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Abstract. The paper presents numerical algorithms, postprocessing and
validation steps for an automated cell tracking and cell lineage tree re-
construction from large-scale 3D+time two-photon laser scanning mi-
croscopy images of early stages of zebrafish (Danio rerio) embryo devel-
opment. The cell trajectories are extracted as centered paths inside seg-
mented spatio-temporal tree structures representing cell movements and
divisions. Such paths are found by using a suitably designed and com-
puted constrained distance functions and by a backtracking in steepest
descent direction of a potential field based on these distance functions
combination. Since the calculations are performed on big data, paral-
lelization is required to speed up the processing. By careful choice and
tuning of algorithm parameters we can adapt the calculations to the mi-
croscope images of vertebrae species. Then we can compare the results
with ground truth data obtained by manual checking of cell links by
biologists and measure the accuracy of our algorithm. Using automatic
validation process and visualisation tool that can display ground truth
data and our result simultaneously, along with the original 3D data, we
can easily verify the correctness of the tracking.

1 Introduction

The comprehensive image analysis for complex stages of embryogenesis is a diffi-
cult problem not yet solved satisfactory. Modern imaging technologies generate
terabytes of image data, comprising up to tens of thousands of cells imaged
for thousands of time points. However, existing manual or semi-automated ap-
proaches to reconstructing cell lineages do not scale to data sets of such com-
plexity and size. Automated computational approaches have been developed to
analyse such image data for small model organisms such as Caenorhabditis ele-
gans [2] embryos and for early developmental stages of more complex organisms
such as the early zebrafish blastula [20, 11] and the Drosophila blastoderm [23,
11]. However, a development of methods for accurate, automated cell lineaging
in later stages of development is still a hot topic and open problem.

In [1], methods based on sequential Bayesian approach with Gaussian mix-
ture models were developed. First, a partition of the 3D image volume recorded
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at each time point into supervoxels is performed. A supervoxel is a connected
set of voxels in space that all belong to a single nucleus, and each nucleus can be
represented by multiple supervoxels. Second, an interconnection of supervoxels
in space (segmentation) and time (tracking) is done to recover full cell lineages.
The authors developed a sequential Bayesian approach with Gaussian mixture
models (GMMs) to perform both tasks simultaneously using parametric contour
evolution. The parametric model reduces the segmentation and tracking prob-
lem to finding ten parameters per nucleus: its 3D center, 3D covariance matrix
(shape) and parent identity.

A recent work towards building the cell lineage tree for the complex stages
of Zebrafish embryo development based on stochastic simulated annealing min-
imization of a heuristic energy functional has been presented in [9]. After the
construction of the tree, the individual cells or cell populations are tracked pro-
ducing lineage ”forest” as an union of several disjoint trees representing cell
lineage. First, the edges between detected cell centers at consecutive time steps
are created using nearest-neighbour heuristic method. Next, the simulated an-
nealing, variant of Metropolis algorithm, is used to progressively enforce a set
of predefined constrains summarizing together a certain number of biological re-
quirements, such as no cell should have more than two ”daughters” and divisions
should not occur too frequently.

The method presented in this paper is based on extraction of the cell trajec-
tories as centered paths inside 4D spatio-temporal tree structures obtained by
segmentation of 4D images. In addition to the approaches described by Mikula
et al. in [18, 19], in the presented approach the 4D segmentation is obtained by
creating spatio-temporal tubes using cell nuclei diameters obtained from real
nuclei segmentations [6, 12, 21, 4, 17, 9] around the cell identifiers given as a re-
sult of suitable image filtering [8, 14, 4, 9] followed by a cell detection algorithm
[10, 4, 9]. Then a computation of constrained distance functions inside 4D seg-
mentation is performed by solving numerically a spatially 4D eikonal equation.
By a suitable combination of computed distance functions we build a potential
field which is backtracked in steepest descent direction in order to get the cell
trajectories. In contrast to [18, 19], in this paper we significantly improve the
tracking results by introducing a new parameter α in the construction of the
potential field, weighting the distance functions influence. The cell lineage tree
can be constructed by detecting merging trajectories when going backward in
time indicating mitosis and thus a branching node of the cell lineage tree. In
the paper we discuss the results of our improved method and perform its valida-
tion on real ground-truth data. This ground truth data contains 38797 manually
checked, correct cell links. First we find the correspondence between trajectory
points in our result and ground truth data and then we check for the exactly
matching cell links. Using the presented method we are able to obtain 96.5% of
correct cell links accuracy which is on the top of existing tracking methods.

The data we are dealing with are given by two-photon laser scanning mi-
croscopy and represent the first hours of zebrafish embryo development, approx-
imately from the 4th until 10th-20th hour. The labeling of cell nuclei is obtained
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Fig. 1. Volume rendering of the cell nuclei data during the embryogenesis starting at
4 hours after fertilization until 13 hours after fertilization in time steps 1, 96, 192, 288,
384 and 480.
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by expression of the fluorescence protein through its RNA injection performed at
the one-cell stage. The 3D images are obtained by moving the focal plane from
the top more deeply inside the embryo and their quality depends on the speed
of scanning in one plane, we refer to a web page for various quality datasets
(http://bioemergences.iscpif.fr/bioemergences/). The 3D image acquisition step
ranges from 50 seconds to 5 minutes. A longer time step produces better image
quality and such data is well suited for segmentation purposes e.g. for obtaining
a shape of cells and other their characteristics during the embryogenesis [4, 17].
On the other hand, such data is not suitable for tracking since the cells move
too far between single 3D images and consequently mother-daughters cell cor-
respondences can be lost. In Fig. 1 we plot an example of embryo development
from the beginning to the end of the imaging. We see visualization of 3D cell
nuclei which are tracked (Fig. 4) by our method. One can clearly observe how
the zebrafish embryo grows from an unorganized set of cells to complex stages
of development containing presumptive organs of the future zebrafish adult.

The paper is organized as follows. In the next section we present our approach
to cell trajectories and lineage tree extraction, discuss numerical approaches used
in the tracking method and parameters that can be used to tune and improve
tracking results. Then we discuss numerical experiments devoted to processing
of real 3D+time image sequences of the early zebrafish embryogenesis. We also
present comparison of our results with ground truth data containing correct cell
links in time verified manually.

2 The cell lineage tree reconstruction algorithm

2.1 Filtering, cell nuclei detection and segmentation

These first three algorithmic steps are taken from [14, 10, 15] and for complete-
ness are described below. First step in our approach is nonlinear diffusion filtering
of the input data. The noise is intrinsically linked to the microscopy technique
and its level increases with decreasing the time step dθ of the scanning. Here we
use geodesic mean curvature flow (GMCF) [14, 9] which is based on discretization
of the following nonlinear diffusion equation

ut − |∇u|∇.
(
g (|∇Gσ ∗ u|)

∇u
|∇u|

)
= 0 , (1)

where u(t, x), t > 0, represents the filtered image intensity function. We start
from the initial condition u(0, x) = u0(x), where u0 is an original 3D image
and we consider few discrete time steps of the discretized model. We consider
the zero Neumann boundary conditions on the boundary ∂Ω of the 3D image
domain Ω. In this model, the mean curvature motion of the level sets of function
u is determined by the edge indicator function

g(s) =
1

1 +Ks2
, K ≥ 0 (2)
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where K is the edge detection sensibility parameter, that is applied to the im-
age gradient presmoothed by the Gaussian kernel Gσ with a small variance σ.
The essential property of this function is that its negative gradient points to-
wards the edges in the image and overall nonlinear diffusion process given by
(1) causes accumulation of the level sets of u along the boundaries of objects in
the image and therefore the filtering is also edge preserving. The filtered image
uF is obtained as the solution of (1) at a time t = TF . The optimal choice of
the model and discretization parameters was studied in [14] on the basis of the
mean Hausdorff distance of the level sets of the filtered image and a gold stan-
dard. For discretization of (1) in time we use the semi-implicit approach that
guarantees unconditional stability of the numerical scheme, for details see [14]
and for spatial discretization we use the finite volume method.

The second step of our approach is the detection of cell nuclei centers, we
call them also cell identifiers. The cell center detection method is based on a
fact that objects visible in the image can be seen as humps of relatively higher
image intensity. Any such hump is represented by certain image intensity level
sets. The diameter of these level sets allow us to distinguish between significant
objects, e.g. cell nuclei, and spurious inner structures which still remain after
GMCF filtering. For cell nuclei, the diameter d is relatively large, 0 << c1 ≤
d ≤ c2, while the diameter of the spurious inner structures is much smaller,
0 < d << c1. If the level sets are moving (advected) at a constant speed in the
direction of the inner normal, the encompassed volume is decreasing and finally
the hump disappears. Our model is based on the fact that the level sets with
small diameter corresponding to spurious structures disappear quickly while level
sets representing cell nuclei are observable in a much longer time scale. Since the
motion of every level set is given by the normal velocity V = δ+µk where δ and µ
are constants (model parameters) and k is the mean curvature, we formulate our
level set center detection (LSCD) method in the form of the following nonlinear
advection-diffusion equation [10, 9]

ut + δ
∇u
|∇u|

.∇u− µ|∇u|∇.
(
∇u
|∇u|

)
= 0 (3)

which is applied to the initial condition given by uF , the result of GMCF filtering.
Again, we consider the zero Neumann boundary condition and the equation is
solved in time interval [0, TC ]. Due to the shrinking and smoothing of all (real and
spurious) structures in the evolutionary process represented by (3), we observe
decrease of the number of local maxima M of the solution u as time proceeds.
This decrease is fast in the beginning and much slower later. We stop this process
when the slope of decrease is below a certain threshold, and then we use visual
inspection in few 3D images of the whole sequence in order to choose an optimal
evolutionary step of LSCD for finding cell identifiers. The time discretization of
LSCD equation (3) is explicit in advective and semi-implicit in diffusion parts
and it uses the finite volume method together with up-wind principle for space
discretization [10].
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The third step in our approach is segmentation of cell nuclei to obtain ap-
proximate cell diameters used in our new 4D segmentation approach. Here we
use the generalized subjective surface method for 3D image segmentation [21,
15, 9]. Let I0 : Ω → R,Ω ⊂ R3 represent the intensity function of an image,
usually the image after GMCF filtering. If we want to segment an object, we
need a segmentation seed - the starting point that determines the approximate
position of the object in the image. Then we construct an initial segmentation
function u0(x). For nuclei segmentation, all isosurfaces of the initial segmenta-
tion function were equal ellipsoids centered in the detected cell center. The radii
were approximated from average nuclei radius given by biologists. The partial
differential equation for generalized subjective surface (GSUBSURF) method is
given by

ut − wa∇g · ∇u = wcg
√
ε2 + |∇u|2∇ ·

(
∇u√

ε2 + |∇u|2

)
(4)

and comes from the level set formulation of the geodesic active contour model
[6, 7, 12, 13, 21]. In the model (4), g is an edge detector function, for which we
again use g(s) = 1

1+Ks2 , where K is the edge detection sensibility parameter and

s = |∇I0|, where I0 is the input image intensity function. Parameters wa and wc
are weights for the advection and curvature terms of the model, respectively and
ε is the regularization parameter, usually ε << 1. The same ε-regularization
is used in eqs. (1) and (3). We choose zero Dirichlet boundary condition for
the equation (4). In order to discretize (4) in time, we apply the semi-implicit
approach that guarantees unconditional stability with respect to the diffusion
term. In order to discretize (4) in space, we apply the so called flux-based level set
finite volume method for advective part and in curvature part we use approach
similar to the ones used in GMCF and LSCD discretizations [15, 17].

2.2 Tracking algorithm steps

Our final step, the method for cell trajectories extraction and cell lineage tree
reconstruction is composed of the following steps:

– construction of a 4D segmentation yielding the 4D spatio-temporal tubular
tree structure, chapter 2.3,

– computation of the first constrained distance function D giving distance
of any point of 4D segmentation to the most far (backwards in time) cell
identifier to which it is continuously connected, chapter 2.4,

– computation of the second constrained distance function DB giving distance
of any point of 4D segmentation to its boundary, chapter 2.4,

– building a potential field V for tracking by using a suitable combination of
two computed distance functions, chapter 2.4,

– extraction of the steepest descent paths of the potential field inside all simply
connected 4D segmentation regions, chapter 2.5,
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– centering the extracted paths inside the 4D spatio-temporal trees in order
to get unique cell trajectories, chapter 2.5,

– postprocessing and validation of the results, chapter 2.6

We note that after successful cell trajectories extraction the reconstruction
of the cell lineage tree can be performed by detecting trajectories which merge
together when going backward in time indicating mitosis and thus a branching
node of the cell lineage tree.

2.3 Building the 4D segmentation

From mathematical point of view, the 3D+time image sequence is understood as
a function u(x1, x2, x3, θ), u : Λ→ [0, 1], where Λ is a bounded spatio-temporal
(rectangular) subdomain of R4, (x1, x2, x3) is a spatial point and θ represents a
time.

The 4D segmentation is a spatio-temporal structure which approximates the
space-time movement of cell nuclei. Due to [4, 15] the shape of cell nuclei during
zebrafish embryogenesis is reasonably approximated by spheres or ellipsoids.
Thus, in order to construct 4D segmentation we use cell identifiers detected in
all time steps, slm,m = 1, . . . , nlC , l = 1, . . . , Nθ (m denotes cell identifier index
at time step l and Nθ is number of time steps) by method from [4, 10], and create
4D ellipsoids around all these points. To determine halfaxes of the ellipsoids we
use real cell nuclei segmentations obtained using GSUBSURF method [4, 15]
paired with cell coordinates from cell detection step. We calculate the volume
of real segmented nucleus and compute the radius of a sphere with the same
volume. This radius is then used as spatial halfaxes for constructed ellipsoids.
Here, we also introduce a parameter S representing shrinking of the halfaxes (if
S < 0) or expanding of them (if S > 0). A slight shrinking of real radius is used
later in the tracking algorithm since it helps to have spatially non-overlapping
tubular structure representing the cell movement. This parameter is tuned by
comparison of tracking with ground truth data and its optimal choice improve
the quality of tracking results. In temporal direction we are using halfaxis equal
to dθ corresponding to the image acquisition interval. The nonzero temporal
halfaxis is important due to the time overlap which we create and thus we
improve connectivity of 4D spatio-temporal tree structures. Thanks to the time
overlap we interconnect branches of the 4D spatio-temporal tree where a cell
center was not detected in one frame but it was detected in two neighboring
frames and thus we correct false negative errors of the cell center detection
algorithm.

2.4 Building the potential field for tracking

As noticed above, for building the potential field V we compute two types of
distance functions, D and DB , inside the 4D spatio-temporal segmented tree
structures. The distance functions are computed by OpenMP implementation
of 4D Rouy-Tourin scheme [5] or they can be determined by fast-marching or
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fast-sweeping methods [22, 24]. These distance functions are called constrained
because all the calculations are constrained by the boundaries of the 4D segmen-
tation. Due to that fact, the computed distances between doxels of the 3D+time
image sequence are not a standard Euclidean distances in R4 but they approxi-
mate a minimal Euclidean paths between the points inside the 4D segmentation.

We represent the 4D segmentation by a 4D piecewise constant function, with
some BIG value (value that is bigger than the biggest distance in dataset)
outside of the segmentation and with zero value inside it. The 4D distance func-
tion D(x1, x2, x3, θ) is calculated gradually inside all simply connected regions,
starting from cell centers in lowest possible time step θ. After the calculation is
completed in all regions reachable from these cell centers, we fix the computed
values and continue the calculation from centers in next time step, but only in
regions where the values are not yet fixed. Using this approach we calculate the
distance function D inside whole 4D segmentation. At the end all doxels inside
the 4D segmentation contain the value of distance to the most far (backwardly
in time) cell identifier to which it is continuosly connected. In Fig. 2 left we
show that inside the regions encompassed by the BIG values, the value of D
is growing from zero, in cell identifier where the simply connected component
”begins”, up to a locally maximal value, where the simply connected component
”ends”.

We could think about D as a potential field and traverse it in the steepest
descent direction from the local maxima at every simply connected component
to the zero value. The paths obtained in such way would represent good approx-
imation of the space-time cell trajectories. And, if the 4D segmentation would
contain only perfectly separated 4D spatio-temporal tree structures, we would
obtain correctly all (also partial) cell trajectories which can be extracted from
the data. Unfortunately, in the real 4D data it is not always possible and we
must deal with imperfections given mainly by a cells overlapping. In order to
overcome this difficulty we have to keep the extracted paths in a certain distance
from the spatio-temporal cell boundaries or, in other words, they should be more
centered inside the 4D segmentation.

This can be achieved by using the constrained distance functionDB(x1, x2, x3, θ)
[3, 16] values of which grow from boundaries to the center of the 4D spatio-
temporal trees, see Fig. 2 right.

Finally, we build a potential field

V (x1, x2, x3, θ) = D(x1, x2, x3, θ)− αDB(x1, x2, x3, θ) (5)

which is used for the extraction of cell trajectories. Parameter α > 0 is introduced
here to adjust the weight of DB function. It is used to tune and improve tracking
results.

2.5 Extraction of the cell trajectories

The cell trajectory will be represented by a series of points in space-time (discrete
spatio-temporal curve) for which we prescribe the condition that there is exactly
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Fig. 2. On the left one can see the plot of constrained distance function D in one
simply connected component of the 4D segmentation, on the right one can see the plot
of the constrained distance function DB in the same simply connected component.

one point in every time step l = Nb, . . . , Ne, 1 ≤ Nb < Ne ≤ Nθ. The extraction
of cell trajectories is realized in two steps

• first, we use backtracking in time by the steepest descent direction of the po-
tential V built in (5) starting from all cell identifiers slm,m = 1, . . . , nlC detected
in all time steps l = Nθ, . . . , 2,

• then, we center all the extracted paths inside the 4D spatio-temporal trees
by using constrained distance function DB only, in order to eliminate duplicates
and thus to obtain the unique cell trajectories.

The first step is realized as follows: Let slm be one of the cell identifiers
detected in the lth time step. Let us define a temporary point P lT = slm. Then,
we search recursively in the nearest vicinity of P lT , but only in the current time
step l and previous time step l − 1, for a doxel with the minimal value of the
potential V which is also strictly less than the value of potential at the temporary
point. The extracted path point P l for the time step l is defined as the (last in
search) doxel from which we move to a point in the previous time step l − 1.
The point where we moved becomes the temporary point P l−1

T for time step
l− 1 and we continue the descent as above. We end the process when we cannot
move from a time step Nb to a previous time step Nb − 1 by decreasing value of
the potential V . Then the last point of the search in the time step Nb must be
some detected center sNbm and it becomes the first point of the extracted path
starting in the time step Nb and ending in the time step Ne where we started
the descent. As an output of this first step, we get as many extracted paths as is
the number of cell identifiers in all time steps except the first one, which means
that we have

∑Nθ
l=2 n

l
C steepest descent paths.

After the first step of trajectories extraction there exist many duplicated
paths (representing the same cell space-time movement but for a shorter time).
To illustrate the above fact, let us consider a long cell trajectory going from the
first to the last 3D volume of the image sequence. Since we start the descent
from centers detected at every l = Nθ, . . . , 2, and they all lay inside the branch
corresponding to that cell, we obtain Nθ − 1 extracted paths laying inside the
same branch of the 4D spatio-temporal tree. These paths can slightly differ
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because the steepest descent search does not give necessarily the same set of
points when starting at different time steps from different temporary points.
Since all such paths lay in the same branch of the tree we center their points in
3D volumes by using the steepest growth direction of the constrained distance
function DB . After the centering step, the points of the shorter path become
subset of points of the longer path and we can remove the shorter one just
by comparing their points. The remaining (longest) path represents the cell
trajectory. After this step we obtain a set of unique cell trajectories in the sense
that a mother cell representative point is presented in as many trajectories as is
the number of her descendant cells.

2.6 Lineage tree reconstruction

In this last step we build from unique cell trajectories the binary cell lineage
tree by using biological coherence. First, we store the results in a tree-like data
structure, where each point is stored only once with reference to mother cell
and array of daughter cells. If the mother or daughters don’t exist, we use null
references.

Depending on the quality of input data, the resulting unique cell trajectories
can be disjointed in a short time interval and sometimes more than two trajec-
tories can merge going backward in time in single time step. To correct these
situations we use the following postprocessing steps:

– We disconnect all trajectories in points where there more than two of them
are merged. Then we allow only two trajectories having two nearest daugh-
ters to mother to merge, all others will remain disjointed.

– We allow reconnection of all disjointed trajectories. For each ending trajec-
tory we are searching for nearest starting trajectory in the next two time
steps and interconnect them by gradually increasing the search radius.

After such postprocessing steps we have built the cell lineage tree which is opti-
mally stored and can be used for validation of the results and for visualization
of cell dynamics.

3 Numerical experiment on real zebrafish embryogenesis
data

We performed experiments on two representative real zebrafish embryogenesis
datasets. First dataset has acquisition step dθ = 67 seconds, Nθ = 480 number
of time steps and dimension of every 3D image is 512x512x104 voxels. The real
voxel size is dx1 = dx2 = dx3 = 1.37 micrometer in every spatial direction.
In the last time step Nθ = 480 biologist selected manually cells forming seven
presumptive organs in the brain (hypoblast, presumptive hypothalamus, ven-
tral telencephalon, right eye, right optic stalk, left eye, left optic stalk). Using
developed approach we can track those cell populations backwards (and then
also forward) in time and thus follow their dynamics and clonal history. For this
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dataset we also have the ground truth data which contains about 39000 manu-
ally checked cell links, that can be used for validation of the tracking. We have to
note that building such ground truth is extremely difficult and time consuming
task for expert in biology. We highly appreciate this unique work, which can
be used for tuning algorithm parameters and thus allowing to use the methods
in practice when processing similar type zebrafish datasets. Second dataset has
acquisiton step dθ = 154 seconds, Nθ = 200 and dimension of every 3D image is
512x512x120 voxels.

Before tracking, all 3D images of the processed data were filtered by 10 steps
of geodesic mean curvature flow (GMCF) model [14, 4, 9] and the cell nuclei iden-
tifiers were detected by 15 steps of level set center detection (LSCD) algorithm
[10, 4, 9] for the first dataset and by 4 steps of LSCD for the second dataset. The
cell nuclei were segmented using generalized subjective surface (GSUBSURF)
method [4, 9]. From several millions of cell identifiers we built the 4D segmen-
tation and then the cell trajectories were extracted by the approach developed
in section 2. The correctness of mother-daughter cell links for the first dataset
were validated using ground truth data and the results are presented in Table 1
and Fig. 3.

To tune the tracking results we adjust two parameters mentioned in section
2, S and α. First, we can expand or shrink the nuclei radii used for building the
4D segmentation. By comparison with ground truth data we concluded that the
best results for these two datasets were obtained when we shrink the radii by
S = −0.5, cf. Fig. 3. The second parameter is α, used in the construction of the
potential V . We tested tracking for α ∈ [0.5, 4] and obtained the best results
around α = 3.2, see Table 1.

Table 1. Comparison of the tracking result with ground truth data depending on α,
with S = −0.5.

α
Correct

mother links
Correct

daughter links
Wrong

mother links
Wrong

daughter links

0.4 34856 34719 3935 4072

0.8 35510 35371 3280 3419

1.2 36064 35946 2726 2844

1.6 36551 36493 2240 2298

2.0 37125 37126 1668 1667

2.4 37288 37309 1506 1485

2.8 37349 37386 1448 1411

3.2 37402 37437 1395 1360

3.6 37357 37415 1440 1382

4.0 37377 37434 1420 1363

We present here also Figs. 4 and 5 showing results of the tracking procedure
on our two datasets. For the cell trajectories visualization we built software,
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Fig. 3. Number of wrong links in tracking compared to ground truth data, depending
on α and S. With α increasing towards 2, the number of wrong links is decreasing,
then it stabilizes and the best result is obtained for S = −0.5, cf. also Table 1.

running on graphics card, where we can fluently zoom, rotate and animate in
time a 3D scene even with very high number of trajectories. The trajectories
are displayed as short lines (in various colors, according to speed, direction or
manually defined color of cell population) connecting a few subsequent spatio-
temporal points with a freely chosen starting time. In Fig. 4 we show trajectories
of a second dataset with colors depending on the cell movement speed. Dark blue
are the slowest, while red are the fastest moving cells. One can see the evolution
of cells from the 1st still chaotic stage, through 96th, 192nd, 288th, 384th time
steps where the cells are becoming more compactly localized up to 480th time
step, cf. Fig. 1.

As noticed above, in the last time step of the first dataset, Nθ = 480, biologist
manually selected cells forming seven presumptive organs during the zebrafish
brain early embryogenesis.

In Fig. 5 we show trajectories along with the slices of original data in time
step Nθ = 260. Here all trajectories have the same color and original data is
displayed as black and white slices obtained from 3D volume. Only the cells
that are near the slices are displayed along with the trajectories showing their
movement in next and previous 20 time steps.

4 Conclusions

In this paper we presented algorithm for the cell tracking and lineage tree re-
construction from 3D+time microscopy data. We validate the tracking results
by comparing them with manually verified ground truth data. The best results
which we can achieve show more than 96% correctness of mother-daughter links.
We applied the tracking method to complex stages of the zebrafish early embryo-
genesis images and visualize extracted cell trajectories and present mean velocity
of selected cell populations.
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Fig. 4. Visualization of the cell movement speed during embryogenesis in time steps
1, 96, 192, 288, 384 and 480. Red trajectories are the fastest moving cells, while blue
are the slowest.
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Fig. 5. Tracked cells with trajectories displayed along the slices of original data. Middle
image is slightly tilted for better visibility since the trajectories are going outwards from
the slice.
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Problems & Perspectives, Eds. J. Fořt et al. (Proceedings of the Sixth International
Conference on Finite Volumes in Complex Applications, Prague, June 6-10, 2011),
Springer Verlag (2011) 693–702
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