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Abstract: In this contribution, conditions for n-argument functions to preserve fuzzy interval orders

during aggregation process are presented. The considered properties of a fuzzy interval order (Ferrers

property and connectedness) depend on binary operations including t-norms and t-conorms and, more

generally, fuzzy conjunctions and disjunctions. Moreover, some existing results on Ferrers property are

generalized and applied for fuzzy interval orders.
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1 Introduction

Fuzzy order structures, such as linear orders, semi-orders and interval orders are often used to model

preferences in decision making problems. In this contribution we pay attention to fuzzy interval orders

which definitions are based on the notions of Ferrers property and total connectedness. Ferrers property

is less demanding than transitivity property used in the most of orders, so it is worthy do examine Ferrers

property and fuzzy interval orders from the application point of view.

We will consider fuzzy interval orders in the context of their preservation in aggregation process

(cf. [6, 8, 11, 12, 15, 17]) which is due to the possible applications, e.g. in fuzzy preference modelling,

multicriteria decision making problems and solving other issues related to imprecise and uncertain infor-

mation. In decision making problems a set X = {x1, ..., xm} represents a set of objects, where m ∈ N.

There is also considered a set K = {k1, ..., kn} of criteria under which the objects are supposed to be

evaluated. Fuzzy relations R1, ..., Rn reflect judgements of decision makers. The considered aggregation

process involves also an n-argument function F . With the use of given fuzzy relations R1, . . . , Rn and

the function F , we consider a new fuzzy relation RF = F (R1, . . . , Rn) representing a final decision on

evaluated objects (after considering the involved criteria). Although we focus on aggregation functions,

the aim of this paper is to give the results under the weakest assumptions on F used for the aggregation

process. Therefore, we start our considerations with an arbitrary n-ary function.

The notions of fuzzy relation properties, in their simplest forms, may involve functions min and

max. These ones were generalized by the use of a t-norm and t-conorm, respectively [11, Chapter 2.5].

In particular, the following properties were examined: T -asymmetry, T -antisymmetry, S-connectedness,

T -transitivity, negative S-transitivity, T -S-semitransitivity, and T -S-Ferrers property of fuzzy relations,

where T is a t-norm and S a t-conorm, also with regard to their preservation in aggregation process

[9]. However, the assumptions put on widely used t-norms are not always necessary or desired. This

is why a lot of definitions of binary operations which can play a role of weaker fuzzy connectives were

introduced and studied, for example fuzzy conjunctions: weak t-norms, overlap functions, t-seminorms

(or semicopulas, or conjunctors), and pseudo-t-norms, sometimes along with their dual disjunctions.

In this article, we consider the properties of fuzzy relations which definitions are based on fuzzy

conjunctions and disjunctions including t-norms and t-conorms. In order to obtain the most general

results we start with binary operations in the unit interval without any additional assumptions. As a

result we examine fuzzy interval orders which are totally B-connected and fulfil B1-B2-Ferrers property,

where B,B1, B2 : [0, 1]
2 → [0, 1] are binary operations.
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In Section 2, we provide basic definitions and results concerning n-ary functions in [0, 1] including

fuzzy connectives and dominance between functions. Next, in Section 3, we present basic information

about fuzzy relations and some useful results related to preservation of fuzzy relation properties in ag-

gregation process. Finally, in Section 4 we put the main results of this contribution connected with fuzzy

interval orders in aggregation process.

2 Preliminaries

In this section we present the notions useful in further considerations, i.e. properties of n-ary functions

in [0, 1], fuzzy connectives, dominance between operations.

Definition 2.1 ([5]). Let n ∈ N. A function A : [0, 1]n → [0, 1] which is increasing, i.e.

A(x1, . . . , xn) 6 A(y1, . . . , yn) for xi, yi ∈ [0, 1], xi 6 yi, i = 1, . . . , n

is called an aggregation function if A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Example 2.2. Aggregation functions are:

• median

med(t1, . . . , tn) =

{

sk+sk+1

2 , for n = 2k

sk+1, for n = 2k + 1
,

where (s1, . . . , sn) is the increasingly ordered sequence of the values t1, . . . , tn, which means that

s1 6 . . . 6 sn.

• a weighted arithmetic mean

Aw(x1, . . . , xn) =

n
∑

k=1

wkxk, for wk > 0,

n
∑

k=1

wk = 1,

• a quasi-linear mean

F (x1, ..., xn) = ϕ−1(

n
∑

k=1

wkϕ(xk)), for wk > 0,

n
∑

k=1

wk = 1,

where x1, . . . , xn ∈ [0, 1], ϕ : [0, 1] → R is a continuous, strictly increasing function.

Definition 2.3. Let n ∈ N. We say that a function F : [0, 1]n → [0, 1]:
• has a zero element z ∈ [0, 1] if for each k ∈ {1, . . . , n} and each

x1, ..., xk−1, xk+1, ..., xn ∈ [0, 1] one has

F (x1, ..., xk−1, z, xk+1, ..., xn) = z,

• is without zero divisors if it has a zero element z and

∀
x1,...,xn∈[0,1]

(F (x1, ..., xn) = z ⇒ ( ∃
16k6n

xk = z)).

Definition 2.4 ([10]). An operation C : [0, 1]2 → [0, 1] is called a fuzzy conjunction if it is increasing

with respect to each variable and C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0. An operation

D : [0, 1]2 → [0, 1] is called a fuzzy disjunction if it is increasing with respect to each variable and

D(0, 0) = 0, D(1, 1) = D(0, 1) = D(1, 0) = 1.

Corollary 2.5. A fuzzy conjunction has a zero element 0. A fuzzy disjunction has a zero element 1.

Definition 2.6. An operation C : [0, 1]2 → [0, 1] is called:
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• an overlap function [3] if it is a commutative, continuous fuzzy conjunction without zero divisors,

fulfilling condition C(x, y) = 1 if and only if xy = 1,

• a t-norm [18] if it is a commutative, associative, increasing operation with neutral element 1.

Definition 2.7. An operation D : [0, 1]2 → [0, 1] is called:

• a grouping function [4] if it is a commutative, continuous fuzzy disjunction without zero divisors,

fulfilling condition D(x, y) = 0 if and only if x = y = 0,

• a t-conorm [14] if it is a commutative, associative, increasing operation with neutral element 0,

• a strict t-conorm S : [0, 1]2 → [0, 1] if it is a t-conorm which is continuous and strictly increasing

in [0, 1)2.

Example 2.8 ([14]). The Łukasiewicz t-norm and t-conorm are described in the following way TL(s, t) =
max(s+ t− 1, 0) and SL(s, t) = min(s+ t, 1), respectively.

Definition 2.9. A t-norm T is called nilpotent if it is continuous and each x ∈ (0, 1) is a nilpotent

element of T , i.e. for each x ∈ (0, 1) there exists n ∈ N such that x
(n)
T = 0.

Theorem 2.10. Any nilpotent t-norm is isomorphic to the Łukasiewicz t-norm TL, i.e.

T (x, y) = ϕ−1(TL(ϕ(x), ϕ(y))), x, y ∈ [0, 1],

where ϕ : [0, 1] → [0, 1] is an increasing bijection.

Definition 2.11 ([13]). A rotation invariant t-norm is a t-norm T that verifies for all x, y, z ∈ [0, 1]

T (x, y) 6 z ⇔ T (x, 1− z) 6 1− y.

Definition 2.12 ([5]). Let F : [0, 1]n → [0, 1]. A function F d is called a dual function to F , if for all

x1, . . . , xn ∈ [0, 1]

F d(x1, . . . , xn) = 1− F (1− x1, . . . , 1− xn).

F is called a self-dual function, if it holds F = F d.

Fuzzy disjunctions are dual to fuzzy conjunctions, grouping functions are dual to overlap functions,

t-conorms are dual functions to t-norms, in particular SL is dual to TL, max is dual to min. Now, we

recall the notion of dominance.

Definition 2.13 ([19]). Let m, n ∈ N. A function F : [0, 1]m → [0, 1] dominates function G : [0, 1]n →
[0, 1] ( F ≫ G) if for an arbitrary matrix [aik] = A ∈ [0, 1]m×n the following inequality holds

F (G(a11, ..., a1n), ..., G(am1, ..., amn)) > G(F (a11, ..., am1), ..., F (a1n, ..., amn)).

Example 2.14 ([1]). Any weighted arithmetic mean dominates t-norm TL and any weighted arithmetic

mean is dominated by SL. Minimum dominates any fuzzy conjunction. Fuzzy disjunctions dominate

maximum.

3 Fuzzy relations

Here we recall the notion of a fuzzy relation, some properties of fuzzy relations and their preservation in

aggregation process.

Definition 3.1 ([20]). A fuzzy relation in a set X 6= ∅ is an arbitrary function R : X ×X → [0, 1]. The

family of all fuzzy relations in X is denoted by FR(X).
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Definition 3.2 (cf. [11, 16]). Let B,B1, B2 : [0, 1]2 → [0, 1] be binary operations. Relation R ∈
FR(X) is:

• reflexive, if ∀
x∈X

R(x, x) = 1,

• totally B-connected, if

∀
x,y∈X

B(R(x, y), R(y, x)) = 1,

• B1-B2-Ferrers, if

∀
x,y,z,w∈X

B1(R(x, y), R(z, w)) 6 B2(R(x,w), R(z, y)),

• a B-B1-B2-fuzzy interval order, if it is totally B-connected and B1-B2-Ferrers,

• a B1-B2-fuzzy interval order, if it is totally B2-connected and B1-B2-Ferrers.

We present the notions of the given properties in the most general version, i.e. with operations

B,B1, B2 : [0, 1]2 → [0, 1]. However, the natural approach is to consider a fuzzy disjunction B in

definition of B-connectedness, a fuzzy conjunction B1 and a fuzzy disjunction B2 in the Ferrers property.

Let F : [0, 1]n → [0, 1], R1, . . . , Rn ∈ FR(X). An aggregated fuzzy relation RF ∈ FR(X) is

described by the formula RF (x, y) = F (R1(x, y), . . . , Rn(x, y)), x, y ∈ X . A function F preserves

a property of fuzzy relations if for every R1, . . . , Rn ∈ FR(X) having this property, RF also has this

property. Preservation of the properties listed above and also other properties of this kind was considered

in [1]. We will recall here only the results for the properties that will be useful in the sequel.

Theorem 3.3. Let R1, . . . , Rn ∈ FR(X) be reflexive. The relation RF is reflexive, if and only if the

function F satisfies the condition F (1, . . . , 1) = 1.

Theorem 3.4. Let card X > 2, B have a zero element 1 and be without zero divisors. A function F

preserves total B-connectedness (B-connectedness) if and only if it satisfies the following condition for

all s, t ∈ [0, 1]n

∀
16k6n

max(sk, tk) = 1 ⇒ max(F (s), F (t)) = 1. (1)

Example 3.5. Let B be a fuzzy disjunction without zero divisors (e.g. a strict t-conorm or a grouping

function). Examples of functions fulfilling (1) for all s, t ∈ [0, 1]n are F = max, F =med or functions

F with the zero element z = 1 with respect to a certain coordinate, i.e.

∃
16k6n

∀
i 6=k

∀
ti∈[0,1]

F (t1, . . . , tk−1, 1, tk+1, . . . , tn) = 1.

Theorem 3.6. If a function F : [0, 1]n → [0, 1], which is increasing in each of its arguments fulfils

F ≫ B1 and B2 ≫ F , then it preserves B1-B2-Ferrers property.

Lemma 3.7. Let B : [0, 1]2 → [0, 1] and Bd be a corresponding dual operation. If F : [0, 1]n → [0, 1]
is a self-dual function, then F ≫ B implies Bd ≫ F .

The condition given in Lemma 3.7 is only the sufficient one. Let us consider projections F = Pk,

B = T being a t-norm, S = T d. Then S ≫ Pk and Pk ≫ T , but F 6= F d.

Example 3.8. Any weighted arithmetic mean preserves B1-B2-Ferrers property for t-norm TL = B1

and t-conorm SL = B2.

Corollary 3.9. Any quasi-linear mean preserves T -S-Ferrers property for a nilpotent t-norm T and

S = T d.

Conditions given in Theorem 3.6 are only the sufficient ones. Let us consider function F (s, t) = st

(so F = TP ) and fuzzy relations presented by the matrices

R1 =

[

0 1
0 0

]

, R2 =

[

0 0
1 0

]

.

Relations R1, R2 are min-max-Ferrers ([11]). Moreover R = F (R1, R2) is min-max-Ferrers, where

R ≡ 0. However, it is not true that F ≫ min (the only t-norm that dominates minimum is minimum

itself).
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4 Aggregation of fuzzy interval orders

Now, we will consider fuzzy interval orders and their properties in the process of aggregation. In this

section B,B1, B2 denote binary operations on unit interval, i.e. B,B1, B2 : [0, 1]
2 → [0, 1].

Theorem 4.1. Let B1 have an idempotent element 1. A reflexive B1-B2-Ferrers relation is totally B2-

connected.

Proof. If R is a reflexive, B1-B2-Ferrers fuzzy relation, then we get

1 = B1(1, 1) = B1(R(x, x), R(y, y)) 6 B2(R(x, y), R(y, x)),

which means that B2(R(x, y), R(y, x)) = 1 and R is totally B2-connected.

Corollary 4.2. Let T be a t-norm and S a t-conorm. A reflexive T -S-Ferrers relation is totally S-

connected.

Theorem 4.3. Let B1 have a zero element 0, an idempotent element 1 and for each x, y ∈ [0, 1] such

that x + y > 1 fulfil B1(x, y) = B1(y, x) and let B2 be dual to B1 such that B1 6 B2. The following

assertions are equivalent:

(1) A reflexive B1-B2-Ferrers relation is totally SL-connected.

(2) Operation B1 : [0, 1]
2 → [0, 1] fulfils B1(x, y) > 0 for any pair (x, y) ∈ [0, 1]2 such that x+ y > 1.

Proof. (1) ⇒ (2) Let us consider an operation B1 such that there exists a pair (x, y) ∈ [0, 1]2 fulfilling

x+y > 1 and B1(x, y) = 0. Then a reflexive relation that is B1-B2-Ferrers but not totally SL-connected

may be build. For example, let X = {x1, x2} and R(x1, x2) = 1− x, R(x2, x1) = 1− y.

(2) ⇒ (1) Let R ∈ FR(X), x, y ∈ X and R be reflexive and B1-B2-Ferrers. Applying these assump-

tions we obtain

1 = B1(R(x, x), R(y, y)) 6 B2(R(x, y), R(y, x)) = 1−B1(1−R(x, y), 1−R(y, x)),

which implies that B1(1−R(x, y), 1−R(y, x)) = 0. As a result from (2) it follows that 1−R(x, y) +
1−R(y, x) 6 1, which means that R is totally SL-connected.

Corollary 4.4 ([7]). Let us consider a t-norm T and its dual t-conorm S. The following assertions are

equivalent:

(1) A reflexive T -S-Ferrers relation is totally SL-connected.

(2) The t-norm T fulfils T (x, y) > 0 for any pair (x, y) ∈ [0, 1]2 such that x+ y > 1.

In particular, the above corollary applies to all rotation invariant t-norms ([7]). The next results

concern total max-connectedness. Let us observe that this notion is also named as strong completeness

(cf. [11]).

Theorem 4.5. Let B have a zero element 1 and have no zero divisors. Then total B-connectedness is

equivalent to total max-connectedness.

Proof. Let R ∈ FR(X), B have a zero element 1 and have no zero divisors. Total B-connectedness is

equivalent to

B(R(x, y), R(y, x)) = 1 ⇔ R(x, y) = 1 ∨R(y, x) = 1 ⇔ max(R(x, y), R(y, x)) = 1,

which is equivalent to the fact that R is totally max-connected.

Corollary 4.6 ([2]). Let S be a t-conorm without zero divisors. Then total S-connectedness is equivalent

to total max-connectedness.

Theorem 4.7. Let a commutative operation B1 have a zero element 0, an idempotent element 1 and let

B2 be dual to B1 such that B1 6 B2. The following assertions are equivalent:

(1) A reflexive B1-B2-Ferrers relation is totally max-connected.

(2) B1 has no zero divisors.
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Proof. (1) ⇒ (2) Let us suppose, to the contrary, that B1 is not without zero divisors. Then there

exist x, y ∈ (0, 1] such that B1(x, y) = 0. Let us now consider the relation R ∈ FR(X), where

X = {x1, x2} and R(x1, x2) = 1 − x, R(x2, x1) = 1 − y. R is B1-B2-Ferrers relation but it is not

totally max-connected which contradicts to (1).

(2) ⇒ (1) Let R be a reflexive, B1-B2-Ferrers relation. By Theorem 4.1 it is also totally B2-connected.

From (2) and the assumption that B2 is dual to B1 it follows that B2 has a zero element 1 and has no

zero divisors. By Theorem 4.5 we obtain that R is totally max-connected.

Corollary 4.8 ([7]). Let T be a t-norm and S its dual t-conorm. Then the following conditions are

equivalent:

(1) A reflexive T -S- Ferrers relation is totally max-connected.

(2) The t-norm T has no zero divisors.

The above results from Section 4 simplify the considerations on aggregation of fuzzy interval orders

(condition on F for preservation of reflexivity is much easier than the one for total connectedness).

Applying these results and results of Section 3 we get for example the following statements.

Theorem 4.9. Let T be a rotation invariant t-norm, R1, ..., Rn ∈ FR(X) be reflexive and T -SL-Ferrers.

If a function F : [0, 1]n → [0, 1], which is increasing in each of its arguments, fulfils F (1, ..., 1) = 1,

F ≫ T and SL ≫ F , then RF = F (R1, ..., Rn) is a T -SL fuzzy interval order.

Since TL is an example of a rotation invariant t-norm, in particular we get the following results.

Theorem 4.10. Let R1, ..., Rn ∈ FR(X) be reflexive and TL-SL-Ferrers. If a function F : [0, 1]n →
[0, 1], which is increasing in each of its arguments fulfils F (1, ..., 1) = 1, F ≫ TL and SL ≫ F , then

RF = F (R1, ..., Rn) is a TL-SL fuzzy interval order.

Corollary 4.11. Let R1, ..., Rn ∈ FR(X) be reflexive and TL-SL-Ferrers. Then fuzzy relation RF =
F (R1, ..., Rn) is a TL-SL fuzzy interval order, where F is a weighted arithmetic mean. Moreover, fuzzy

relation RF is a T -S fuzzy interval order, where F is a quasi-linear mean and T is a nilpotent t-norm,

S = T d.

Theorem 4.12. Let R1, ..., Rn ∈ FR(X) be reflexive and min-max-Ferrers. If a function F : [0, 1]n →
[0, 1], which is increasing in each of its arguments fulfils F (1, ..., 1) = 1, F ≫ min and max ≫ F , then

RF = F (R1, ..., Rn) is a min-max fuzzy interval order.

Examples of increasing functions which dominate minimum and are dominated by maximum are

projections ([1]), so they fulfil assumptions on F in the above theorem.

5 Conclusion

In this paper fuzzy interval orders were considered in the context of aggregation process. In future work

it would be interesting to consider other orders and their preservation in aggregation process, in particular

total preorder, total order, strict total order, partial preorder, partial order, strict partial order, or semiorder

and their preservation in aggregation process.
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