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Levy’s stochastic area [Levylis defined in classical probability as the area L(t) sub-
tended at the origin at time ¢ by the trajectory of a two-dimensional Brownian motion,
or equivalently by the joint trajectory in the Cartesian plane of two stochastically inde-
pendent one-dimensional Brownian motions X and Y. The Levy stochastic area formula
is for the characteristic function in the probabilistic sense. It has many interesting con-
nections, for example to Meixner distributions, integrable systems, Bernoulli and Euler
polynomials, Riemann zeta values, etc. For a recent review and references see [IkTa]

In quantum stochastic calculus [HuPa] the "momentum” and ”position” Brownian
motions P and () do not commute, so it is meaningless to speak of their stochastic
independence. But they do have a property that for classical processes is tantamount
to independence, namely factorisation of the notional joint characteristic function into
the product of individual characteristic functions. In this talk 1T will investigate what
becomes of Levy area and the Levy area formula when X and Y are replaced by P and
(). For the area formula this involves explicit construction of a causal double quantum
stochastic product integral. In the Fock case the characteristic function is identically 1;
to get something interesting we must use non-Fock calculus [HulLi].
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