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COMPUTING MINIMAL SURFACES BY MEAN CURVATURE

FLOW WITH AREA-ORIENTED TANGENTIAL

REDISTRIBUTION

L. TOMEK, M. REMEŠÍKOVÁ and K. MIKULA

Abstract. In this paper we use a surface evolution model for construction of min-
imal surfaces with given boundary curves. The initial surface topologically equiva-

lent to a desired minimal surface is evolved by mean curvature flow. To improve the

quality of the mesh we propose an area-oriented tangential redistribution of the grid
points. We derive the numerical scheme and present several numerical experiments.

1. Introduction

The goal of this paper is to present a surface evolution technique for comput-
ing minimal surfaces employing the mean curvature flow as an evolution model.
The mean curvature flow is enriched with suitable tangential velocity in order to
redistribute the mesh points along the surface. The work is based on ideas de-
veloped in the paper [21]. The area-oriented tangential redistribution for surfaces
with boundary and its application for computing the minimal surfaces is new and
forms the main contribution of the paper.

The mean curvature flow was originally proposed as a model for description of
the evolution of the interfaces in multiphase physical models [27]. Since minimal
surfaces (surfaces with zero mean curvature) are the critical points for the mean
curvature flow, one can use the mean curvature flow as a tool for constructing
minimal surfaces with given boundary curve(s). Such surfaces are used, e.g., in
architecture [15]. The problem of finding a minimal surface with given boundary
curve(s) is called the Plateau problem, named after the Belgian physicist J.A.F.
Plateau [29] who made experimental studies of soap films. Algorithms based on
the mean curvature flow have also been developed in the field of digital image
processing because of the ”regularizing effect” due to its parabolic nature [1, 7,
20].

Two basic approaches are used for solving manifold evolution problems (includ-
ing mean curvature flow of surfaces in R3), the Lagrangian approach that evolves
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the manifold directly [9, 2, 21, 11] and the Eulerian (level set) approach that, in
general, considers the n-dimensional manifold as a level set of a function of n+ 1
variables [12, 7, 30, 28]. This work follows the Lagrangian approach.

The numerical methods for solving evolution models are usually based on a
finite element method [9, 10, 2] or a finite volume method [19, 15, 21]. In this
work we deal with a finite volume method.

Various techniques for tangential redistribution of points have been developed
for curves evolving in two dimensions [14, 17, 22, 23, 3, 31, 5], three dimensions
[13, 25] or on 2D surfaces [24, 6]. A lot of work has been done for surfaces
evolving in R3 [2, 16, 26]. In this paper we generalize a technique for closed
surfaces designed in [21] to surfaces with boundary.

The text of the paper is organized in several sections. In section 2 we introduce
the mathematical model being the mean curvature flow equipped with an area-
oriented tangential redistribution. In the section 3 we state a disctretization of
the mathematical model by a finite volume method. In section 4 we demonstrate
the performance of the method by constructing several minimal surfaces.

2. Mathematical model

Let F 0 : X → Y be a smooth immersion of a m-dimensional Riemannian manifold
(X, gX) into n-dimensional Riemannian manifold (Y, gY ), m ≤ n. The evolution
of X0 = F 0(X) is a one-parameter family of immersions F : X × [0, tf ] → Y .
Given a fixed point x ∈ X, the map x 7→ F (x) = F (x, .), is a smooth curve on Y .
Let vt(x) denote the vector tangential to the curve at the point F t(x) = F (x, t)
(see Fig. 1), where the map F t : X → Y represents a selected immersion from
the whole family of immersions. The map v : X × [0, tf ]→ TY , where TY is the
tangent bundle of Y , represents the velocity field of the evolution. Thus, the map
F is a solution of the equation

(1) ∂tF = v.

The evolution equation (1) is coupled with an initial condition F (x, 0) = F 0(x)

Figure 1. Evolution of a manifold X in a manifold Y .
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and, for a manifold X with boundary, with a Dirichlet boundary condition

(2) F (x, t) = F 0(x), x ∈ ∂X, t ∈ [0, tf ]

meaning the boundary is static. It is convenient to rewrite the velocity v in the
form

(3) ∂tF = vN + vT ,

where vN and vT are the velocities of the evolution in the normal and tangential
direction to the immersed manifold Xt = F t(X) respectively (Fig. 1). Whereas
the normal velocity vN has an effect on the position and the shape of the immersed
manifold Xt, the tangential velocity vT only moves the points along Xt. In the
discrete setting, the tangential velocity vT can be designed to control the distribu-
tion of the mesh vertices, which becomes crucial in numerical computations. An
inappropriate placement of the mesh vertices can lead to unacceptable errors or
even to a crash of the computation process.

The special type of the evolution model (3) is the mean curvature flow of surfaces
with boundary in R3. That means, X is a two-dimensional manifold with boundary
and Y = R3 with standard Euclidean metric tensor gY . The position vector F (x, t)
satisfies the evolution model

∂tF = HN(4)

with F (x, 0) = F 0(x), x ∈ X
F (x, t) = F 0(x), x ∈ ∂X, t ∈ [0, tf ]

which means the flow is driven by the normal velocity vN = HN , where H(x, t)
and N(x, t) are respectively the mean curvature and the unit normal of the surface
Xt = F t(X) at the point x ∈ X, see Fig. 2. The quantity h = HN is the mean

Figure 2. Evolution of a 2-dimensional manifold X in R3.

curvature vector. Using the formula h = 4gFF (see e.g. [18]) we can rewrite the
model (4) to the form

∂tF = 4gFF(5)

with F (x, 0) = F 0(x), x ∈ X
F (x, t) = F 0(x), x ∈ ∂X, t ∈ [0, tf ].
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The symbol4gF denotes the Laplace-Beltrami operator associated with the metric
tensor gF t = (F t)∗gY induced by the immersion F t, where (F t)∗ denotes the
pullback by F t. To simplify the notation we usually omit the time index t if gF t

is a subscript (as in Laplace-Beltrami operator in (5)). The mean curvature flow
may be regarded as a sort of geometric heat equation. On the other hand, the
mean curvature flow is not really equivalent to a heat equation, since the Laplace-
Beltrami operator evolves with the surface itself.

2.1. The area-oriented tangential redistribution

In our problem only the normal velocity vN = HN is given. Thus we can enrich
the model (5) with a suitable tangential velocity vT in order to control the area
density (defined below) of the discretized evolving manifold.

(6) ∂tF = 4gFF + vT .

In following we state the tangential velocity vT which strives to achieve uniform
area density distribution.

On the manifold X we have the metric gX and the measure ξ induced by gX .
The metric tensor gF t induces another measure χF t on X. These two measures
are related by the following formula

(7) dχF t = Gtdξ,

where the map Gt is called the volume density of F t in general, and in case of
evolving surfaces we will call it area density. The evolution of the immersion F t

results in the evolution of the area density. According to [4], the map Gt satisfies
the following equation

(8) ∂tG = (−gY (vN , h) + divgFwT )G,

where wT is the tangential vector field on X and the operator divgF represents
the divergence on X associated to the induced metric gF . The vector field vT on
Xt ⊂ Y is obtained as vT = F t∗wT , i.e. the pushforward of wT along F t. In case of
a manifold with static boundary, the normal component of the tangential velocity
wT vanishes on the boundary, i.e.

(9) gF (wT , ν)|∂X = 0.

In [21] there are several area-oriented redistributions proposed. We use the asymp-

totically uniform redistribution which satisfies Gt(x)
At −→

t→∞
C, where C ∈ R+ and

At denotes the global area of X measured by the measure χF t . Using the ideas
developed in the paper [21] one gets the condition for wT

(10) divgFwT = gY (vN , h)− 〈gY (vN , h)〉χ +

(
C
A

G
− 1

)
ω,

where 〈 . 〉χ denotes the mean over X with respect to the measure χ. Now we
assume that wT is a gradient field

(11) wtT = ∇gFtψ
t,
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where ψt : X → R is a potential of vector field wtT . Under this assumption, we
get the following equation for ψt

(12) 4gFψ = gY (vN , h)− 〈gY (vN , h)〉χ +

(
C
A

G
− 1

)
ω.

In order to guarantee the uniqueness of ψt, the equation (12) is accompanied
with an appropriate condition. In this paper we consider manifolds with a static
boundary, for which (9) holds. Since velocity wT has the form (11), we have

(13) gF (∇gFψ, ν)|∂X = 0,

which is a natural Neumann boundary condition for ψt. Additionally, to ensure the
uniqueness of ψt, we prescribe the value ψt(P ) = 0 in one selected point P ∈ X.

3. Numerical scheme

In this section we discretize the mathematical model formulated above. The sec-
tion 3.1 states the cotangent scheme which is a widely used method for computing
the numerical solution of the mean curvature flow. In section 3.2 we present a
discretization of the tangential velocity.

3.1. Discretization of the mean curvature flow

To discretize the model (6) in the time domain, we apply a semi-implicit approach.
The time derivative is approximated by a finite difference and the Laplace-Beltrami
operator and the tangential velocity are taken from the previous time step. If τ is
the time step, N = tf/τ is the number of time steps, tn = nτ and Fn = F (·, tn),
we obtain

(14)
Fn − Fn−1

τ
= 4Fn−1Fn + vn−1T

for n = 1, . . . , N , where the symbol 4Fn−1 denotes the Laplace-Beltrami operator
from the previous time step with respect to the metric gFn−1 induced by Fn−1.

The space discretization is performed using a finite volume method. We approx-
imate the manifold X by a triangular mesh with vertices xi, i = 1, . . . , nV . The
triangulation of X induces the triangulation of the evolving manifold Xn = Fn(X)
with vertices Fni = Fn(xi), i = 1, . . . , nV . The finite volumes Vi, i = 1, . . . , nV are
constructed by the barycentric subdivision of the triangulation of X. To obtain
the equation for an internal vertex Fni /∈ ∂Xn, one integrates the formula (14)
over the finite volume Vi. On the left-hand side we get

(15)

∫
Vi

Fn − Fn−1

τ
dχFn−1 ≈ An−1i

Fni − F
n−1
i

τ

where An−1i = χFn−1(Vi) denotes the area of the finite volume Vi, and Fn(x)
was approximated by its value in the vertex xi, thus Fn(x) ≈ Fni . For the the
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Laplace-Beltrami term on the right-hand side we have (see [19] for more details)

(16)

∫
Vi

4Fn−1Fn dχFn−1 ≈ 1

2

mi∑
p=1

(
cot θn−1i,p−1,1 + cot θn−1i,p,2

) (
Fn−1i,p − Fn−1i

)
,

with mi denoting the number of neighbouring vertices of the vertex Fni , and where
θn−1i,0,1 = θn−1i,mi,1

. The angles θn−1i,p,1, θ
n−1
i,p,2 are denoted in Fig. 3.

Figure 3. Left, the finite volume Vi around a vertex xi. Right, the notation in the neighbour-

hood of the vertex Fn
i = Fn(xi).

For the tangential velocity term we use the following approximation∫
Vi

vn−1T dχFn−1 ≈ An−1i vn−1T,i

where vn−1T,i is the tangential velocity of the vertex Fn−1i . Collecting the terms
together we obtain the formula

(17) an−1i Fni +

mi∑
p=1

bn−1i,p Fni,p = Fn−1i + τvn−1T,i

for n = 1, . . . , N and each i such that Fni /∈ ∂Xn, and where

an−1i = 1 +
τ

2An−1i

mi∑
p=1

(
cot θn−1i,p,1 + cot θn−1i,p,2

)
bn−1i,p = − τ

2An−1i

(
cot θn−1i,p−1,1 + cot θn−1i,p,2

)
for p = 1, . . . ,mi. The Dirichlet boundary condition (2) is realized trivially as

(18) Fni = Fn−1i .

The equations (17), (18) form a system of nV linear equations for the unknowns
Fni , i = 1, · · · , nV . The initial positions of the vertices F 0

i are given by the initial
condition, i.e. F 0

i = F 0(xi).
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The mean curvature vector hn−1i at the point Fn−1i is approximated using
cotangent formula (16)

(19) hn−1i =
1

2An−1i

mi∑
p=1

(
cot θn−1i,p−1,1 + cot θn−1i,p,2

) (
Fn−1i,p − Fn−1i

)
.

Remark: For simplicity, we fix the boundary points in this paper using (18). In
some cases a tangential motion along the boundary may be desirable, since it could
improve the mesh quality. On the other hand, it can deform the boundary. There
is no deformation in regions where the boundary curve is a line segment, however,
the problems arise in regions where the boundary is curved. This is because the
approximation of the tangential velocity is not purely tangential and can move the
vertices slightly off the curves on which they should be situated. If the boundary
has corners, they has to be treated separately because the corners should not move
at all. The redistribution along the boundary can be a topic for a further research.

3.2. Discretization of the tangential velocity

In this section we propose a discretization of the equation (12) for surfaces with
boundary. To simplify the notation, we omit the time index in some equations.
All quantities are taken from the (n− 1)-th time step. Applying the finite volume
technique we integrate (12) over a finite volume Vi. The left-hand side for an
internal finite volume Vi (Fni /∈ ∂Xn) reads

(20)

∫
Vi

4Fn−1ψn−1dχFn−1 ≈ 1

2

mi∑
p=1

(
cot θn−1i,p−1,1 + cot θn−1i,p,2

) (
ψn−1i,p − ψ

n−1
i

)
.

For a boundary finite volume Vi (Fig. 4) the integration gives∫
Vi

4Fn−1ψdχ =

∫
∂Vi

gFn−1(∇Fn−1ψ, ν) dHχ =

∫
∂Vi−(∂Vi∩∂X)

gFn−1(∇Fn−1ψ, ν) dHχ

≈ 1

2

mi∑
p=1

[
cot θi,p,2(ψi,p − ψi) + cot θi,p,1(ψi,p+1 − ψi)

]
=

1

2

[
cot θi,1,2(ψi,1 − ψi) + cot θi,mi−1,1(ψi,mi

− ψi)

+

mi−1∑
p=2

(cot θi,p,2 + cot θi,p−1,1) (ψi,p − ψi)
]
.(21)

where the symbol ∇Fn−1 denotes the gradient w.r.t. the metric tensor gFn−1 .
Since the boundary of the surface is static, we have vN = 0 for boundary vertices.
Thus we can use the following approximation of the first term on the right-hand
side in (12)

(22)

∫
Vi

gY (vN , h)dχF ≈ AigY (vN,i, hi) =

{
AiH

2
i if Fni /∈ ∂Xn

0 if Fni ∈ ∂Xn
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Figure 4. A boundary finite volume.

where Hi = hi · Ni, where Ni denotes the normal to the surface at the point Fi.
The approximation of the second term follows

(23)

∫
Vi

〈gY (vN , h)〉χF
dχF ≈ Ai〈gY (vN , h)〉χF

≈ Ai
A

∑
j,Fj /∈∂X

H2
jAj .

where A =
∑nV

i=1Ai. Note that the sum in (23) runs over the internal vertices
only. For a proper approximation of the last term we introduce an angular size µi
of a finite volume Vi and a reduced number of mesh vertices n∗V as follows

(24) µi =
αi
2π
, n∗V =

nV∑
i=1

µi.

For an internal vertex we define αi = 2π, resulting in µi = 1, and, for a boundary

vertex, αi is the angle between vectors
−−−→
FiFi,1 and

−−−−→
FiFi,mi , see Fig. 4. Now we

need to approximate the area density Gn−1i . Since the total surface area An−1 can
be computed in two ways

An−1 =

∫
X

dχFn−1 ≈
nV∑
i=1

χFn−1(Vi),

An−1 =

∫
X

G(x, tn−1)dξ ≈
nV∑
i=1

Gn−1i ξ(Vi),

we have Gn−1i =
χFn−1 (Vi)

ξ(Vi)
. We do not have any conditions imposed on the

measure ξ, thus we can set ξ(X) = 1
C and

ξ(Vi) = µi
ξ(X)

n∗V
=

µi
Cn∗V

.



COMPUTING MINIMAL SURFACES BY MEAN CURVATURE FLOW 9

The approximation of the area density follows

Gn−1i =
χFn−1(Vi)

ξ(Vi)
=
Cn∗VA

n−1
i

µi
.

Finally the approximation of the integral over the last term in (12) is given by

(25)

∫
Vi

(
C
A

G
− 1

)
ωdχn−1 ≈ An−1i

(
An−1µi

n∗VA
n−1
i

− 1

)
ω.

Now we put the approximations (20), (21), (22), (23) and (25) together to obtain
the system of equations for ψni .

Internal vertices

(26) âiψi +

mi∑
p=1

b̂i,pψi,p = H2
i −

1

A

∑
j,Fj /∈∂X

H2
jAj +

(
A

n∗VAi
− 1

)
ω

for i such that Fi is an internal vertex, where

âi = − 1

2Ai

mi∑
p=1

(cot θi,p,1 + cot θi,p,2)

b̂i,p =
1

2Ai
(cot θi,p−1,1 + cot θi,p,2)

for p = 1, . . . ,mi, with θn−1i,0,1 = θn−1i,mi,1
.

Boundary vertices

(27) âiψi +

mi∑
p=1

b̂i,pψi,p = − 1

A

∑
j,Fj /∈∂X

H2
jAj +

(
Aµi
n∗VAi

− 1

)
ω

for i such that Fi is a boundary vertex, where

âi = − 1

2Ai

mi−1∑
p=1

(cot θi,p,1 + cot θi,p,2) ,

b̂i,1 =
1

2Ai
cot θi,1,2,

b̂i,p =
1

2Ai
(cot θi,p−1,1 + cot θi,p,2) for p = 2, . . . ,mi − 1,

b̂i,mi
=

1

2Ai
cot θi,mi−1,1.

To make the solution unique, we prescribe the value of ψn, n = 0, . . . , N in one
selected point, e.g. ψn1 = 0, n = 0, . . . , N (in practice we modify the system (26),
(27) by replacing corresponding (i = 1) equation with ψ1 = 0).

To calculate the tangential velocity vn−1T,i from ψn−1i we use the formulas stated

in the paper [21].
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4. Numerical experiments

In all experiments in this section we construct an approximation of a minimal
surface with given boundary curve. The initial condition is set as a surface with
the same topology as the desired minimal surface. In our implementation the
BiCGStab (BiConjugate Gradient Stabilized) method [32] was used to solve the
systems (17) and (26), (27).

In the first experiment we deal with a roof-like surface. Authors of [21] consider
the length-oriented redistribution along specific network curves, here we use the
area-oriented redistribution. In the initial condition all points are situated in the
xy-plane except the points on two of the boundary curves, see Fig. 5, top left. The
mesh consist of nV = 144 grid points. Parameters were set to tf = 1, τ = 0.01,
ω = 50. We performed the experiments both without any tangential redistribution
(Fig. 5) and then with tangential redistribution (Fig. 6). Looking at the figures we
observe higher quality mesh of the final minimal surface in case when tangential
redistribution is included.

Figure 5. The evolution of a roof-like surface with no tangential redistribution. The selected
time steps are n = 0, 5, 30, 100.

In the second experiment we construct the approximation of the catenoid which
is a minimal surface stretched between two coaxial circles lying in parallel planes.
The initial condition is a cylinder (Fig. 7) with boundary circles Γ1 and Γ2 defined
parametrically as

(28) Γ1,2(u) = (cosu, sinu,±4

5
log 2), u ∈ (0, 2π).

We set the parameters to tf = 3, ω = 50. In this experiment we dealt with two
different settings of the time step τ . First, with constant τ = 0.04 for all meshes in
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Figure 6. The evolution of a roof-like surface with tangential redistribution. The selected time

steps are n = 0, 5, 30, 100.

Figure 7. The discretization of the cylinder, from lef to right: nV = 80, 288, 1088, 4224.

Figure 8. The approximation of the catenoid with nV = 288 vertices in the final time tf .

Fig. 7, and second, with coupling τ ∼ h2 natural for parabolic problems. The final
approximation of the catenoid with nV = 288 is plotted in Fig. 8. The catenoid
with the boundary curves (28) is a surface of revolution given by the formula (in
cylindrical coordinates r, z)

r(z) =
4

5
cosh

(
5

4
z

)
,(29)
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with z ∈ [− 4
5 log 2, 45 log 2]. The knowledge of the exact solution allows us to

calculate the error of the approximation of the catenoid in the final time tf

(30) L2-error =

[
nV∑
i=1

(√
(FNi,x)2 + (FNi,y)2 − r(FNi,z)

)2
χFN (Vi)

] 1
2

,

where (FNi,x, F
N
i,y, F

N
i,z) denote the coordinates of the vertex FNi . We also study the

experimental order of convergence (EOC) calculated as follows

(31) EOC = log2

(
L2-errorh
L2-errorh/2

)
,

where L2-errorh is the L2-error for a mesh with characteristic edge length h. The
results are presented in Tab. 1 and Tab. 2. In the tables, ”F-iter” and ”ψ-iter”
are the total numbers of iterations of the BiCGStab method needed to solve the
systems (17) and (26), (27) respectively. Comparing Tab. 1 (constant time step

Table 1. The EOC for the case with tangential redistribution, constant time step, ω = 50.0.

nV τ N L2-error F-iter ψ-iter EOC

80 0.04 75 1.09e-02 523 1277

288 0.04 75 2.91e-03 1198 3164 1.91

1088 0.04 75 7.35e-04 2239 6257 1.98

4224 0.04 75 1.81e-04 4975 12873 2.02

Table 2. The EOC for the case with tangential redistribution, coupling τ ∼ h2, ω = 50.0.

nV τ N L2-error F-iter ψ-iter EOC

80 0.04 75 1.09e-02 523 1277

288 0.01 300 2.91e-03 2865 8156 1.91

1088 0.0025 1200 7.36e-04 9880 57498 1.98

4224 0.000625 4800 1.86e-04 31002 266151 1.99

τ = 0.04) and Tab. 2 (coupling τ ∼ h2) we observe that, for this experiment, no
refinement of the time step is needed to achieve the same accuracy. The number of
iterations per time step is higher for the experiment in Tab. 1, however, the total
number of iterations is lower, which results in shorter computation time. Looking
at the EOC in Tab. 1 and Tab. 2 we see that the method is second order accurate.

In the third experiment we construct a perturbed catenoid to demonstrate that
the method works properly also in the case when the parts of the boundary curve
are not convex and even not piecewise planar. The initial condition plotted in
Fig. 9 was created by shifting the boundary vertices of the cylinder with nV = 288
vertices shown in Fig. 7. The boundary curves Γ1,Γ2 are given by parametric
expressions (in cylindrical coordinates (r, φ, z))

Γ1(u) = (r(u), φ(u), z(u)) =

(
1 + 0.2 sin2(3u), u,−4

5
log 2

)
,(32)

Γ2(u) = (r(u), φ(u), z(u)) =

(
1, u,

4

5
log 2 + 0.2 sin2(2u)

)
,(33)
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Figure 9. The cylinder with nV = 288 with shifted boundary vertices. Highlighted curves are

the boundary curves Γ1 (bottom, red) and Γ2 (top, green).

.

Figure 10. A perturbed catenoid in the last time step n = 300. Left, no tangential redistribu-

tion. Right, asymptotically uniform tangential redistribution with ω = 50.

where u ∈ (0, 2π), see Fig. 9. We set the final time tf = 3 and time step τ = 0.01.
The minimal surfaces for both the case with no tangential redistribution as well
as with asymptotically uniform redistribution with ω = 50 are plotted in Fig. 10.

Figure 11. Left, Schwarz P surface. Right, Costa’s minimal surface.

In the next experiment we create a minimal surface topologically equivalent
to the Schwarz P surface (Fig. 11, left). What we construct is not precisely the
Schwarz P surface, since Schwarz P surface is a solution to a different problem, the
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so-called free boundary problem, where (a part of) the boundary curve is restricted
to lie on a given plane instead of being a prescribed curve. The boundary is free
to choose its position on the bounding plane. The boundary curves of the Schwarz
P surface resemble circles but are not perfect circles. The initial condition in our

Figure 12. The evolution of the cube with holes into ”Schwarz P surface”. The first row is the
initial condition, the second row corresponds to the evolution with no tangential redistribution,
and third row represents the case with tangential redistribution. The selected time steps are

n = 5, 30, 100.

experiment is a cube with edge length 2 and a circular hole with diameter 1 in the
middle of each side. The mesh consists of nV = 973 grid points. The parameters
we chose are tf = 1, τ = 0.01, ω = 50. The evolution is plotted in Fig. 12. We see
that the tangential redistribution helps primarily in the regions of initially high
mean curvature (near the corners of the cube).
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In the last experiment we construct a minimal surface with topology of the
Costa’s surface [8] (see Fig. 11, right). The initial condition with nV = 1438 grid
points is plotted in Fig. 13.

Figure 13. Initial condition for construction of the ”Costa’s surface”. Highlighted curves are

boundary curves Γ1 (middle, red), Γ2 (bottom, green) and Γ3 (top, blue).

Figure 14. Constructed ”Costa’s surface” from several viewing angles.
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The boundary Γ = ∂X0 consists of three curves Γ = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1(u) = (4 cosu, 4 sinu, 0),

Γ2(u) = (2.25 cosu, 1.5 sinu,−1.5),

Γ3(u) = (1.5 cosu, 2.25 sinu, 1.5),

with u ∈ (0, 2π) for all curves. The parameters were set to tf = 1.5, τ = 0.01, ω =
5. In Fig. 14 we see the final approximation of the minimal surface. The Fig. 15

Figure 15. The mesh of the ”Costa’s surface” in detail with high-valence vertex in the middle.

shows the mesh in detail. In the middle of the figure we see a vertex with mi = 10
with neighbouring triangles with quite acute angles. In order to improve the
quality of the mesh near such high-valence vertices it is inevitable to use operations
changing the mesh topology, e.g. edge flipping, edge contraction or edge splitting.
This can be a topic for a further research.

Conclusion

We presented a surface evolution model with an area-oriented tangential redis-
tribution of points suitable for computing minimal surfaces with given boundary
curves. We derived the numerical scheme and performed several numerical exper-
iments to test the performance of the method. Using the model, we constructed
approximations of minimal surfaces with given boundary curves.

There are several issues left for a further research. We considered only the
area density for designing the tangential velocity, which gives satisfying results in
many applications. However, we do not control the shape of mesh triangles which
would be necessary in some cases. A tangential redistribution of vertices along the
boundary curves could be included to improve the mesh quality. Incorporation of
mesh topology changing operations to eliminate high-valency vertices could also
improve the the performance of the method. Further, it could be useful to examine
other choices of the angular size µi. For sake of generality, the method could be
extended from triangular meshes to general polygonal meshes.
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20. Mikula K., Peyriéras N., Remeš́ıková M. and Smı́̌sek M., 4D numerical schemes for cell

image segmentation and tracking, in Proceedings of Finite Volumes in Complex Applications
VI, Problems & Perspectives, Springer-Verlag, Berlin, 2011, pp. 693702.
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22. Mikula K. and Ševčovič D., Evolution of plane curves driven by a nonlinear function of

curvature and anisotropy, SIAM J. Appl. Math., 61 (2001), pp. 14731501.
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05 Bratislava, Slovak Republic, e-mail : mikula@math.sk


