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Levy’s stochastic area [Levy]is defined in classical probability as the area L(t) sub-
tended at the origin at time t by the trajectory of a two-dimensional Brownian motion,
or equivalently by the joint trajectory in the Cartesian plane of two stochastically inde-
pendent one-dimensional Brownian motions X and Y . The Levy stochastic area formula
is for the characteristic function in the probabilistic sense. It has many interesting con-
nections, for example to Meixner distributions, integrable systems, Bernoulli and Euler
polynomials, Riemann zeta values, etc. For a recent review and references see [IkTa]

In quantum stochastic calculus [HuPa] the ”momentum” and ”position” Brownian
motions P and Q do not commute, so it is meaningless to speak of their stochastic
independence. But they do have a property that for classical processes is tantamount
to independence, namely factorisation of the notional joint characteristic function into
the product of individual characteristic functions. In this talk I will investigate what
becomes of Levy area and the Levy area formula when X and Y are replaced by P and
Q. For the area formula this involves explicit construction of a causal double quantum
stochastic product integral. In the Fock case the characteristic function is identically 1;
to get something interesting we must use non-Fock calculus [HuLi].
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