polynomials which are continuous and increasing on [0, e] and

Tn(0) = 0, Tn(e) = e, for e ∈ (0, 1) and Tn(x) ≥ x for x ∈ [0, e].

Investigation. From Tn(0) = 0 we get Tn(0) = −Tn−2(0) = 0. More, 4|(n − 1). From Tn(e) =
e ∈ (0, 1) we get

e = cos(n arccos(e)) ⇔ n arccos(e) = 2kπ ± arccos(e) ⇔

n =
2kπ ± arccos(e)

arccos(e)
=

2kπ

arccos(e)
± 1, for k ∈ Z.

Therefore
π

arccos(e)
∈ Q.

For fulfillment of other conditions we will look for xe1 , which is the smallest positive nonzero point at

which the polynomial Tn attains its local maximum and xe1 > e and Tn(xe1) = 1. Directly from the

previous theorem we get:

Theorem 2.12. Let Tn be Chebyshev polynomial of the first kind. Then the local extremes are in the

points xe which are given by:

xe = cos

(

kπ

n

)

, k ∈ {1, . . . , n}.

Remark: If we consider only polynomials that satisfy the above conditions, then the smallest positive

point giving a local maximum is:

xe0 = cos

(

n− 1

2n
π

)

.

And now we find the smallest point e ∈ (0, 1) such that Tn(e) = e. Then

e = cos(n arccos(e)) ⇔ n arccos(e) = 2kπ ± arccos(e) ⇔ e = cos

(

2kπ

n± 1

)

.
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This equality is satisfied for k ∈ {1, . . . , ⌊n2 ⌋} and for higher k it s the same up to sign. Summarizing

the previous we get:

cos

(

n− 1

2n
π

)

>

∣

∣

∣

∣

cos

(

2kπ

n± 1

)∣

∣

∣

∣

.

Since the cosine function is decreasing in the interval (0, π2 ], we get

∣

∣

∣

∣

π

2
−
n− 1

2n
π

∣

∣

∣

∣

>

∣

∣

∣

∣

π

2
−

2kπ

n± 1

∣

∣

∣

∣

⇔
n− 1

2n
π <

2kπ

n± 1
.

From the previous investigation we have k = ⌊n4 ⌋ and

n− 1

2n
π <

2π

n+ 1

⌊n

4

⌋

⇔ (n− 1)(n+ 1) < 4n
⌊n

4

⌋

= 4n
n− 1

4
.

This inequality is satisfied only for n = 1. There are no Chebyshev polynomials of the first kind, which

would suit our conditions.

2.2 Function iteration

Other particular solution of functional equation (1) is closely related to the iteration of functions [4]. In

the following text we denote by F the set of all nondecreasing functions f : [0, e] → [0, e] satisfying the

conditions f(x) ≥ x, f(0) = 0 and f(e) = e.

The following lemma and corollaries explain methods of construction permutable functions.

Lemma 2.13. [2] Let g and f : X → X be permutable functions (i.e. f ◦ g(x) = g ◦ f(x) for all

x ∈ X). We further assume nondecreasing (nonincreasing) surjective function λ : X → X . Then the

functions

Φ(x) = λ(−1) ◦ f ◦ λ(x) and Ψ(x) = λ(−1) ◦ g ◦ λ(x),

where λ(−1) is pseudoinverse function to λ, form a pair of permutable functions.

Proof. Since the function λ is a nondecreasing (nonincreasing) surjection, the equality λ ◦λ(−1)(x) = x

is satisfied. Which means that

Φ ◦Ψ(x) = λ(−1) ◦ f ◦ λ ◦ λ(−1) ◦ g ◦ λ(x) = λ(−1) ◦ f ◦ g ◦ λ(x)

= λ(−1) ◦ g ◦ f ◦ λ(x) = λ(−1) ◦ g ◦ λ ◦ λ(−1) ◦ f ◦ λ(x) = Ψ ◦ Φ(x).

Note. Although the function λ can be in general nonincreasing as well, in the following text we consider

only the nondecreasing case due to our restrictions to permutable functions.

Corollary 2.14. [2] Let f and g be permutable functions and moreover f, g ∈ F . Further we assume a

nondecreasing surjective function λ : [0, e] → [0, e]. Then the functions

Φ(x) = λ(−1) ◦ f ◦ λ(x), Ψ(x) = λ(−1) ◦ g ◦ λ(x)

form a pair of permutable functions, and moreover Φ,Ψ ∈ F .

Corollary 2.15. [2] Let f be a function such that f ∈ F . We further assume a nondecreasing surjective

function λ : [0, e] → [0, e], and functions Φn(x) = λ(−1) ◦ fn ◦ λ(x) for n ∈ N0. Then the functions Φi

and Φj , for i, j ∈ N0 form a pair of permutable functions and moreover Φi,Φj ∈ F .

The proof of the current and previous corollary is based on certain properties of function iteration

and on properties of pseudoinverse functions.

In a search for permutable functions we can as well draw from existing functions as it is shown in

the following example.
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Example 2.16. Consider a t-conorm restricted to the set [0, e]2, i.e.

Se(x, y) = eS
(x

e
,
y

e

)

, for (x, y) ∈ [0, e]2,

and its diagonal functions δ∗n. Then δ∗m ◦ δ∗n = δ∗n ◦ δ∗m for m,n ∈ N [1]. More specifically, consider

restriction of t-conorm probabilistic sum

Se(x, y) = x+ y −
xy

e
, for (x, y) ∈ [0, e]2,

and the diagonal functions δ∗2 and δ∗3 given by

δ∗2(x) = x
(

2−
x

e

)

, δ∗3(x) = x

(

3−
3x

e
+
x2

e2

)

.

Then δ∗2(x) ◦ δ
∗
3(x) = δ∗3(x) ◦ δ

∗
2(x) for all x ∈ [0, e].

3 Invariant transformation of t-norms

As mentioned before, uninorms are generalizations of t-norms. Hence in this section we deal with an

invariant transformation of t-norms. Before we introduce the necessary condition for invariant transfor-

mations, we demonstrate a ϕ-transfomation via the diagonal function δn of Frank t-norms.

Example 3.1. Frank t-norms are defined by [3]:

TF
p (x, y) =



















TM (x, y) if p = 0,
TP (x, y) if p = 1,
TL(x, y) if p = +∞,

logp

(

1 + (px−1)(py−1)
p−1

)

otherwise.

The diagonal function for minimum t-norm is given by δn,0(x) = x. Invariance is thus apparent in

this case. The diagonal function for product t-norm TP (x, y) = xy is defined by δn,1(x) = xn. After

transformation we obtain (xy)n = xnyn. Invariance is thus again maintained.

The diagonal function for Łukasiewicz t-norm TL(x, y) = max{0, x + y − 1} is δn,∞ given by

δn,∞(x) = ϕ(x) = max{0, nx−n+1}. Invariance is again maintained, as can be seen by substitution.

For the other cases the diagonal functions δn,p are as follows:

δn,p(x) = ϕ(x) = logp

(

1 +
(px − 1)n

(p− 1)n−1

)

.

Then the transformation looks as follows

TF
p (ϕ(x), ϕ(y)) = logp

(

1 +
(px − 1)n(py − 1)n

(p− 1)2n−1

)

,

ϕ(TF
p (x, y)) = logp



1 +

(

(px−1)(py−1)
p−1

)n

(p− 1)n−1



 = logp

(

1 +
(px − 1)n(py − 1)n

(p− 1)2n−1

)

,

and thus TF
p (ϕ(x), ϕ(y)) = ϕ(TF

p (x, y)). This altgother means, that the invariance towards transfor-

mation by the diagonal functions, is maintained for the class of Frank t-norms.

Now we can introduce the aforementioned necessary condition of invariance.

Theorem 3.2. [2] (Necessary condition of invariance) Let T : [0, 1]2 → [0, 1] be a t-norm, δn be

diagonal functions of T and ϕ : [0, 1] → [0, 1] be a nondecreasing surjective function. If ϕ is an

invariant of the transformation of the t-norm T , then ϕ ◦ δn(x) = δn ◦ ϕ(x) for all x ∈ [0, 1], n ∈ N.
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Proof. Since the function ϕ is a nondecreasing surjection, the original t-norm is formed by the transfor-

mation iff ϕ(T (x, y)) = T (ϕ(x), ϕ(y)). Hence ϕ ◦ δn(x) = δn ◦ ϕ(x) for all x ∈ [0, 1] and n ∈ N.

The following theorems show a further relation between diagonal functions, actually additive gener-

ators of t-norms, and invariant transformation.

Theorem 3.3. [2] Let T : [0, 1]2 → [0, 1] be a strict t-norm. We further assume a function ϕ : [0, 1] →
[0, 1]. If ϕ ∈ ∆T , then the original t-norm is formed by the ϕ-transformation.

Proof. Since the function ϕ is bijective, equation ϕ(Tϕ(x, y)) = T (ϕ(x), ϕ(y)) is fulfilled. By the

assumption ϕ ∈ ∆T , we will further write only δn(Tϕ(x, y)) = T (δn(x), δn(y)), for n ∈ N. The proof

of the equation Tϕ = T will proceed by induction on n.

1. For n = 1, the equation holds trivially. For n = 2, we assume that there exists some (x0, y0) ∈
[0, 1]2 such that T (x0, y0) 6= Tϕ(x0, y0). However, then

T (T (x0, y0), T (x0, y0)) = δ2(T (x0, y0)) 6= T (δ2(x0), δ2(y0)) = T (T (x0, y0), T (x0, y0)),

which is a contradiction (in the previous step we use associativity of T and the fact that the function

δ−1
n is increasing). Thus Tϕ = T for the transformation by the function δ2.

2. Now we assume that the equation holds for δ1, . . . , δn and we prove that it holds also for δn+1. We

get

Tϕ(x, y) = δ−1
n+1(T (δn+1(x), δn+1(y))) ⇒ δn+1(Tϕ(x, y)) = T (δn+1(x), δn+1(y)) ⇒

T (δn(Tϕ(x, y)), Tϕ(x, y)) = T (T (δn(x), x), T (δn(y), y)).

From the induction assumption and associativity of the t-norm T it follows

T (T (δn(x), δn(y)), Tϕ(x, y)) = T (T (δn(x), δn(y)), T (x, y)).

Since the t-norm T is strict, equation Tϕ = T holds true.

The original t-norm is thus formed by the transformation via diagonal functions.

Theorem 3.4. [2] Let T : [0, 1]2 → [0, 1] be a continuous Archimedean t-norm and f : [0, 1] → [0,∞]
be additive the generator of this t-norm. Further let us consider a bijective function ϕ : [0, 1] → [0, 1].
Then the original t-norm is formed by the ϕ-transformation iff there exists α > 0 such as αf(x) =
f ◦ ϕ(x) (Schröder’s equation).

Proof. (⇐) The transformed t-norm Tϕ is given by

Tϕ(x, y) = ϕ−1[T (ϕ(x), ϕ(y))] = ϕ−1 ◦ f−1(min{f ◦ ϕ(x) + f ◦ ϕ(y), f(0)}).

Since the t-norm Tϕ is a continuous Archimedean t-norm, its additive generator g is given by g(x) =
f ◦ ϕ(x). There exists α > 0, such that g(x) = αf(x), and hence f and g differ only by a positive

multiplicative constant. The generator g is thus also a generator of the t-norm T, and consequently

Tϕ = T .

(⇒) Now we assume Tϕ(x, y) = T (x, y) for all (x, y) ∈ [0, 1]2, thus

Tϕ(x, y) = ϕ−1[T (ϕ(x), ϕ(y))] = T (x, y).

The additive generator of the t-norm Tϕ is given by g(x) = f ◦ ϕ(x), but since both the t-norms are

equal, there exists some α > 0 such that f ◦ ϕ(x) = αf(x).

All bijective functions ϕ on the unit interval, whose transformation form the original t-norm, deter-

mine a group of automorphisms Aut(T ). This group for archimedean t-norms is described by Theorem

3.4.
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4 Conclusion

This paper shows some conditions under which the ϕ-transformations of the t-norms and uninorms are

invariant. Due to restricted space we skip most of the proofs. But we plan to generalize these results and

write a more detailed article.
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