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Abstract: The aim of the paper is the presentation of a construction of n-copulas which is based on an

arbitrary n-copula and some special measure-preserving transformations. We also show an equivalent

alternative approach for obtaining such copulas. In the last section, properties of resulting 2-dimensional

copulas are investigated.
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1 Introduction

Copulas are functions describing the dependence structure of random vectors. By the Sklar theorem

[13], copulas join multivariate distribution functions of random vectors to their one-dimensional marginal

distribution functions. More precisely, for each random vector (X1, X2, . . . , Xn), n ∈ N, n ≥ 2, there

exists a copula C such that the joint distribution function H of a random vector (X1, X2, . . . , Xn) and

marginal distribution functions F1, F2, . . . , Fn of the random variables X1, X2, . . . , Xn, respectively,

are related by

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)), for all x1, . . . , xn ∈ R.

Copulas can be seen as the restrictions to the unit n-box of joint distribution functions with marginals

uniformly distributed over the unit interval. From practical point of view, the importance of copulas

follows from the fact that they enable to separate the modeling of a complex n-dimensional random

process into two parts, namely, into looking for appropriate one-dimensional (marginal) distribution

functions and for an appropriate copula. There are plenty of applications of copulas, for instance, in

quantitative finance, engineering, medicine, weather and climate research, etc. Mathematically, copulas

can be introduced as follows.

Definition 1. Let I = [0, 1]. A function C : In → I is an n-copula if it satisfies the following conditions:

(C1) C(x1, . . . , xn) = 0 if xi = 0 for some i ∈ {1, . . . , n}, i.e., 0 is the annihilator of C,

(C2) C(x1, . . . , xn) = xi if xj = 1 for all j 6= i, i, j ∈ {1, . . . , n}, i.e., 1 is a neutral element of C,

(C3) C is n-increasing, i.e., the C-volume VC of each n-box
n
∏

i=1
[xi, yi] ⊆ I

n is non-negative:

VC(

n
∏

i=1

[xi, yi]) :=
∑

v∈
n∏

i=1

{xi,yi}

(−1)N(v)C(v) ≥ 0,

where N(v) = card({j : vj = xj}).

∗Institute of Information Engineering, Automation and Mathematics, Faculty of Chemical and Food Technology, Slovak

University of Technology in Bratislava
†lubomira.horanska@stuba.sk
‡anna.kolesarova@stuba.sk

25



Uncertainty Modelling 2013

Note that for each n-copula C and all (x1, . . . , xn) ∈ I
n it holds

W (x1, . . . , xn) ≤ C(x1, . . . , xn) ≤ M(x1, . . . , xn),

where W (x1, . . . , xn) = max{x1 + · · ·+ xn − n+ 1, 0} and M(x1, . . . , xn) = min{x1, . . . , xn}. The

upper bound M is a copula for each number n of arguments, while the lower bound W is a copula only

for n = 2. An important n-copula (for each n ≥ 2) is the product copula Π, modeling the independence

of random variables, given by Π(x1, . . . , xn) = x1 · · ·xn. For more details on copulas we refer to [11].

In the last period copulas have been studied very intensively. A large number of recent papers have

been devoted to constructions of copulas, e.g., [1, 2, 3, 10, 12, 8, 5, 9], among others. Basic methods

of constructing copulas are also studied in the monograph [11]. The aim of this paper is to present a

construction method for n-copulas by means of measure-preserving transformations. We also show an

alternative way for obtaining these copulas. In the last section we prove several results for binary copulas.

2 Copulas and measure-preserving transformations

Let us briefly describe a correspondence between copulas and measure-preserving transformations on

the unit interval. More details can be found, e.g., in [6], also see the references therein.

Let us denote by B(I) the system of all Borel subsets of the unit interval I. We say that a mapping

f : I → I is a measure-preserving transformation on the unit interval, if for every B ∈ B(I), the

pre-image f−1(B) ∈ B(I) and λ(f−1(B)) = λ(B), where λ is the standard Lebesgue measure on B(I).

Let us assign to each number a ∈ I a function fa : I → I in the following way: for a = 0 let fa be

the identity function, f0(t) = t, for a = 1 let f1(t) = 1 − t, and for any a ∈]0, 1[ let fa be a piecewise

linear function, defined by

fa(t) = max

{

1−
t

a
,
t− a

1− a

}

, i.e., fa(t) =

{

1− t
a

if t ∈ [0, a],
t−a
1−a

if t ∈]a, 1].
(1)

It is easy to see that f−1
a ([0, x]) = [a(1 − x), x + a(1 − x)] and λ(f−1

a ([0, x])) = λ([0, x]) = x, see

Fig.1. Clearly, functions fa, a ∈ I, are measure-preserving transformations on the unit interval. Note

that to simplify the notation, in what follows, instead of the notation f−1
a ([0, x]) we will write f−1

a [0, x]
only.
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Figure 1: The graph of fa, a ∈]0, 1[. It holds f−1
a [0, x] = [a(1− x), x+ a(1− x)].

The following theorem describes the above mentioned correspondence between copulas and

measure-preserving transformations on the unit interval, see, e.g., [6].

Theorem 1. If ϕ1, ϕ2, . . . , ϕn are measure-preserving transformations on the unit interval, then the

function Cϕ1,ϕ2,...,ϕn
: In → I defined by

Cϕ1,ϕ2,...,ϕn
(x1, x2, . . . , xn) := λ(ϕ−1

1 [0, x1] ∩ ϕ−1
2 [0, x2] ∩ · · · ∩ ϕ−1

n [0, xn]) (2)
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is an n-copula. Conversely, for every n-copula C, there exist n measure-preserving transformations

ϕ1, ϕ2, . . . , ϕn such that

C = Cϕ1,ϕ2,...,ϕn
. (3)

Note that the representation of an n-copula C in the form (3) is not unique. If C is determined by

measure-preserving transformations ϕ1, ϕ2, . . . , ϕn, and ϕ : I → I is any measure-preserving transfor-

mation, then it also holds C = Cϕ◦ϕ1,ϕ◦ϕ2,...,ϕ◦ϕn
.

Relation (2) can be understood as a method for constructing new n-copulas.

Example 1. The mappings ϕ1, ϕ2 : [0, 1] → [0, 1]

ϕ1(t) =

{

2t if t ∈ [0, 1/2[,
2t− 1 if t ∈ [1/2, 1]

, ϕ2(t) = t,

are measure-preserving transformations. The copula Cϕ1,ϕ2
is given in Fig.2.

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

x
2

y

x
x
2 + y − 1

2

0 1

1

1
2

Figure 2: Copula Cϕ1,ϕ2
from Example 1

Given an n-copula C generated by measure-preserving transformations ϕ1, ϕ2, . . . , ϕn, and

measure-preserving transformations fai , ai ∈ I, i = 1, . . . , n, introduced above, we can construct a

new n-copula in the following way.

Definition 2. Let C : In → I be an n-copula generated by measure preserving transformations

ϕ1, ϕ2, . . . , ϕn : I → I, i.e., C = Cϕ1,ϕ2,...,ϕn
. For each i = 1, . . . , n, let ai be a number in I and

fai : I → I the corresponding measure-preserving transformation defined by (1). We define the function

Ca1, . . . , an : I
n → I as follows

Ca1, . . . , an(x1, . . . , xn) = Cfa1◦ϕ1,...,fan◦ϕn
(x1, . . . , xn). (4)

Clearly, the function Ca1, . . . , an defined by (4) is an n-copula. We can write

Ca1,...,an(x1, . . . , xn) = λ

(

n
⋂

i=1

ϕ−1
i ◦ f−1

ai
[0, xi]

)

, (5)

too.

Copulas Ca1, . . . , an can also be obtained consecutively. As f0 is an identity mapping on I, it is easy

to show that for each a1 ∈ I, it holds

Ca1,0,...,0 = Cfa1◦ϕ1,ϕ2,...,ϕn
.

Similarly, for all a1, a2 ∈ I,

(Ca1,0,...,0)0,a2,0,...,0 = Cfa1◦ϕ1,fa2◦ϕ2,ϕ3,...,ϕn
,
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etc., and finally, for all a1, . . . , an ∈ I, it holds

(· · · ((Ca1,0,...,0)0,a2,0,...,0) · · · )0,...,0,an = Cfa1◦ϕ1,fa2◦ϕ2,...,fan◦ϕn

def
= Ca1,...,an .

For most copulas it is not easy to determine measure-preserving transformations generating them.

An alternative formula for copulas Ca1,...,an is given in Theorem 2 whose proof is based on the previous

property and the following lemma which is–for simplicity–formulated for the first step of the previous

approach only.

Lemma 1. For each a1 ∈ I and all (x1, . . . , xn) ∈ I
n it holds

Ca1,0,...,0(x1, . . . , xn) = VC(f
−1
a1

[0, x1]× [0, x2]× . . .× [0, xn]). (6)

Proof. On the one hand, as f−1
a1

[0, x1] = [a1(1 − x1), x1 + a1(1 − x1)], due to the properties of the

transformation ϕ1 and the Lebesgue measure, it holds

Ca1,0,...,0(x1, . . . , xn)

= λ
(

ϕ−1
1 ◦ f−1

a1
[0, x1] ∩ ϕ−1

2 [0, x2] ∩ . . . ∩ ϕ−1
n [0, xn]

)

= λ
(

ϕ−1
1 ([0, x1 + a1(1− x1)] \ [0, a1(1− x1)]) ∩ ϕ−1

2 [0, x2] ∩ . . . ∩ ϕ−1
n [0, xn]

)

= λ
(

ϕ−1
1 [0, x1 + a1(1− x1)] ∩ ϕ−1

2 [0, x2] ∩ . . . ∩ ϕ−1
n [0, xn]

)

−λ
(

ϕ−1
1 [0, a1(1− x1)] ∩ ϕ−1

2 [0, x2] ∩ . . . ∩ ϕ−1
n [0, xn]

)

= C(x1 + a1(1− x1), x2, . . . , xn)− C(a1(1− x1), x2, . . . , xn).

On the other hand, by definition of VC and the fact that zero is the annihilator of C, we get

VC(f
−1
a1

[0, x1]× [0, x2]× . . .× [0, xn])

= VC([a1(1− x1), x1 + a1(1− x1)]× [0, x2]× . . .× [0, xn])

= C(x1 + a1(1− x1), x2, . . . , xn)− C(a1(1− x1), x2, . . . , xn),

and the claim follows.

✷

Theorem 2. Let Ca1,...,an be an n-copula introduced by (4). Then it holds

Ca1,...,an(x1, . . . , xn) = VC

(

n
∏

i=1

f−1
ai

[0, xi]

)

. (7)

Equation (7) can also be written as

Ca1,...,an(x1, . . . , xn) = VC

(

n
∏

i=1

[ai(1− xi), xi + ai(1− xi)]

)

. (8)

Note that for n = 2, copulas defined by formula (8) have already been mentioned in [11]. Special

cases which are often of interest are, e.g., copulas

C0,1(x, y) = x− C(x, 1− y),

C1,0(x, y) = y − C(1− x, y),

C1,1(x, y) = x+ y − 1 + C(1− x, 1− y).

Note that C0,0 = C. The copula C1,1 = Ĉ is the so-called survival copula of a copula C and the copulas

C1,0 and C0,1 are flipped copulas. Particularly, for the basic copulas M , M(x, y) = min{x, y}, and W ,

W (x, y) = max{x+ y − 1, 0}, it holds:

M0,1 = M1,0 = W and M1,1 = M,

W0,1 = W1,0 = M and W1,1 = W.
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3 Several results for binary copulas

A deeper study of binary copulas (copulas, for short) obtained from a copula C = Cϕ1,ϕ2
by (5) or

equivalently by (7), i.e., copulas given by

Ca1,a2(x, y) = λ
(

ϕ−1
1 ◦ f−1

a1
[0, x] ∩ ϕ−1

2 ◦ f−1
a2

[0, y]
)

,

or

Ca1,a2(x, y) = VC ([a1(1− x), x+ a1(1− x)]× [a2(1− y), y + a2(1− y)]) ,

can be found in [4]. Note that for binary copulas the 2-increasing property means that

VC([x1, x2]× [y1, y2]) = C(x2, y2)− C(x1, y2) + C(x1, y1)− C(x2, y1) ≥ 0

for each rectangle [x1, x2]× [y1, y2] ⊆ [0, 1]2.

In [4] we have also proved that by repeating the construction in binary case we obtain a copula

(Ca1,a2)b1,b2 (x, y) = λ
(

ϕ−1
1 ◦ f−1

a1,b1
[0, x] ∩ ϕ−1

2 ◦ f−1
a2,b2

[0, y]
)

,

where fai,bi = fbi ◦ fai , i = 1, 2, or equivalently,

(Ca1,a2)b1,b2 (x, y) = VC

(

f−1
a1

◦ f−1
b1

[0, x] × f−1
a2

◦ f−1
b2

[0, y]
)

,

and moreover, a geometrical interpretation of this result has also been shown.

Let us show several properties of copulas Ma1,a2 , Wa1,a2 obtained from the basic copulas M and

W . First of all, let us mention that as the simplest measure-preserving transformations generating the

minimum copula M we can take identity functions on I, i.e., ϕ1(t) = ϕ2(t) = t, as it can be seen from

λ
(

ϕ−1
1 [0, x] ∩ ϕ−1

2 [0, y]
)

= λ ([0, x] ∩ [0, y]) = min{x, y} = M(x, y).

Similarly, functions ϕ1, ϕ2, where ϕ1(t) = 1− t and ϕ2(t) = t, are measure-preserving transforma-

tions generating the copula W because

λ
(

ϕ−1
1 [0, x] ∩ ϕ−1

2 [0, y]
)

= λ ([1− x, 1] ∩ [0, y])

=

{

0 if x+ y ≤ 1
x+ y − 1 if x+ y ≥ 1

}

= W (x, y).

Now, consider measure-preserving transformations fa : I → I, given for any a ∈]0, 1[ by (1) and

f0(t) = t, f1(t) = 1− t. As for each x ∈ I,

f−1
1 ◦ f−1

a [0, x] = f−1
1 [a(1− x), x+ a(1− x)]

= [1− x− a(1− x), 1− a(1− x)]

= [(1− a)(1− x), 1− a(1− x)]

and

f−1
1−a[0, x] = [(1− a)(1− x), x+ (1− a)(1− x)] = [(1− a)(1− x), 1− a(1− x)],

we get f−1
1 ◦ f−1

a = f−1
1−a. Similarly, f−1

0 ◦ f−1
a = f−1

a .

Proposition 1. Let a1, a2 ∈ I. Then

(i) Ma1,a2 = M1−a1,1−a2 ,

(ii) Wa1,a2 = M1−a1,a2 , Wa1,a2 = Ma1,1−a2 .
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Proof.

(i) As M is generated by identity transformations, M1,1 = M and for each a ∈ I, f−1
1 ◦ f−1

a = f−1
1−a;

for each (x, y) ∈ I
2, we can write

Ma1,a2(x, y) = (M1,1)a1,a2(x, y) = λ
(

f−1
1 ◦ fa1 [0, x] ∩ f−1

1 ◦ fa2 [0, y]
)

= λ
(

f−1
1−a1

[0, x] ∩ f−1
1−a2

[0, y]
)

= M1−a1,1−a2(x, y).

(ii) Clearly, M1,0 = W . Thus

Wa1,a2(x, y) = (M1,0)a1,a2(x, y) = λ
(

f−1
1 ◦ fa1 [0, x] ∩ f−1

0 ◦ fa2 [0, y]
)

= λ
(

f−1
1−a1

[0, x] ∩ f−1
a2

[0, y]
)

= M1−a1,a2(x, y).

Moreover, by (i), M1−a1,a2 = Ma1,1−a2 .

✷

Note that the product copula Π is invariant with respect to our construction, Πa1,a2 = Π for all

a1, a2 ∈ I, as can easily be shown by (8).

Example 2. Consider the minimum copula M and any a1, a2 ∈ I. If a1 = a2 then Ma1,a2 = M .

Suppose that a1 < a2. Then

Ma1,a2(x, y) = min{x, y,max{0, (1− a1)x+ a2y + a1 − a2}},

see Fig.3(left). Ma1,a2 is a singular copula with support uniformly distributed over the segments con-

necting the vertices (0, (a2−a1)/a2) and ((a2−a1)/(1−a1), 0), next (0, (a2−a1)/a2) and (1, 1), and

finally, ((a2 − a1)/(1− a1), 0) and (1, 1). For a1 > a2 we can use property (i) in Proposition 1 and the

previous formula, see Fig.3(right). Note that by using (ii) in Proposition 1, the formulas for Wa1,a2 can

be obtained.
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Figure 3: Copulas Ma1,a2 for a1 < a2 (left) and for a1 > a2 (right)

Now, consider the family of copulas {Ma1,a2}a1,a2∈[0,1] and observe the tail dependence coefficients

of its members. Recall that if (X,Y ) is a random vector with continuous marginal distribution functions

FX , FY and a copula C, then the upper tail dependence coefficient is a number λU ∈ [0, 1] given by

λU : = lim
u→1−

P
(

Y > F−1
Y (u)|X > F−1

X (u)
)

= lim
u→1−

1− 2u+ C(u, u)

1− u

(if the limit exits). Similarly, the lower tail dependence coefficient is a number λL ∈ [0, 1] given by

λL : = lim
u→0+

P
(

Y ≤ F−1
Y (u)|X ≤ F−1

X (u)
)

= lim
u→0+

C(u, u)

u
.
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As tail dependence is a copula property, we will write λU (C) and λL(C).

While for the minimum copula M it holds λU (M) = 1, λU (Ma1,a2) attains the value in [0, 1], which

depends on a1, a2 as follows.

Proposition 2. Let a1, a2 ∈ I. Then λU (Ma1,a2) = 1− |a1 − a2|.

Proof. Let a1 ≤ a2. Then

λU (Ma1,a2) = lim
u→1−

1− 2u+ (1− a1)u+ a2u+ a1 − a2
1− u

= lim
u→1−

(1 + a1 − a2)(1− u)

1− u
= 1 + a1 − a2.

Similarly, if a1 > a2, then λU (Ma1,a2) = 1− a1 + a2.
✷

On the other hand, note that λL(M) = 1, but for each a1 6= a2, λL(Ma1,a2) = 0.

Proposition 3. Let C : I2 → I be a copula, a1, a2 ∈ I. Then

(Ĉ)a1,a2 = C1−a1,1−a2 .

Proof. Let C = Cϕ1,ϕ2
. As Ĉ = C1,1, for all (x, y) ∈ [0, 1]2 it holds

(Ĉ)a1,a2(x, y) = (C1,1)a1,a2(x, y) = λ
(

ϕ−1
1 ◦ f−1

1,a1
[0, x] ∩ ϕ−1

2 ◦ f−1
1,a2

[0, y]
)

= λ
(

ϕ−1
1 ◦ f−1

1 ◦ f−1
a1

[0, x] ∩ ϕ−1
2 ◦ f−1

1 ◦ f−1
a2

[0, y]
)

= λ
(

ϕ−1
1 ◦ f−1

1−a1
[0, x] ∩ ϕ−1

2 ◦ f−1
1−a2

[0, y]
)

= C1−a1,1−a2(x, y).

✷

Corollary 1. Let C : I2 → I be a radially symmetric copula, i.e., a copula satisfying the property

C = Ĉ. Then Ca1,a2 = C1−a1,1−a2 .

Note that property (i) in Proposition 1 is covered by this claim because M = M̂ .

The following property concerns copulas constructed from absolutely continuous copulas. Recall

that a copula C is absolutely continuous, if for all (x, y) ∈ I
2,

C(x, y) =

x
∫

0

y
∫

0

∂2C(x, y)

∂x∂y
dx dy,

where
∂2C(x,y)
∂x∂y

is a joint density of C considered as a joint distribution function (restricted to I
2).

Proposition 4. Let C : I2 → I be an absolutely continuous copula with joint density ϕ and let a1, a2 ∈ I.

Then the copula Ca1,a2 is absolutely continuous with joint density ϕa1,a2 , whose value at each point (x, y)
is equal to a convex combination of the values of ϕ at vertices of the rectangle f−1

a1
[0, x]× f−1

a2
[0, y].

Proof. Applying formula (7) for Ca1,a2 and a formula for a partial derivative of a function composition

we get

ϕa1,a2(x, y) =
∂2Ca1,a2(x, y)

∂x∂y

=
∂2

∂x∂y
(C(x+ a1(1− x), y + a2(1− x))− C(x+ a1(1− x), a2(1− x))

− C(a1(1− x), y + a2(1− x)) + C(a1(1− x), a2(1− x)))

= ϕ(x+ a1(1− x), y + a2(1− x))(1− a1)(1− a2)

+ ϕ(x+ a1(1− x), a2(1− x))(1− a1)a2

+ ϕ(a1(1− x), y + a2(1− x))a1(1− a2)

+ ϕ(a1(1− x), a2(1− x))a1a2
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Since (1 − a1)(1 − a2) + (1 − a1)a2 + a1(1 − a2) + a1a2 = 1, the above combination is convex, and

the claim follows.

✷

4 Concluding remarks

We have shown that starting from any n-copula C and any numbers a1, . . . , an ∈ [0, 1], we can construct

another n-copula Ca1,...,an by using measure-preserving transformations corresponding to the considered

copula C and to the numbers a1, . . . , an. However, because practically it is often not easy to determine

measure-preserving transformations generating the copula C, it is important that the same n-copula can

be constructed by means of C-volumes VC of special n-boxes depending on numbers a1, . . . , an. The

fact, which of these two equivalent approaches is used, depends on the problem to be solved. In our

future work we intend to study, e.g., the relationship between the studied construction and some other

constructions of copulas, e.g., ordinal sums, but also the properties of resulting n-copulas for n > 2.
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[7] R. Mesiar, M. Komornı́ková, Copulas: An approach how to model the dependence structure of

random vectors. Acta Polytechnica Hungarica 6 (2009) 5-19.
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