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Abstract. We introduce a new method for solving non-stationary advection equations. The
new method is based on finite volume space discretization and a semi-implicit discretization in time.
Its basic idea is that outflow from a cell is treated explicitly while inflow is treated implicitly. This is
natural, since we know what is outflowing from a cell at the old time step but we leave the method
to resolve a system of equations determined by the inflows to a cell to obtain the solution values at
the new time step. Our new method is exact for constant velocity transport of quadratic functions in
any dimension and for any length of a time step and it is second order accurate for smooth solutions
in general. The matrix of the system is determined by the inflow fluxes which results in a M-matrix
yielding favourable stability properties for the scheme. The method allows large time steps at a fixed
spatial grid without losing stability and not deteriorating precision. This makes the new method
attractive for practical applications. The scheme is well suited for variable velocity vector fields in
higher dimensions and for nonlinear advection problems which is documented by a series of numerical
experiments.
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1. Introduction. In this article we propose a new inflow-implicit/outflow-explicit
(I2OE) method for solving general time dependent variable velocity advection equa-
tions of the form

ut + v · ∇u = 0 (1.1)

where u ∈ R
d×[0, T ] is the unknown function and v is a vector field which may vary in

space and/or it may depend on the solution or its gradient itself, i.e. v = v(x, u,∇u).
Variable velocity vector fields arise in many applications, e.g. in transport with non-
divergence free velocity [5, 7] or in image segmentation by active contours in the
form of the generalized subjective surface method [1]. Typical nonlinear models are
given e.g. by the one dimensional Burgers equation for v = u [5], representing a
generic nonlinearity in computational fluid dynamics problems, or by the motion of
level sets in normal direction for v = F (x) ∇u

|∇u| . Such equations are used in the

level-set formulation of interface motion, in free boundary problems of multiphase
dynamics and many other applications [7]. In the special case of level sets for motion in
normal direction, the new method coincides with the semi-implicit forward-backward
diffusion approach recently presented in [6]. Hence, the new method can be seen
as a generalization of the latter approach to arbitrary variable velocity advection
equations.

The basic idea of our new method is that outflow from a cell is treated explicitly
while inflow is treated implicitly. Such an approach is natural, since we know what is
flowing out from a cell at an old time step n − 1 but we leave the method to resolve
a system of equations determined by the inflows to obtain a new value in the cell
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at time step n. Since the matrix of the system is determined by the inflow fluxes it
is an M-matrix for Voronoi like grids and thus it has favourable discrete minimum-
maximum properties. Consequently, the method allows large time steps at a fixed
spatial grid without losing stability. Interestingly, numerical experiments show that
the I2OE scheme is exact for constant velocity transport of any quadratic function
in any dimension and for any length of a time step. In general, it is second order
accurate for smooth solutions without stability restrictions on the time step, both for
variable velocity and nonlinear advection problems. A comparison with the second
order Lax-Wendroff method for variable velocity shows good properties of our new
scheme with respect to precision and CPU times. Combining the new scheme with the
Crank-Nicolson scheme for an additional diffusion term, we get a new stable implicit
second-order method for general advection-diffusion equations such as the viscous
Burgers problem.

The rest of the article is organized as follows. In Section 2 we introduce the general
formulation of the I2OE method on unstructured grids in several space dimensions.
We discuss special cases and implementation aspects in Section 3. Finally, in Section
4 we present several representative numerical experiments. They reveal the very
nice approximation and stability properties of the new method and demonstrate the
efficiency and applicability to a wide range of variable velocity transport equations.

2. The new inflow-implicit/outflow-explicit scheme. In this section we
derive our new scheme in a general higher dimensional setting. Several special cases
in one space dimension will be treated in Section 3.

Let us consider equation (1.1) in a bounded polygonal domain Ω ⊂ R
d, d = 2, 3,

and time interval [0, T ]. Let Qh denote a primal polygonal partition of Ω. Let p be a
finite volume (cell) of a corresponding dual Voronoi tessellation Th with measure mp

and let epq be an edge between p and q, q ∈ N(p), where N(p) is a set of neighbouring
finite volumes (i.e. p̄ ∩ q̄ has nonzero (d − 1)-dimensional measure). Let cpq be the
length of epq and npq be the unit outer normal vector to epq with respect to p. We
shall consider Th to be an admissible mesh in the sense of [2], i.e., there exists a
representative point xp in the interior of every finite volume p such that the joining
line between xp and xq, q ∈ N(p), is orthogonal to epq. We denote by xpq the
intersection of this line segment with the edge epq. The length of this line segment is
denoted by dpq, i.e. dpq := |xq − xp|. As we have build Th based on the primal mesh
Qh, we assume that the points xp coincide with the vertices of Qh. Let us denote by
up a (constant) value of the solution in a finite volume p computed by the scheme.
For the solution representation inside the finite volume p we use either this value up

or a reconstructed (but again constant) value denoted by up. A constant value of the
solution assigned to the edge epq (given again by a reconstruction) is denoted by upq.

In order to motivate our new scheme, let us rewrite (1.1) in the formally equivalent
form with conserving and non-conserving parts [3, 4]

ut + ∇ · (vu) − u∇ · v = 0. (2.1)

Integrating (2.1) over a finite volume p then yields

∫

p

ut dx +

∫

p

∇ · (vu) dx −

∫

p

u∇ · v dx = 0.

Using a constant representation of the solution on the cell p denoted by up and
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applying the divergence theorem we get
∫

p

ut dx +
∑

q∈N(p)

∫

epq

uv · npq ds − up

∑

q∈N(p)

∫

epq

v · npq ds = 0.

Denoting by upq another representative constant value of the solution on the interface
epq, we further get

∫

p

ut dx +
∑

q∈N(p)

upq

∫

epq

v · npq ds − up

∑

q∈N(p)

∫

epq

v · npq ds = 0.

If we denote the integrated fluxes in the inward normal direction to the finite volume
p by

v̄pq = −

∫

epq

v · npq ds, (2.2)

we finally arrive at the balance law
∫

p

ut dx +
∑

q∈N(p)

v̄pq(up − upq) = 0. (2.3)

The major new idea of our scheme is to split the resulting fluxes into the corresponding
inflow and outflow parts to the cell p. This is done by defining

ain
pq = max(v̄pq , 0), aout

pq = min(v̄pq , 0). (2.4)

We then approximate ut by the time difference
un

p−un−1

p

τ
, where τ is a uniform time

step size, and take the inflow parts implicitly and the outflow parts explicitly in (2.3).
This yields the following system of equations for the finite volume solution un

p , p ∈ Th

at the n-th discrete time step

mpu
n
p + τ

∑

q∈N(p)

ain
pq(u

n
p − un

pq) = mpu
n−1
p − τ

∑

q∈N(p)

aout
pq (un−1

p − un−1
pq ) (2.5)

for all p ∈ Th.
The most natural choice for reconstructions un

p and un
pq at any time step n (i.e.

old and new time steps) is given by

un
p = un

p , un
pq =

1

2
(un

p + un
q ) (2.6)

and leads to the basic I2OE scheme:

mpu
n
p +

τ

2

∑

q∈N(p)

ain
pq(u

n
p − un

q ) = mpu
n−1
p −

τ

2

∑

q∈N(p)

aout
pq (un−1

p − un−1
q ) (2.7)

which for a uniform squared grids in two space dimensions with a finite volume side
width h reduces to the following simple system

un
p +

τ

2h2

∑

q∈N(p)

ain
pq(u

n
p − un

q ) = un−1
p −

τ

2h2

∑

q∈N(p)

aout
pq (un−1

p − un−1
q ). (2.8)

We summarize our new inflow-implicit/outflow-explicit method in the following
definition.
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Definition 2.1 (The new I2OE scheme) Let initial data u0 ∈ C0(Ω) and Dirich-
let boundary data uD ∈ C0(∂Ω×[0, T ]) be given. Furthermore, let Rp and Rpq denote
suitable local reconstructions of the solution on the cell p and the interface epq, re-
spectively and gpq denote a suitable numerical flux that approximates −

∫

epq
v ·npq ds.

These operators may differ depending on the inflow or outflow character of the cell
interface (such dependence will be denoted by superscripts in and out).

Then the general inflow-implicit/ outflow-explicit method (I2OE) is defined as
follows:

Initial data: For n = 0 define the piecewise constant approximation u0
h through

u0
h|p(x) := u0

p := πp(u0), ∀x ∈ p, p ∈ Th, (2.9)

where πp : C0(p) → P0(p) is a suitable local projection to a constant.

Time step (n − 1) → n: For n > 0 we define un
h through un

p , p ∈ Th as follows
a) Definition of boundary values at time tn: For all xp ∈ ∂Ω we set

un
p := uD(xp, t

n). (2.10)

b) Definition of the interior values at time tn:
i) Inflow/outflow splitting of the fluxes. For all interfaces epq we define

ain,n
pq = max(gin

pq(v, un
h), 0), aout,n−1

pq = min(gout
pq (v, un−1

h ), 0). (2.11)

ii) For all xp ∈ Ω \ ∂Ω we define un
p as the solution of the following linear

system

un
p +

τ

mp

∑

q∈N(p)

ain,n
pq (Rin

p (un
h) − Rin

pq(u
n
h))

= un−1
p +

τ

mp

∑

q∈N(p)

aout,n−1
pq (Rout

p (un−1
h ) − Rout

pq (un−1
h )).(2.12)

Note that (2.11) and (2.12) may result in a non-linear system of equa-
tions for un

h, if the velocity field depends on the solution.
b) Definition of un

h:
We define the piecewise constant approximation un

h as

un
h|p(x) := un

p , ∀x ∈ p, p ∈ Th.

A specific I2OE scheme is obtained by specifying the reconstruction operators Rin
p , Rin

pq,

Rout
p , Rout

pq and the numerical flux function gin
pq, gout

pq . The most natural choice of re-
construction operators are given in (2.6) and (2.2), which are used in all computations
presented in section 4, but more sophisticated choices are possible, cf. [6].

Few additional remarks on the new scheme should be made. Equation (2.3)
has the form of a discretization of a diffusion equation, where v̄pq would represent
the so-called transmissive coefficients (integrated diffusion fluxes divided by distances
between cell centers). In standard forward diffusion all these coefficients are strictly
positive which leads to a weigted averaging of the solution and the implicit schemes
are natural in this case. On the other hand the negative coefficients would correspond
to backward diffusion in which case information propagates outside the cell and ex-
plicit schemes are thus natural. In our case the sign of the coefficients is given by
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the inflow or outflow character of the cell boundary and the inflow-implicit/outflow-
explicit approach is thus natural. This forward-backward diffusion relationship with
the inflow-outflow fluxes comes from [6] where the forward-backward diffusion formu-
lation was used for solving advective motion of level sets in normal direction. Let us
also note that the scaling hd−1 is included in the definition of the numerical fluxes v̄pq.
Thus, after dividing by this scaling, we would have a τ/h term in front of the sums
in (2.8) which is the standard term in advection discretization schemes. It is also
well-known that in the second order schemes for solving advection problems one can
identify the ”forward diffusion” part (like the first order upwinding) and the ”back-
ward diffusion” part (additional sharpening terms comming (sometimes surprisingly)
from the second order Taylor’s expansions [5]), see e.g. the Lax-Wendroff scheme in
Section 3. In our method this splitting arises naturally, gives second order accuracy
and when treating it semi-implicitly it brings stability of the computations. Since the
”backward diffusion” part of the scheme is clearly given, one can also use limiters
straightforwardly if it is necessary to supress some oscillations.

3. Special cases of the I2OE scheme.

3.1. I2OE scheme for 1D variable velocity case. Let us derive the scheme
for the one-dimensional equation

ut + vux = 0, (3.1)

where v = v(x). Again (3.1) is written in the form

ut + (vu)x − uvx = 0, (3.2)

and integrated in pi, the cell with the spatial index i, length h, center point xi, left
border xi− 1

2

and right border xi+ 1

2

. Let us denote vi = v(xi), vi− 1

2

= v(xi− 1

2

),

vi+ 1

2

= v(xi+ 1

2

), un
i the value of the numerical solution at time step n and un

i , un
i− 1

2

the reconstructed values. Using the Newton-Leibniz formula we get
∫

pi

ut dx + vi+ 1

2

ui+ 1

2

− vi− 1

2

ui− 1

2

− ui(vi+ 1

2

− vi− 1

2

) = 0,

which can be rewritten as
∫

pi

ut dx + vi− 1

2

(ui − ui− 1

2

) + (−vi+ 1

2

)(ui − ui+ 1

2

) = 0.

If vi− 1

2

> 0 it represents inflow from the left to the cell and if (−vi+ 1

2

) > 0 it represents
inflow from the right to the cell. If the signs are opposite it represents outflows. Thus,
we define

ain
i− 1

2

= max(vi− 1

2

, 0), aout
i− 1

2

= min(vi− 1

2

, 0),

ain
i+ 1

2

= max(−vi+ 1

2

, 0), aout
i+ 1

2

= min(−vi+ 1

2

, 0).

If we use a finite difference approximation of the time derivative, take inflow implicitly
and outflow explicitly and use the simple reconstructions un

i = un
i , un

i− 1

2

= 1
2 (un

i +

un
i−1) in both time steps, we end up with the basic one-dimensional I2OE scheme:

un
i +

τ

2h
ain

i− 1

2

(un
i − un

i−1) +
τ

2h
ain

i+ 1

2

(un
i − un

i+1) =

un−1
i −

τ

2h

(

aout
i− 1

2

(un−1
i − un−1

i−1 ) + aout
i+ 1

2

(un−1
i − un−1

i+1 )
)

. (3.3)



6 KAROL MIKULA AND MARIO OHLBERGER

The scheme (3.3) requires to solve a tridiagonal system in every time step which is
very fast using the standard tridiagonal solver (also called the Thomas algorithm).
Remark. The I2OE scheme allows to use much larger time steps without losing
L∞-stability than given by a standard CFL condition for explicit schemes, cf. Section
4. However, the ”backward diffusion” (outflow) explicit part is not necessarily always
dominated by the implicit part in the basic form of the scheme (3.3). Some oscillations
may arise e.g. on coarse grids in nonlinear problems or in solutions tending to a shock.
The oscillations are usually not unboundedly growing in time and thus we can leave
the method with oscillations and remove them at the end of computations using e.g.
edge preserving filters. Another approach is to supress any oscillation during the
computation. In our scheme it can be done in two ways. The first approach is to
use an averaging in the reconstruction of un

i , e.g. by setting un
i = 0.5(un

i− 1

2

+ un
i+ 1

2

)

where the simple reconstruction (2.6) or a more complicated reconstruction of un
i− 1

2

and un
i+ 1

2

can be used, cf. FBD schemes from [6].

The second approach is to use standard limiters. The ”backward diffusion” part
on the right hand side of (3.3) can be modified by using e.g. the superbee limiter in
the following straightforward manner. First we compute, see e.g. [5],

θn−1
i− 1

2

=
un−1

i−1 − un−1
i−2

un−1
i − un−1

i−1

, if vi− 1

2

≥ 0, θn−1
i− 1

2

=
un−1

i+1 − un−1
i

un−1
i − un−1

i−1

, if vi− 1

2

< 0

and then we modify (3.3) to its limited version

un
i +

τ

2h
ain

i− 1

2

(un
i − un

i−1) +
τ

2h
ain

i+ 1

2

(un
i − un

i+1) = (3.4)

un−1
i −

τ

2h
(aout

i− 1

2

(un−1
i − un−1

i−1 ) φ(θi− 1

2

) + aout
i+ 1

2

(un−1
i − un−1

i+1 ) φ(θi+ 1

2

))

where the limiter function may be chosen as φ(θ) = max(0, min(1, 2θ), min(2, θ)).
Also other limiter functions φ are possible, leading to a whole class of limited schemes.
Using φ(θ) ≡ 1 gives the basic scheme (3.3).

To complete this section, we present the standard second order Lax-Wendroff
explicit finite difference scheme for variable velocity advection equation (1.1) which is
used for comparisons in Section 4. If we denote v+

i = max(vi, 0), v−i = min(vi, 0), it
can be written as follows:

fn
i− 1

2

= (1 −
τ

h
|vi− 1

2

|) (un
i − un

i−1) φ(θi− 1

2

)n,

un+1
i = un

i −
τ

h

(

v+
i (un

i − un
i−1) + v−i (un

i+1 − un
i )

)

−
τ

2h
|vi|(f

n
i+ 1

2

− fn
i− 1

2

). (3.5)

3.2. I2OE scheme for 1D viscous Burgers’ equation. Let us now consider
the non-linear equation

ut + u ux = σ uxx (3.6)

where the velocity v = u in (3.1) and σ is a (positive) diffusion coefficient. For
the advective part we use the same derivation as in (3.3) but considering the time
dependent velocities

v̄n
i− 1

2

= (un
i + un

i−1)/2, v̄n
i+ 1

2

= (un
i + un

i+1)/2,
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and also time dependent splitting to inflows and outflows

ain,n

i− 1

2

= max(v̄n
i− 1

2

, 0), aout,n

i− 1

2

= min(v̄n
i− 1

2

, 0),

ain,n

i+ 1

2

= max(−v̄n
i+ 1

2

, 0), aout,n

i+ 1

2

= min(−v̄n
i+ 1

2

, 0).

In order to keep second order accuracy of I2OE scheme, the diffusion part is treated
by the Crank-Nicolson approach, and we end up with the following (nonlinear) system

un
i +

τ

2h
(ain,n

i− 1

2

+
σ

h
)(un

i − un
i−1) +

τ

2h
(ain,n

i+ 1

2

+
σ

h
)(un

i − un
i+1) = (3.7)

un−1
i −

τ

2h

(

(aout,n−1

i− 1

2

+
σ

h
)(un−1

i − un−1
i−1 ) + (aout,n−1

i+ 1

2

+
σ

h
)(un−1

i − un−1
i+1 )

)

.

This system is solved iteratively updating ain,n

i− 1

2

and ain,n

i+ 1

2

using subsequent values

of the iterative solution, starting iterations by un−1. It turns out that 5 nonlinear
iterations inside the scheme (3.7) are sufficient to get overall second order precision.
It also means that we have to solve few times a tridiagonal system in every time step
of the I2OE scheme in case of nonlinear advection problems.

3.3. I2OE scheme for motion of level sets in normal direction. In this
case we consider equation (1.1) with the velocity depending on the gradient of solution,
i.e. v = F ∇u

|∇u| . Let us consider uniform grid with finite volume side width h and

define

vpq = Fh
(un−1

p − un−1
pq )

(h/2)|∇un−1
pq |

=
2F (un−1

p − un−1
pq )

|∇un−1
pq |

(3.8)

where |∇un−1
pq | is computed by the diamond-cell strategy as in [6]. Pluging expression

(3.8) for integrated inward fluxes into the basic I2OE scheme (2.8) and comparing
it with the scheme (2.5) in [6] we see that they form exactly the same system. One
can also see the correspondence of the forward diffusion coefficients in [6] and inflow
coefficients in I2OE scheme (2.8) respectively the backward diffusion coefficients in
[6] and outflow coefficients in I2OE scheme (2.8). The FBD and FBD2 schemes
from [6] are obtained using their reconstruction stencils (Definitions 2.3 and 3.1), and
the role of the forward diffusion contribution Df

p respectively the backward diffusion

contribution Db
p in general Definition 2.1 of [6] is played by the total inflow Din

p

respectively the total outflow Dout
p defined by

Din
p =

∑

q∈N(p)

ain
pq, Dout

p =
∑

q∈N(p)

aout
pq . (3.9)

The numerical experiments for such I2OE scheme are thus already presented in [6]
and are not included in the next section.

4. Numerical experiments.

4.1. 1D advection with constant velocity. Let us consider equation (3.1)
with v(x) ≡ 1 in space interval Ω = (−1, 1) and time interval I = (0, T ), T = 1.
Let the initial condition u0 be given by a quadratic polynomial, e.g. by u0(x) =
1− 1

2 (x2−x), cf. Figure 4.1. The exact solution is given by shifting in time the initial
profile, i.e. u(x, t) = u0(x − vt). We solve this problem numerically by the I2OE
method (3.3) using the exact Dirichlet boundary conditions and compare it with the
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Fig. 4.1. Comparison of the exact and numerical solutions in case of quadratic initial function,
I2OE scheme (left), the Lax-Wendroff scheme (middle) and explicit up-wind scheme (right). Here
n = 20, h = 0.1 and τ = h/2, cf. Tables 4.1 for other cases. The green solid curves represent
the initial condition and the exact solution at time T = 1, respectively. The red points in the left
subfigure represent the exact result of the I2OE scheme, the blue points in the middle subfigure
represent also the exact result of the Lax-Wendroff scheme and the blue points and red dashed line
in the right subfigure represent approximate result of the explicit up-wind scheme.

exact solution. We also compute the same problem using the standard Lax-Wendroff
and explicit up-wind schemes [5] for the constant velocity advection equation. In all
comparisons included in this section we used increasing number n of finite volumes
discretizing Ω such that the spatial grid size h = 2/n. We consider different choices
of time steps τ , namely τ = h, τ = h

2 , τ = 2h (or even bigger τ for I2OE scheme)
and corresponding number of time steps NTS. In Table 4.1 we report the errors in
L2(I, L2) norm for all the methods.

As one can see from Table 4.1, the I2OE method is exact for any relation between
space and time step, and one can use extremely large (e.g. just one time step τ = T )
without any deterioration of the numerical result. Here the errors are comparable to
machine precision, they are not exact zeroes because we have to solve a tridiagonal
system in every time step yielding some rounding errors which, however, do not prop-
agate even in a long run. The Lax-Wendroff method, as the second order, is exact
for any quadratic initial function whenever it is stable. This is of course not the case
when τ > h, i.e. for Courant numbers larger than 1. One can see instabilities in the
third and 4th rows of Table 4.1, when τ = 2h and grid is refined. The explicit upwind
scheme is the first order, but exact for any initial data if the relation τ = h is fulfilled,
cf. Table 4.1. Its first order accuracy can be seen for τ = h/2 and oscilations occur
soon for τ > h as documented in Table 4.1.

4.2. 1D advection with variable velocity. Let us consider an example with
non divergence free velocity field v(x) = − sin(x) in (3.1) and let the initial profile be
given by u0(x) = sin(x), Ω = (−1, 1) and I = (0, T ). The exact solution can be derived
by the method of characteristics and is given as u(x, t) = u0(

2
π
arctg(eπttg(πx

2 ))). We
solve this problem numerically for two test cases with T = 1 and T = 2 and we
compare the precision and CPU-time of the I2OE and the Lax-Wendroff schemes. In
the first case the non-limited versions of (3.4) and (3.5) are used while in the second
case the schemes with the superbee limiter are used.

In the shorter time T = 1 the strong peak is already formed but both schemes
are stable with slight overshoot and undershoot in the result by the Lax-Wendroff
scheme on coarser grids. This is however not observed for the I2OE scheme, even for
large time steps several times exceeding standard CFL condition (which is necessary
to be respected by the Lax-Wendroff scheme). In Figure 4.2 we plot solutions of two
schemes to see the visual comparison of numerical and exact result. The next figure
shows a zoom of the solutions in a neighborhood of the origin. Figure 4.4 shows log-log
plots of CPU time versus error of the schemes. We can see superior behavior of the
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Table 4.1

Report on the L2(I, L2) errors of the I2OE method, the Lax Wendroff scheme, and the explicit
up-wind scheme. for various choices of time step.

n τ = h NTS I2OE Lax Wendroff up-wind
error error error

20 0.1 10 1.8 10−16 0.0 0.0
40 0.05 20 3.5 10−16 0.0 0.0
80 0.025 40 7.5 10−16 0.0 0.0
160 0.0125 80 1.4 10−15 0.0 0.0

n τ = h/2 NTS I2OE Lax Wendroff up-wind
20 0.05 20 3.7 10−16 5.1 10−17 1.83 10−2

40 0.025 40 8.0 10−16 7.5 10−17 8.99 10−3

80 0.0125 80 1.1 10−15 8.3 10−17 4.45 10−3

160 0.00625 160 2.4 10−15 9.9 10−17 2.22 10−3

n τ = 2h NTS I2OE Lax Wendroff up-wind
20 0.2 5 2.1 10−16 1.1 10−11 5.02 10−2

40 0.1 10 2.1 10−16 1.4 10−9 0.641
80 0.05 20 3.9 10−16 0.466 3.8 10+3

160 0.025 40 5.7 10−16 1.6 10+16 1.3 10+12

n τ = 10h NTS I2OE Lax Wendroff up-wind
20 1 1 4.3 10−16 − −
40 0.5 2 1.0 10−15 − −
80 0.25 4 1.5 10−15 − −
160 0.125 8 2.5 10−15 − −

160 τ = 40h = 0.5 2 1.7 10−15 − −

160 τ = 80h = 1 1 2.6 10−15 − −

I2OE scheme in this example with considerable speed-up when using larger time steps
up to 4-8 times exceeding the CFL condition. In this case both schemes are second
order accurate which holds true for any time step size of the I2OE scheme. Although
the Lax-Wendroff scheme gives slightly smaller errors on a given grid when respecting
the CFL stability condition (τ = h in this example), we can gain from higher speed of
the I2OE scheme when refining the space discretization and increasing the time step.

In the second experiment, when T = 2, the gradient in the exact solution around
the origin is very steep and both schemes produce oscillations. They can be limited,
e.g. by the super-bee limiter as described in section 3.1. Using the limiter, we can
see very precise capturing of the solution profile outside a small neighborhood of zero
by both schemes, cf. Figures 4.5-4.6. Figure 4.7 again shows an efficiency/precision
comparison of both methods but now when using the limiter. In this case both schemes
are first order accurate which holds true for any time step size of the I2OE method.
From Figure 4.7 one can also see an interesting behaviour of the I2OE scheme in this
example, where no error increase on fixed grid is observed when using time steps up
to 16 times exceeding the CFL condition.

The third set of Figures in this subsection represents another possibility for sta-
bilization of the schemes. We constructed grids gradually refined around the origin.
The number of finite volumes is the same as in the two previous computations (i.e.
n = 160) but the size of finite volumes is increasing from 0 to -1 and 1 as a geo-
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Fig. 4.2. The result of the I2OE scheme (up, red points) and the Lax-Wendroff (LW) metod
(down, blue points) at time T = 1, computed with n = 160 and τ = h. By green line we plot the
exact solution at T and by black line the initial condition u0(x) = sin(x), the velocity in this example
is v(x) = − sin(x).

metrical sequence with quotient 1.07. In Figures 4.8-4.9 we see precise capturing of
the solution with shock at time T = 2 by both schemes (again with slight overshoot
and undershoot in the Lax-Wendroff scheme, similar to the first test case). For the
experiments presented in Figures 4.8-4.9 we used the time step τ = τLWCFL fulfilling
for the Lax-Wendroff scheme standard CFL stability condition on this graded grid.
We note that subsequent uniform refinement of such initially graded grids and halving
the time step gives similar plots of CPU time versus error as presented in Figure 4.4.
Both schemes are second order accurate and the I2OE method can use large time
steps also on this type of grids.
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Fig. 4.3. Zooms of the results of the I2OE scheme (left) and LW scheme (right) from Figure 4.2.
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Fig. 4.4. CPU versus L2(I,L2)-error for the Lax-Wendroff method (blue solid line) and for
the I2OE scheme with CFL=1 (red large dashing, CFL condition is satisfied, i.e. τ = h), CFL=2
(green medium dashing, τ = 2h), CFL=4 (orange small dashing, τ = 4h) and CFL=8 (magenta
tiny dashing, τ = 8h) for the experiment without limiter, T = 1. The plots indicate that I2OE
scheme is about 4 times faster in order to get the same L2(I,L2)-error.



12 KAROL MIKULA AND MARIO OHLBERGER

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Fig. 4.5. The result of the I2OE scheme (up, red points) and the Lax-Wendroff metod (down,
blue points) at time T = 2 using limited version of the schemes, computed with n = 160 and τ = h
(CFL=1). By green line we plot the exact solution at T and by black line the initial condition
u0(x) = sin(x), the velocity v(x) = − sin(x).
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Fig. 4.6. Zooms of the results of the I2OE scheme (left) and LW scheme (right) from Figure 4.5.
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Fig. 4.7. CPU versus L2(I,L2)-error for the Lax-Wendroff method (blue) and for the I2OE
scheme with CFL=1 (red large dashing, CFL condition is satisfied, i.e. τ = h), CFL=2 (green
medium dashing, τ = 2h), CFL=4 (orange small dashing, τ = 4h) and CFL=8 (magenta tiny
dashing, τ = 8h), CFL=16 (cyan large dashing, τ = 16h) and CFL=32 (black medium dashing,
τ = 32h) for the experiment with limiter, T = 2.
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Fig. 4.8. The result of the I2OE scheme (up, red points) and the Lax-Wendroff metod (down,
blue points) at time T = 2, computed on a grid gradually refined around the origin (n = 160,
τ = τCF L) and without limiter.
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Fig. 4.9. Zooms of the results from Figure 4.5, when using the gradually refined grid around
the origin and without limiter, for the I2OE scheme (left) and LW scheme (right).

4.3. 1D viscous Burgers equation. In order to test the scheme in the case of
non-linear advection we have chosen the exact solution

u(x, t) = ur +
1

2
(ul − ur)

(

1 − tanh

(

(ul − ur)(x − st)

4σ

))

, (4.1)

ul > ur, of the viscous Burgers equation (3.6).
We solve the problem (3.6) by the scheme (3.7) on space interval (−0.5, 0.5) and

in time interval (0, 0.48), first with σ = 0.01. Naturally, in order to keep stability of
the scheme, the spatial discretization step h should be proportional to σ. Exploring
the explicit part of the scheme one can find that when τ = 4h2/(2σ − h) we get
no oscillations. Here it means that for h = 0.01 (n = 100) we can use time a step
τ = 0.04. Then one can refine the time and space step in order to check that the
scheme is second order accurate, cf. Table 4.2. The visual comparisons of numerical
and exact results for n = 100 and n = 200 are presented in Figure 4.10. Interestingly,
τ = 0.04 represents a stability constraint for the I2OE scheme in this example for
any spatial grid size, we document that phenomenon by Figure 4.11 where such a
time step was used on the grid with n = 800. These considerations may also lead
to a suitable stabilization of the I2OE scheme by an artificial viscosity in case of
non-viscous Burgers equation, which will be an objective of our further research.
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Table 4.2

Report on the L2(I, L2) errors of I2OE method for the viscous Burgers equation (3.6) with σ = 0.01.

n h τ NTS L2(I, L2) EOC
100 0.01 0.04 12 5.01 10−3

200 0.005 0.02 24 1.22 10−3 2.04
400 0.0025 0.01 48 3.01 10−4 2.02
800 0.00125 0.005 96 7.51 10−5 2.00

-0.4 -0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0

-0.4 -0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0

-0.4 -0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0

-0.4 -0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0

Fig. 4.10. The results of the I2OE scheme in solving viscous Burgers equation (3.6) with
σ = 0.01. Comparison with travelling wave exact solution (4.1) in time t = 0.24 (left) and t = 0.48
(right) for n = 100 (up) and n = 200 (down), τ = 4h.
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Fig. 4.11. The results of the I2OE scheme in solving viscous Burgers equation (3.6) with
σ = 0.01. Comparison with travelling wave exact solution (4.1) in time t = 0.24 (left) and t = 0.48
(right) for n = 800 and τ = 0.04 = 32h. There is no losing of stability in the case of such large
time step.
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Table 4.3

Report on the L2(I, L2) errors of I2OE method for the viscous Burgers equation (3.6) with σ = 0.001.

n h τ NTS L2(I, L2) EOC
250 0.004 0.016 30 2.04 10−2

500 0.002 0.008 60 6.97 10−3 1.57
1000 0.001 0.004 120 1.78 10−3 1.97
2000 0.0005 0.002 240 4.43 10−4 2.00
4000 0.00025 0.001 480 1.105 10−4 2.00
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Fig. 4.12. The results of the I2OE scheme in solving viscous Burgers equation (3.6) with
σ = 0.001. Comparison with travelling wave exact solution (4.1) in time t = 0.24 (left) and t = 0.48
(right) for n = 500 (up, small nonincreasingly propagating oscilations) and n = 1000 (down, results
without any oscillation), τ = 4h.

In the second example we decreased the viscosity ten times and use σ = 0.001.
A similar consideration as above leads to a stable choice of the time step τ = 0.004
for the grid size h = 0.001 (n = 1000). In Table 4.3 we show errors and EOC for
refined and coarsened grids and time step. One can again see that EOC=2 also in
this example when refining the grid. The lower convergence rate in the beginning
is caused by oscillations when the grid size is not sufficiently fine, but as we can see
from Figure 4.12 (top) these oscillations are ”stable”, they do not increase in time and
by refining the spatial resolution they are removed completely. This indicates that
the local grid refinement, as presented in subsection 3.1 in Figures 4.8-4.9, would be
useful also here provided that the finer mesh is moving together with the shock-like
profile.

4.4. 2D advection by a constant velocity vector field and by a rotation.
Let us now consider a second order radially symmetric polynomial initial function in
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Table 4.4

Report on the L2(I, L2) errors of I2OE method for various choices of time step in case of a paraboloid
centered and rotated aroud the origin (4th column) and a general quadratic function transported by
a constant vector field (5th column).

n τ NTS L2(I, L2) L2(I, L2)
20 0.1 10 1.9 10−16 1.4 10−15

40 0.05 20 3.7 10−16 7.1 10−15

80 0.025 40 6.2 10−16 1.1 10−15

160 0.0125 80 8.6 10−16 1.3 10−14

160 0.00625 160 1.0 10−15 1.6 10−14

160 0.05 20 5.7 10−16 3.4 10−14

160 1.0 1 3.2 10−16 2.2 10−14

Table 4.5

Report on the L2(I, L2) errors of I2OE method for a rotating paraboloid centered outside the origin.

n τ NTS L2(I, L2) EOC
20 0.157 20 7.585 10−3

40 0.0785 40 1.772 10−3 2.09
80 0.03925 80 4.247 10−4 2.06
160 0.019625 160 1.035 10−4 2.04

the form of paraboloid u0(x1, x2) = x2
1 + x2

2 − 0.25 and the vector field v(x1, x2) =
(−x2, x1) which rotates the initial function around the origin. Since it is radially
symmetric the exact solution does not change in time. This test problem as well
as all further 2D examples in this section are solved in the spatial domain Ω =
(−1, 1) × (−1, 1) which is split into n × n finite volumes. The time interval (0, T )
is equal (0, 1) for this example and one can see in the 4th column of Table 4.4 that
the exact solution is reproduced numerically up to machine precision for any grid size
and time step size. The system matrix and the right hand side of the I2OE method
is constructed in such way that it does not touch this exact solution.

In the second example we consider the same paraboloid but shifted to (0.5, 0),
i.e. u0(x1, x2) = (x1 − 0.5)2 + x2

2 − 0.25 and the same rotational vector field. The
problem is solved in time interval (0, 3.14) and the method is second order accurate,
as one can see in Table 4.5, where no special attention to a CFL condition was given
when chosing τ and h.

The third example represents transport of the quadratic polynomial u0(x1, x2) =
2x2

1 + x2
2 − x1 + x2 − 0.25 by the constant vector field v(x1, x2) = (−1.0, 0.5). We can

see in the 5the column of Table 4.4 that the numerical solution by the I2OE scheme
is exact for any length of time and space step, the errors are again comparable with
machine precision.

4.5. 2D advection with nontrivial variable velocity. In the next two ex-
amples we test the I2OE scheme chosing the velocity vector field

v(x) = −
x

|x|
, x = (x1, x2).

The exact solution is given by u(x, t) = u0(x + tx
|x|) where u0(x) is an initial profile.

First we consider the initial function u0(x1, x2) = −x2
1 − x2

2 + 1 and solve the
problem in time interval (0, 0.6) on subsequently refined grids. In this case there is
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Table 4.6

Report on the I2OE scheme errors for the variable velocity example (4.2).

n τ NTS L1(I, L1) EOC L1(I,L1) EOC NTS L1(I, L1) EOC

20 0.1 6 6.57 10−3 1.05 10−2 25 1.95 10−1

40 0.05 12 1.48 10−3 2.15 2.41 10−3 2.12 50 8.01 10−2 1.28

80 0.025 24 3.50 10−4 2.08 6.17 10−4 1.96 100 3.73 10−2 1.10

160 0.0125 48 8.52 10−5 2.03 1.76 10−4 1.80 200 1.83 10−2 1.02

320 0.00625 96 2.10 10−5 2.02 5.79 10−5 1.60 400 9.14 10−3 1.00

a point singularity formed in the origin due to subsequent arrival of initial function
values from circular neighborhoods. The numerical method is second order accurate
in this case as one can see in the 4th column of Table 4.6.

More complicated and interesting behaviour is observable when u0(x1, x2) =
−2x2

1 − x2
2 + 1, when different values are comming to the origin at the same time

from different radial characteristics directions. It causes ”hole”-like singularities at
the origin. In this case we can (naturally) see a lower than second order accuracy
in a short run time interval (0, 0.6), the 6th column of Table 4.6, and the first order
precision for long run time interval (0, 2.5), in the 9th column of Table 4.6. In these
cases, due to a strongly singular behavior we measure the errors in the L1(I, L1)
norm. The numerical result at time T = 2.5 for the grid n = 80 is shown in Figure
4.13 left up in the form of graph and right up in the form of isolines. Comparisons
of particular isoline u(x, T ) = −10 of numerical and exact solutions are shown in
the bottom part of the same Figure for various choices of the time step τ . On the
bottom left, the isolines of numerical solution (red line) and exact solution (blue line)
are plotted for τ = 0.025. Chosing 10 times bigger time step τ = 0.25 we do not see
visually (bottom middle) any error increase and the CPU was 4 times shorter (in fact,
the error was 4.00 10−2 in comparison with 3.73 10−2 obtained with τ = 0.025, cf.
Table 4.6). Interestingly, we can use an extremely large (just one) time step τ = 2.5
without any additional stabilization and obtain the result shown on the bottom right
which visually only slightly differs from the exact solution and was obtained in 20
times faster CPU.

5. Conclusions. In this article we introduced a new scheme for solving variable
velocity advection equations. By our best knowledge the inflow-implicit/outflow-
explicit splitting is a new original approach and we have shown that it brings interest-
ing results. There is only a weak stability constraint when solving general (non-linear)
advection and advection-diffusion equations. The method is second order accurate
and can be used in any spatial dimension and on unstructured Voronoi-like grids. We
presented the scheme in solving 1D and 2D advection equations with divergence and
non-divergence free velocities and in solving the viscous Burgers equation. A solution
of the level-set problems for motion in normal direction is also a special case of the
scheme and was presented in [6].

Together with its interesting behavior, this new semi-implicit approach brings new
open questions in solving advection equations which are worth to be studied in the near
future. The goal of this paper was to introduce the inflow-implicit/outflow-explicit
splitting idea and to outline its basic properties and first computational results.
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Fig. 4.13. The graph of numerical solution at T = 2.5 for experiment with nontrivial velocity
(4.2), left up. The comparison of isolines of the numerical solution (red solid lines) and exact
solution (blue dashed lines), right up. In the bottom raw we present comparison of particular exact
and numerical isoline of the result computed with time step τ equals to 0.025 (left), 0.25 (middle)
and 2.5 (right).
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