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INFLOW-IMPLICIT/OUTFLOW-EXPLICIT FINITE VOLUME
METHODS FOR SOLVING ADVECTION EQUATIONS

KAROL MIKULA ∗, MARIO OHLBERGER † , AND JOZEF URBÁN ‡

Abstract. We introduce a new class of methods for solving non-stationary advection equations.
The new methods are based on finite volume space discretizations and a semi-implicit discretization in
time. Its basic idea is that outflow from a cell is treated explicitly while inflow is treated implicitly.
This is natural, since we know what is outflowing from a cell at the old time step but we leave
the method to resolve a system of equations determined by the inflows to a cell to obtain the
solution values at the new time step. The matrix of the system in our inflow-implicit/outflow-explicit
(I2OE) method is determined by the inflow fluxes which results in a M-matrix yielding favourable
stability properties for the scheme. Since the explicit (outflow) part is not always dominated by the
implicit (inflow) part and thus some oscillations can occur, we build a stabilization based on the
upstream weighted averages with coefficients determined by the flux-corrected transport approach
[2, 19] yielding high resolution versions, S1I2OE and S2I2OE, of the basic scheme. We prove that
our new method is exact for any choice of a discrete time step on uniform rectangular grids in the
case of constant velocity transport of quadratic functions in any dimension. We also show its formal
second order accuracy in space and time for 1D advection problems with variable velocity. Although
designed for non-divergence free velocity fields, we show that the basic I2OE scheme is locally mass
conservative in case of divergence free velocity. Finally, we show L2-stability for divergence free
velocity in 1D on periodic domains independent of the choice of the time step, and L∞-stability for
the stabilized high resolution variants of the scheme. Numerical comparisons with the purely explicit
schemes like the fully explicit up-wind and the Lax-Wendroff schemes were discussed in [13] and [14]
where the basic I2OE was originally introduced. There it has been shown that the new scheme has
good properties with respect to a balance of precision and CPU time related to a possible choice of
larger time steps in our scheme. In this contribution we compare the new scheme and its stabilized
variants with other widely used implicit schemes, like the fully implicit up-wind and higher-order
Gear’s up-wind methods. Also in this comparison our new schemes show best behaviour with respect
to stability and precision of computations for time steps several times exceeding the CFL stability
condition. Our new stabilized methods are L∞ stable, second order accurate for any smooth solution
and with accuracy of order 2/3 for solutions with moving discontinuities. This is opposite to implicit
up-wind schemes which have accuracy order 1/2 only. All these properties hold for any choice of
time step thus making our new method attractive for practical applications.

Key words. advection equations, variable velocity, nonlinear conservation laws, level-set method,
finite volume method, semi-implicit scheme.
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1. Introduction. In this article we present the inflow-implicit/outflow-explicit
(I2OE) method, and its stabilized (S1I2OE, S2I2OE) high-resolution variants, for
solving general time dependent variable velocity advection equations of the form

ut + v · ∇u = 0 (1.1)

where u ∈ Rd × [0, T ] is the unknown function and v is a vector field which may vary
in space, e.g. v = v(x, u,∇u). Variable velocity vector fields arise in many appli-
cations, e.g. in transport equations with non-divergence free velocities or nonlinear
conservation laws [11], in the Eulerian level set methods for evolving fronts [18], in a
tangentially stabilized Lagrangean methods for evolving interfaces [16, 1] or in other
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applications like an image segmentation by active contours in a form of generalized
subjective surface method [4, 9, 17, 15, 20, 3]. In such case of image segmentation,
the spatially varying vector field v(x) depends on the gradient of the image inten-
sity function. For motion of level sets in normal direction with speed F (x) we have
v = F (x) ∇u

|∇u| [18, 12]. In this case the basic I2OE method coincides with the semi-

implicit forward-backward diffusion approach recently presented by the authors in
[12]. In the context of level set equations the originality of the approach in [12] con-
sists in rewriting the level set equation for motion in normal direction in terms of an
equation containing the forward and backward diffusion. Then naturaly, the forward
diffusion dominated parts of the model are treated implicitly, while the backward dif-
fusion dominated parts are treated explicitly. The resulting scheme is a semi-implicit
second order numerical scheme that allows large time steps. Hence, our new I2OE
method presented in [13, 14] and in this paper can be seen as a generalization of the
approach from [12] to arbitrary variable velocity advection equations.

The basic idea of our new I2OE method is that outflow from a cell is treated
explicitly while inflow is treated implicitly. Such an approach is natural, since we
know what is flowing out from a cell at an old time step n − 1 but we leave the
method to resolve a system of equations determined by the inflows to obtain a new
value in the cell at time step n. Since the matrix of the system is determined by
the inflow fluxes, it is a M-matrix and thus it has favourable solvability and stability
properties. It is worth to note that a similar idea to construct the M-matrix in the
implicit part has also been introduced by Kuzmin and his co-authors by using a purely
algebraic approach in the context of solving advection equations by the Galerkin finite
element method combined usually with the Crank-Nicolson time stepping, see [10] for
the latest state-of-the-art and related references.

Since the explicit (outflow) part is not always dominated by the implicit (inflow)
part, some oscillations can occur in the basic I2OE scheme. One way is to leave them
propagate and perform some postprocessing of the numerical solution, or another
way is to incorporate a stabilization mechanism into the scheme itself. As it was
shown in [12], a special local averaging was sufficient to stabilize the forward-backward
diffusion approach in order to get stable second order solution in case of smooth level
set interface motion in normal direction, but in general, such local averaging does
not guarrantee fulfilling sharply the discrete minimum-maximum principle. In this
paper we build a new stabilization of the basic I2OE scheme based on the so-called
flux-corrected transport approach [2, 19] yielding L∞ stable high resolution variants
of the scheme.

We also present theoretical results for our new scheme, namely, its exactness for
any choice of time step on uniform rectangular grids in the case of constant velocity
transport of quadratic functions in any dimension and its formal second order accuracy
in space and time for 1D advection problems with variable velocity. Although designed
for non-divergence free velocity fields, we show that the basic I2OE scheme is locally
mass conservative in case of divergence free velocity. Finally, we show L2-stability for
divergence free velocity in 1D on periodic domains independent of the choice of the
time step, and L∞-stability for the stabilized high resolution variants of the scheme.

Numerical comparisons with the fully explicit schemes like the fully explicit up-
wind and the (limited) Lax-Wendroff method were discussed in [13] and [14]. There,
the positive properties of the new scheme have been shown with respect to a balance of
precision and CPU time. Thus, in this paper we concentrate mainly on a comparison
of the new I2OE scheme and its stabilized variants with the well-known and widely
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used implicit methods for solving advection equations. We show superior behaviour
of our new schemes with respect to stability and precision of computations for time
steps largely exceeding CFL stability condition in comparison with the fully implicit
up-wind and higher-order Gear’s up-wind methods. Our new schemes are L∞ stable,
second order accurate for smooth solutions and with accuracy of order 2/3 for solutions
with moving discontinuities, opposite to the implicit up-wind schemes which have
accuracy order only 1/2 in the discontinuous case. Moreover, all these properties hold
for any choice of time step and thus make our new methods attractive from the point
of view of practical applications where no concern on CFL restrictions is preferable.

The rest of the article is organized as follows. In Section 2 we introduce the
general formulation of the basic and stabilized I2OE schemes on unstructured grids
in several space dimensions. In Section 3, for clarity and also due to the reasons of
our theoretical study, we write a 1D version of the I2OE scheme and also its higher
dimensional form in the case of advective motion of level sets in normal direction
in order to clearly see its relation to the forward-backward diffusion approach from
[12]. In Section 4 we present theoretical results for our new schemes and in Section 5
we present several representative 1D and higher dimensional numerical experiments
demonstrating interesting properties of the method.

2. The inflow-implicit/outflow-explicit scheme. Let us consider equation
(1.1) in a bounded polygonal domain Ω ⊂ Rd, d = 2, 3, and time interval [0, T ]. Let
Qh denote a primal polygonal partition of Ω. Let p be a finite volume (cell) of a
corresponding dual Voronoi tessellation Th with measure mp and let epq be an edge
between p and q, q ∈ N(p), where N(p) is a set of neighbouring finite volumes (i.e.
p̄∩ q̄ has nonzero (d−1)-dimensional measure). Let us note that the Voronoi property
is introduced just due to a formulation of the scheme for advective motion of level
sets in normal direction, presented in Section 3.2, where approximation of the solution
gradient is necessary. Let cpq be the length of epq and npq be the unit outer normal
vector to epq with respect to p. We shall consider Th to be an admissible mesh in the
sense of [5], i.e., there exists a representative point xp in the interior of every finite
volume p such that the joining line between xp and xq, q ∈ N(p), is orthogonal to
epq. We denote by xpq the intersection of this line segment with the edge epq. The
length of this line segment is denoted by dpq, i.e. dpq := |xq − xp|. As we have build
Th based on the primal mesh Qh, we assume that the points xp coincide with the
vertices of Qh. Let us denote by up a (constant) value of the solution in a finite
volume p computed by the scheme. For the solution representation inside the finite
volume p we either use this value up or a reconstructed (but again constant) value
denoted by up. A constant value of the solution assigned to the edge epq (given again
by a reconstruction) is denoted by upq.

In order to motivate our new scheme, let us rewrite (1.1) in the formally equivalent
form with conserving and non-conserving parts [7, 8]

ut +∇ · (vu)− u∇ · v = 0. (2.1)

Integrating (2.1) over a finite volume p then yields∫
p

ut dx+

∫
p

∇ · (vu) dx−
∫
p

u∇ · v dx = 0.

Using a constant representation of the solution on the cell p denoted by up and
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applying the divergence theorem we get∫
p

ut dx+
∑

q∈N(p)

∫
epq

uv · npq ds− up

∑
q∈N(p)

∫
epq

v · npq ds = 0.

Denoting by upq another representative constant value of the solution on the interface
epq, we further get∫

p

ut dx+
∑

q∈N(p)

upq

∫
epq

v · npq ds− up

∑
q∈N(p)

∫
epq

v · npq ds = 0.

If we denote the integrated fluxes in the inward normal direction to the finite volume
p by

v̄pq = −
∫
epq

v · npq ds, (2.2)

we finally arrive at the balance law∫
p

ut dx+
∑

q∈N(p)

v̄pq(up − upq) = 0. (2.3)

The major new idea of our scheme is to split the resulting fluxes into the corresponding
inflow and outflow parts to the cell p. This is done by defining

ainpq = max(v̄pq, 0), aoutpq = min(v̄pq, 0). (2.4)

We then approximate ut by the time difference
un
p−un−1

p

τ , where τ is a uniform time
step size, and take the inflow parts implicitly and the outflow parts explicitly in (2.3).
This yields the following system of equations for the finite volume solution un

p , p ∈ Th
at the n-th discrete time step

un
p +

τ

mp

∑
q∈N(p)

ainpq(u
n
p − un

pq) = un−1
p − τ

mp

∑
q∈N(p)

aoutpq (un−1
p − un−1

pq ) (2.5)

for all p ∈ Th.
The most natural choice for reconstructions um

p and um
pq, m = n, n− 1 is given by

um
p = um

p , um
pq =

1

2
(um

p + um
q ) (2.6)

and leads to the basic I2OE scheme

un
p +

τ

2mp

∑
q∈N(p)

ainpq(u
n
p − un

q ) = un−1
p − τ

2mp

∑
q∈N(p)

aoutpq (un−1
p − un−1

q ) (2.7)

which for a uniform squared grids in two space dimensions with a finite volume side
width h reduces to the following simple system

un
p +

τ

2h2

∑
q∈N(p)

ainpq(u
n
p − un

q ) = un−1
p − τ

2h2

∑
q∈N(p)

aoutpq (un−1
p − un−1

q ). (2.8)
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Before proceeding further let us remark that, the equation (2.3) has the form of a dis-
cretization of a diffusion equation, where v̄pq would represent the so-called transmis-
sive coefficients (integrated diffusion fluxes divided by distances between cell centers).
In a standard forward diffusion all these coefficients are strictly positive which leads to
a weigted averaging of the solution and the implicit schemes are natural in this case.
On the other hand the negative coefficients would correspond to a backward diffusion
in which case information propagates outside the cell and explicit schemes are thus
natural. In our case the sign of the coefficients is given by the inflow or outflow char-
acter of the cell boundary and the inflow-implicit/outflow-explicit approach is thus
natural. This forward-backward diffusion relationship with the inflow-outflow fluxes is
inspired by [12] where the forward-backward diffusion formulation was used for solving
advective motion of level sets in normal direction. Let us also note that a term hd−1

is included in the definition of the numerical fluxes v̄pq and a term hd in definition of
mp. Thus, taking this into account we see that a τ/h term is in front of the sums in
(2.8) which is standard in advection discretization schemes. It is also well-known that
in any second order scheme for solving advection equations one can identify the ”for-
ward diffusion” part (like the first order up-winding) and the ”backward diffusion”
part (additional sharpening terms comming (sometimes surprisingly) from the sec-
ond order Taylor’s expansions), a classical example is e.g. the Lax-Wendroff scheme
[11]. In our method this splitting arises naturally and, as we will see theoretically
in Section 4, it gives the second order accuracy. Since the ”backward diffusion” part
of the scheme is clearly given, its stabilization can be built straightforwardly if it is
necessary to supress some (not unboundedly growing) oscillations.

The basic scheme (2.7) allows to use any time step size τ and obtain a solution of
the linear system given by the left hand implicit side. This follows from the M-matrix
property of the system and we call it the solvability property of the scheme. However,
the right hand explicit side may cause oscillations especially in case of singularities
or large gradients in a solution. These oscillations do not grow unboundedly in time,
but if one prefers to remove them we present here a strategy how to make our method
unconditionally stable in the L∞ sense and keep its second order accuracy for smooth
solutions. The stabilization approach is based on an adaptive upstream weighted
choice for the averages um

pq,m = n, n − 1 at the cell interfaces. Instead of taking

um
pq = 1

2 (u
m
p + um

q ) as suggested for the basic scheme, we relax (2.6) to the choice

um
p = um

p , um
pq = (1− θmpq)u

m
p + θmpqu

m
q (2.9)

for some weighting parameter θmpq ∈ [0, 1] that we will choose locally in such a way
that the resulting scheme becomes unconditionally stable in L∞. With this relaxation
we recover the basic scheme for θnpq = θn−1

pq = 1/2, while θmpq = 1 corresponds to full
up-wind for inflows (and full down-wind for outflows) and θmpq = 0 to full down-wind
for inflows (and full up-wind for outflows). Since in our scheme the inflows appear
in the implicit part, i.e. with index m = n, and outflows appear in the explicit part,
i.e. for m = n − 1, we will use notation θin,npq for inflow relaxation parameters and
θout,n−1
pq for outflow relaxation parameters. Plugging reconstructions (2.9) in both
inflow-implicit and outflow-explicit parts of (2.5) we get

un
p +

τ

mp

∑
q∈N(p)

ainpq
(
un
p −

((
1− θin,npq )un

p + θin,npq un
q

)))
= (2.10)

un−1
p − τ

mp

∑
q∈N(p)

aoutpq

(
un−1
p −

((
1− θout,n−1

pq )un−1
p + θout,n−1

pq un−1
q

)))
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from where we obtain the general form of a stabilized I2OE scheme

un
p +

τ

mp

∑
q∈N(p)

θin,npq ainpq(u
n
p − un

q ) = un−1
p − τ

mp

∑
q∈N(p)

θout,n−1
pq aoutpq (un−1

p − un−1
q )(2.11)

where θout,n−1
pq , θin,npq will be chosen using ideas of the so-called flux-corrected transport

(FCT) methodology [2, 19]. The stabilized I2OE scheme can be understood as a high-
resolution variant of the basic I2OE scheme which may locally decrease the outflow
contributions, and, when not considering the outflows at all, it corresponds to a
fully implicit up-wind method, where only inflows are considered. The local choice
of the relaxation parameters will be done in such a way, that the stabilized I2OE
scheme reduces to the basic I2OE in case of well resolved smooth solutions (and
thus it is second order in smooth case), whereas it switches locally towards a fully
implicit discretization at grid points where the minimum-maximum principle would
be violated. We show by numerical computations that unlike the classical first order
implicit up-wind method which has for linearly advected solutions with discontinuities
convergence order 1/2, the new method has in such cases convergence order 2/3 for
any choice of time step.

As noticed above, the choice of θ-stabilization coefficients follows the FCT ap-
proach. In our semi-implicit method, the only part which may cause the violation of
the global minimum-maximum principle is the right hand explicit side of 2.11. Thus,
we require that the relaxation parameters θout,n−1

pq are chosen in such a way that the
following two conditions are fulfilled locally in every finite volume p

un−1
p − τ

mp

∑
q∈N(p)

θout,n−1
pq aoutpq (un−1

p − un−1
q ) ≤ umax,n−1

p , (2.12)

un−1
p − τ

mp

∑
q∈N(p)

θout,n−1
pq aoutpq (un−1

p − un−1
q ) ≥ umin,n−1

p . (2.13)

Here, umax,n−1
p and umin,n−1

p denote a maximum, respectively minimum in a local
neighbourhood of p at time step n−1. A particular choice of the parameters θout,n−1

pq

is determined as follows. Let us denote by nout the number of nonzero outflows from
the finite volume p, i.e.

nout = −
∑

q∈N(p)

sign(aoutpq ).

For all q ∈ N(p) where aoutpq < 0 and (un−1
p − un−1

q ) ̸= 0 we require that the following
two conditions are satisfied

1

nout
un−1
p − τ

mp
θout,n−1
pq aoutpq (un−1

p − un−1
q ) ≤ 1

nout
umax,n−1
p , (2.14)

1

nout
un−1
p − τ

mp
θout,n−1
pq aoutpq (un−1

p − un−1
q ) ≥ 1

nout
umin,n−1
p . (2.15)

It is clear that by summation of the conditions (2.14) over all q ∈ N(p) we get (2.12)
and similarly by summation of (2.15) we get (2.13). The conditions (2.14), (2.15) are
not necessarily optimal ones, but they are sufficient to get (2.12) and (2.13). Since
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on the right hand side of (2.12), (2.13) there are local minima and maxima which are
inside the range of the global minimum and maximum at the time step n− 1, due to
the M-matrix property of the system on the left hand side of (2.11), we have that the
overall solution in the new time step fulfills the global minimum-maximum principle.
From (2.14) and (2.15) we get two conditions for θout,n−1

pq

θout,n−1
pq ≤

1
nout (u

max,n−1
p − un−1

p )

− τ
mp

aoutpq (un−1
p − un−1

q )
, if (un−1

p − un−1
q ) > 0, (2.16)

θout,n−1
pq ≤

1
nout (u

min,n−1
p − un−1

p )

− τ
mp

aoutpq (un−1
p − un−1

q )
, if (un−1

p − un−1
q ) < 0 (2.17)

from which we define

θout,n−1
pq = Min

(
1

2
,

mp(u
max,n−1
p − un−1

p )

τnoutaoutpq (un−1
q − un−1

p )

)
if aoutpq (un−1

q − un−1
p ) > 0 (2.18)

θout,n−1
pq = Min

(
1

2
,

mp(u
min,n−1
p − un−1

p )

τnoutaoutpq (un−1
q − un−1

p )

)
if aoutpq (un−1

q − un−1
p ) < 0. (2.19)

If aoutpq = 0 or un−1
p − un−1

q = 0, θout,n−1
pq could be theoretically arbitrary, but we set

θout,n−1
pq =

1

2
, if aoutpq (un−1

q − un−1
p ) = 0. (2.20)

Finally, it remains to define the relaxation parameters θin,npq for the implicit inflow

parts. If θin,npq is considered for an inflow face to volume p, it is natural that θout,n−1
qp

is associated with an outflow face of the neighboring cell q. Thus, a natural choice
that makes the reconstruction un

pq at the interface epq unique, is

θin,npq = 1− θout,n−1
qp (2.21)

where θout,n−1
qp is defined through (2.18)-(2.20). The scheme (2.11) with the choice

of relaxation parameters given by (2.18)-(2.21) represent our first stabilized S1I2OE
scheme. Let us note that our definitions of relaxation parameters ensure that for
outflow faces we always have θout,n−1

pq ∈ [0, 1/2] and for inflow faces θin,npq ∈ [1/2, 1].
Thus, the relaxation may only shift the reconstruction at cell interfaces towards an
upstream average. The conditions (2.18)-(2.20) guarantee L∞ stability, while condi-
tion (2.21) keeps the scheme consistent and ensures uniqueness of the cell interface
reconstructions.

Performing numerical experiments, we have found and built also a second ap-
proach to stabilization that results in our S2I2OE scheme which is given by a two-step
procedure in every discrete time step:

1st step: first use the basic I2OE scheme, i.e. solve (2.11) with
θin,npq = θout,n−1

pq = 1/2.
2nd step: if un

p > umax,n−1
p or un

p < umin,n−1
p , we redefine θout,n−1

pq

and θin,nqp according to (2.18)-(2.21).

(2.22)
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The usage of the S2I2OE scheme is motivated by the fact that conditions (2.12),
(2.13) may be too strong. Although they are not fulfilled sharply, the implicit part
can keep the numerical solution in the minimum-maximum range. Thus, we mark the
points where the minimum-maximum principle is violated when applying the basic
I2OE scheme and only in those points we redefine the relaxation parameters. On the
first view, this approach seems slower concerning CPU than S1I2OE, because we have
to solve the linear system twice. But, on the other hand, the redifinition of relaxation
parameters, which takes its own CPU time, occurs only in few points while in S1I2OE
it is done in every grid point. Our computational experience is that S2I2OE scheme
is only slightly (like 10-20 %) slower than S1I2OE scheme while, especially in case of
smooth solutions, it increases precision significantly.

Further useful modification of both stabilized schemes is that we can consider
umax,n−1
p and umin,n−1

p in (2.12), (2.13) and subsequent formulas taking into account a
local quadratic reconstruction of the numerical solution at time step n−1. This can be
useful, because the maximum (minimum) does not necessarily transfer to a grid point
in a consecutive time step. The quadratic reconstruction allows the reconstructed
numerical solution to be slightly higher (lower) than just values at grid points and
thus keeps overall maximum (minimum) with higher order accuracy. In particular, it
makes our stabilized S2I2OE method exact for an advection of a quadratic function
by a constant velocity for any choice of time step, similarly to such property of the
basic I2OE scheme, because the θ coefficients are not redefined when using quadratic
reconstruction.

We summarize our new inflow-implicit/outflow-explicit methods in the following
general definition.

Definition 2.1 (I2OE schemes) Let initial data u0 ∈ C0(Ω) and Dirichlet bound-
ary data uD ∈ C0(∂Ω× [0, T ]) be given. Furthermore, let Rp and Rpq denote suitable
local reconstructions of the solution on the cell p and the interface epq, respectively
and gpq denote a suitable numerical flux that approximates −

∫
epq

v · npq ds. These

operators may differ depending on the inflow or outflow character of the cell interface
(such dependence will be denoted by superscripts in and out).

Then the general inflow-implicit/ outflow-explicit method (I2OE) is defined as
follows:

Initial data: For n = 0 define the piecewise constant approximation u0
h through

u0
h|p(x) := u0

p := πp(u0), ∀x ∈ p, p ∈ Th, (2.23)

where πp : C0(p) → P0(p) is a suitable local projection to a constant.

Time step (n− 1) → n: For n > 0 we define un
h through un

p , p ∈ Th as follows

a) Definition of boundary values at time tn: For all xp ∈ ∂Ω we set

un
p := uD(xp, t

n). (2.24)

b) Definition of the interior values at time tn:
i) Inflow/outflow splitting of the fluxes. For all interfaces epq we define

ain,npq = max(ginpq(v, u
n
h), 0), aout,n−1

pq = min(goutpq (v, un−1
h ), 0). (2.25)
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ii) For all xp ∈ Ω \ ∂Ω we define un
p as the solution of the following linear

system

un
p +

τ

mp

∑
q∈N(p)

ain,npq (Rin
p (un

h)−Rin
pq(u

n
h))

= un−1
p +

τ

mp

∑
q∈N(p)x

aout,n−1
pq (Rout

p (un−1
h )−Rout

pq (un−1
h )).(2.26)

Note that (2.25) and (2.26) may result in a non-linear system of equa-
tions for un

h, if the velocity field depends on the solution.
b) Definition of un

h:
We define the piecewise constant approximation un

h as

un
h|p(x) := un

p , ∀x ∈ p, p ∈ Th.

A specific I2OE scheme is obtained by specifying the reconstruction operatorsRin
p , Rin

pq,

Rout
p , Rout

pq and the numerical flux function ginpq , g
out
pq . The most natural choice of recon-

struction operators are given in (2.6) and (2.2) and lead to our basic I2OE scheme.
More sophisticated choices are given by (2.9) with stabilization parameters chosen
from (2.18)–(2.21), or from (2.22) and lead to the S1I2OE, and S2I2OE schemes,
respectively. These schemes are used in all computations presented in Section 5.
Further particular choices of reconstructions are possible, e.g. a local averaging, as
presented in the context of motion of level sets in normal direction in [12].

3. Special cases of the I2OE scheme. For clearer exposition and to prepare
for the theoretically analysis in Section 4, we now detail the method in two particular
cases, for one dimensional transport with variable velocity, and for motion of level
sets in normal direction.

3.1. I2OE scheme for 1D variable velocity case. Let us derive the scheme
for the one-dimensional equation

ut + vux = 0, (3.1)

where v = v(x). Again (3.1) is written in the form

ut + (vu)x − uvx = 0, (3.2)

and integrated in pi, the cell with the spatial index i, length h, center point xi, left
border xi− 1

2
and right border xi+ 1

2
. Let us denote vi = v(xi), vi− 1

2
= v(xi− 1

2
),

vi+ 1
2
= v(xi+ 1

2
), un

i the value of the numerical solution at time step n and un
i , u

n
i− 1

2

the reconstructed values. Using the Newton-Leibniz formula we get∫
pi

ut dx+ vi+ 1
2
ui+ 1

2
− vi− 1

2
ui− 1

2
− ui(vi+ 1

2
− vi− 1

2
) = 0,

which can be rewritten as∫
pi

ut dx+ vi− 1
2
(ui − ui− 1

2
) + (−vi+ 1

2
)(ui − ui+ 1

2
) = 0.

If vi− 1
2
> 0 it represents inflow from the left to the cell and if (−vi+ 1

2
) > 0 it represents

inflow from the right to the cell. If the signs are opposite it represents outflows. Thus,
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we define

aini− 1
2
= max(vi− 1

2
, 0), aouti− 1

2
= min(vi− 1

2
, 0),

aini+ 1
2
= max(−vi+ 1

2
, 0), aouti+ 1

2
= min(−vi+ 1

2
, 0).

If we use a finite difference approximation of the time derivative, take inflow implicitly
and outflow explicitly and use the simple reconstructions un

i = un
i , u

n
i− 1

2
= 1

2 (u
n
i +

un
i−1) in both time steps, we end up with the basic one-dimensional I2OE scheme:

un
i +

τ

2h
aini− 1

2
(un

i − un
i−1) +

τ

2h
aini+ 1

2
(un

i − un
i+1) =

un−1
i − τ

2h

(
aouti− 1

2
(un−1

i − un−1
i−1 ) + aouti+ 1

2
(un−1

i − un−1
i+1 )

)
. (3.3)

The scheme (3.3) requires to solve a tridiagonal system in every time step which is
very fast using the standard tridiagonal solver (also called the Thomas algorithm).
The stabilized one-dimensional S1I2OE and S2I2OE schemes are obtained by (2.11)
with the formulas (2.18)-(2.21) and (2.18)-(2.22), respectively.

3.2. I2OE scheme for motion of level sets in normal direction. In the
case of motion of level sets in normal direction we consider equation (1.1) with velocity
depending on the gradient of solution, i.e. v = F ∇u

|∇u| . Let us consider cartesian grids

in two space dimensions with finite volume side width h and define

vpq = Fh
(un−1

p − un−1
pq )

(h/2)|∇un−1
pq |

=
2F (un−1

p − un−1
pq )

|∇un−1
pq |

(3.4)

where |∇un−1
pq | is computed by the diamond-cell strategy as detailed in [12]. Pluging

expression (3.4) for integrated inward fluxes into the basic I2OE scheme (2.8) and
comparing it with the scheme (2.5) in [12] we see that they form exactly the same
system. One can also see the correspondence of the forward diffusion coefficients in [12]
and inflow coefficients in the I2OE scheme (2.8), respectively the backward diffusion
coefficients in [12] and outflow coefficients in the I2OE scheme (2.8). The FBD and
FBD2 schemes from [12] are obtained using their reconstruction stencils (Definitions
2.3 and 3.1), and the role of the forward diffusion contribution Df

p respectively the

backward diffusion contribution Db
p in general Definition 2.1 of [12] is played by the

total inflow Din
p respectively the total outflow Dout

p defined by

Din
p =

∑
q∈N(p)

ainpq, Dout
p =

∑
q∈N(p)

aoutpq . (3.5)

Numerical experiments for such an I2OE scheme are presented in [12] and also the
results of the new stabilized versions of the basic scheme presented in this paper in
Section 5.3 are similar to those.

4. Analysis of the scheme. The aim of this section is to give some theoretical
backup for the I2OE schemes. In particular we address local mass conservation,
exactness for transport of quadratic polynomials with constant velocity with arbitrary
time steps, formal order of consistency, L∞(L2) stability, as well as L∞(L∞) stability.
As we first look at local mass conservation, let us first recall that such property is
automatically satisfied for the general class of finite volume schemes in conservation
form, defined as follows.
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Definition 4.1 (Finite volume scheme in conservation form) Let Θ ∈ [0, 1].
A finite volume scheme is in conservation form if it can be written in the form

un
p − un−1

p = − τ

mp

(
Θ
∑

q∈N(p)

gnpq + (1−Θ)
∑

q∈N(p)

gn−1
pq

)
.

where the fluxes need to be conservative in the sense that gpq = −gqp. In 1D on
uniform partitions this reduces to

un
i − un−1

i = − τ

h

(
Θ(gni+1/2 − gni−1/2) + (1−Θ)(gn−1

i+1/2 − gn−1
i−1/2)

)
.

Lemma 4.2 (Local conservation property) For divergence free velocity field, the
basic I2OE is locally mass conservative and can be written in conservation form with
numerical fluxes at inflow boundaries (with respect to cell p) gpq := ginpq := 1

2 (g
in,n
pq +

gin,n−1
pq ) with gin,npq := −ainpqu

n
q , g

in,n−1
pq := −ainpqu

n−1
p and at outflow boundaries gpq :=

goutpq := 1
2 (g

out,n
pq + gout,n−1

pq ) and gout,npq := −aoutpq un
p , g

out,n−1
pq := −aoutpq un−1

q . The
conservation property holds, as we have with these definitions

ginpq = −goutqp , or respectively goutpq = −ginqp.

In the simple 1D case with constant positive velocity, the basic I2OE scheme thus reads

un
i − un−1

i = − τ

h

( v

2
(un

i + un−1
i+1 )︸ ︷︷ ︸

=:gi+1/2

− v

2
(un

i−1 + un−1
i ))︸ ︷︷ ︸

=:gi−1/2

)
.

It is locally conservative with Θ := 1
2 and the following definition of the fluxes

gni+1/2 := vun
i , g

n−1
i+1/2 := vun−1

i+1 , g
n
i−1/2 := vun

i−1, g
n−1
i−1/2 := vun−1

i .

Proof. The divergence free velocity field implies in our discrete setting that we
have for a cell p ∑

q∈N(p)

ainpq +
∑

q∈N(p)

aoutpq = 0.

This implies a rewriting of the I2OE scheme as follows

un
p = un−1

p − τ

2mp

∑
q∈N(p)

ainpq(u
n
p − un

q )−
τ

2mp

∑
q∈N(p)

aoutpq (un−1
p − un−1

q )

= un−1
p − τ

2mp

∑
q∈N(p)

ainpqu
n
p +

τ

2mp

∑
q∈N(p)

ainpqu
n
q

− τ

2mp

∑
q∈N(p)

aoutpq un−1
p +

τ

2mp

∑
q∈N(p)

aoutpq un−1
q

= un−1
p +

τ

2mp

∑
q∈N(p)

aoutpq un
p +

τ

2mp

∑
q∈N(p)

ainpqu
n
q

+
τ

2mp

∑
q∈N(p)

ainpqu
n−1
p +

τ

2mp

∑
q∈N(p)

aoutpq un−1
q

= un−1
p +

τ

mp

∑
q∈N(p)

ainpq
1

2
(un

q + un−1
p )︸ ︷︷ ︸

=−gin
pq

+
τ

mp

∑
q∈N(p)

aoutpq

1

2
(un

p + un−1
q )︸ ︷︷ ︸

=−gout
pq

.
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Let us consider that epq is an inflow boundary with respect to p, and hence an outflow
boundary for q. With ainpq = −aoutqp , we then obtain

gpq + gqp = ginpq + goutqp = −ainpq
1

2
(un

q + un−1
p )− aoutqp︸︷︷︸

=−ain
pq

1

2
(un

q + un−1
p ) = 0.

If epq is an outflow boundary with respect to p and inflow with respect to q, we
analogously get

gpq + gqp = goutpq + ginqp = −aoutpq

1

2
(un

p + un−1
q )− ainqp︸︷︷︸

=−aout
pq

1

2
(un

p + un−1
q ) = 0.

This proofs the lemma.
Note, that the property of local mass conservation gets lost for the stabilized

versions of the scheme. However, by numerical experiments we see that the global
mass error for smooth solutions vanishes with the same order h2 as the solution error
in case of S1I2OE scheme and with the much higher order h4 for the S2I2OE scheme,
cf. Table 5.2. The area error is negligible, for dense grids below machine precision, in
case of moving discontinuities by linear advection, cf. Table 5.3.

Theorem 4.3 (Exactness for quadratic polynomials) Let us consider equation
(1.1) with constant velocity vector v and I2OE scheme (2.7) on uniform rectangular
grids with grid sizes hi. Let the initial condition be given as a second order polynomial.
Then the I2OE scheme (2.7) gives the exact solution for any choice of time step τ .

Proof. For simplicity let us first consider the 1D case. A general second order
polynomial initial condition is of the form u0(x) = ax2 + bx+ c and exact solution at
time τ is given by u(x, τ) = u0(x − vτ). With positive v the scheme (3.3) takes the
form

un
i +

τv

2h
(un

i − un
i−1) = un−1

i − τ(−v)

2h
(un−1

i − un−1
i+1 ) (4.1)

If we plug into the scheme (4.1) the exact values in grid points xi, xi−1, xi+1 at time
steps tn−1 = 0 and tn = τ , namely

un−1
i = ax2

i + bxi + c, un−1
i+1 = a(xi + h)2 + b(xi + h) + c, (4.2)

un
i = a(xi − vτ)2 + b(xi − vτ) + c, un

i−1 = a(xi − h− vτ)2 + b(xi − h− vτ) + c,

we end-up with true identity. In fact, it can be easily checked, e.g. by a symbolic
computing system like Mathematica, that both sides are equal to ax2

i + bxi−avτxi−
1
2bvτ − 1

2ahvτ + c and thus their difference is 0. In case of negative velocity v the
scheme (3.3) takes the form

un
i +

τ(−v)

2h
(un

i − un
i+1) = un−1

i − τv

2h
(un−1

i − un−1
i−1 ) (4.3)

and again plugging the exact values (4.2) into (4.3) give true identity, both sides are
equal to ax2

i + bxi − avτxi − 1
2bvτ + 1

2ahvτ + c.
In the 3D case a general quadratic polynomial has the form a0 + a1x + a2y +

a3z + a4xy + a5xz + a6yz + a7x
2 + a8y

2 + a9z
2. In Figure 4.1 we present symbolic

Mathematica code for checking exactness of I2OE in 3D on uniform rectangular grids.
These calculations surely generalize to arbitrary space dimensions.
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Clear@x, y, x, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, v1, v2, v3, h1, h2, h3, u0D

u0@x_, y_, z_D = a0+a1 x +a2 y+a3 z +a4 x y +a5 x z+a6 y z +a7 x^2+a8 y^2+a9 z^2;

u@i, j, k, n-1D = u0@x, y, zD; u@i, j, k, nD = u0@x-v1 t, y-v2 t, z-v3 tD;

u@i+1, j, k, n-1D = u0@x+ h1, y, zD; u@i+1, j, k, nD = u0@x+ h1-v1 t, y-v2 t, z-v3 tD;

u@i-1, j, k, n-1D = u0@x- h1, y, zD; u@i-1, j, k, nD = u0@x- h1-v1 t, y-v2 t, z-v3 tD;

u@i, j+1, k, n-1D = u0@x, y+ h2, zD; u@i, j+1, k, nD = u0@x-v1 t, y+ h2-v2 t, z-v3 tD;

u@i, j-1, k, n-1D = u0@x, y- h2, zD; u@i, j-1, k, nD = u0@x-v1 t, y- h2-v2 t, z-v3 tD;

u@i, j, k+1, n-1D = u0@x, y, z+ h3D; u@i, j, k+1, nD = u0@x-v1 t, y-v2 t, z+ h3-v3 tD;

u@i, j, k-1, n-1D = u0@x, y, z- h3D; u@i, j, k-1, nD = u0@x-v1 t, y-v2 t, z- h3-v3 tD;

ls = 0; rs = 0;

If@v1 ³ 0,

ls = ls+u@i, j, k, nD+t�H2 h1L v1 Hu@i, j, k, nD-u@i-1, j, k, nDL,

ls = ls+u@i, j, k, nD+ t�H2 h1L H-v1L Hu@i, j, k, nD-u@i+1, j, k, nDLD �� Simplify;

If@v2 ³ 0,

ls = ls+t�H2 h2L v2 Hu@i, j, k, nD-u@i, j-1, k, nDL,

ls = ls+ t�H2 h2L H-v2L Hu@i, j, k, nD-u@i, j+1, k, nDLD �� Simplify;

If@v3 ³ 0,

ls = ls+t�H2 h3L v3 Hu@i, j, k, nD-u@i, j, k-1, nDL,

ls = ls+ t�H2 h3L H-v3L Hu@i, j, k, nD-u@i, j, k+1, nDLD �� Simplify;

If@v1 ³ 0,

rs = rs+u@i, j, k, n-1D-t�H2 h1L H-v1L Hu@i, j, k, n-1D-u@i+1, j, k, n-1DL,

rs = rs+u@i, j, k, n-1D-t�H2 h1L v1 Hu@i, j, k, n-1D-u@i-1, j, k, n-1DLD �� Simplify;

If@v2 ³ 0,

rs = rs-t�H2 h2L H-v2L Hu@i, j, k, n-1D-u@i, j+1, k, n-1DL,

rs = rs-t�H2 h2L v2 Hu@i, j, k, n-1D-u@i, j-1, k, n-1DLD �� Simplify;

If@v3 ³ 0,

rs = rs-t�H2 h3L H-v3L Hu@i, j, k, n-1D-u@i, j, k+1, n-1DL,

rs = rs-t�H2 h3L v3 Hu@i, j, k, n-1D-u@i, j, k-1, n-1DLD �� Simplify;

ls �� Simplify

rs �� Simplify

Simplify@rs-lsD

2 a0-a1 t v1-a2 t v2-a3 t v3+2 a1 x-2 a7 t v1 x-a4 t v2 x-

a5 t v3 x+2 a7 x2 +2 a2 y-a4 t v1 y-2 a8 t v2 y-a6 t v3 y+2 a4 x y+

2 a8 y2 +2 a3 z-a5 t v1 z-a6 t v2 z-2 a9 t v3 z+2 a5 x z+2 a6 y z+2 a9 z2

2 a0-a1 t v1-a2 t v2-a3 t v3+2 a1 x-2 a7 t v1 x-a4 t v2 x-

a5 t v3 x+2 a7 x2 +2 a2 y-a4 t v1 y-2 a8 t v2 y-a6 t v3 y+2 a4 x y+

2 a8 y2 +2 a3 z-a5 t v1 z-a6 t v2 z-2 a9 t v3 z+2 a5 x z+2 a6 y z+2 a9 z2

0

Fig. 4.1. Mathematica code for algebraic evaluation of the I2OE scheme on uniform rectangular
3D grid for a general second order polynomial.

Theorem 4.4 (Formal second order consistency) Let us consider the equation
(1.1) in 1D with variable smooth velocity and the I2OE scheme (3.3) on a uniform
grid. Then the scheme is formally second order and the consistency error is of order
O(h2) +O(τh) +O(τ2).

Proof. As the scheme depends on inflow/outflow properties of the cell boundaries,
we have to distinguish four cases: a) vi−1/2, vi+1/2 ≥ 0, b) vi−1/2, vi+1/2 ≤ 0, c)
vi−1/2 < 0, vi+1/2 > 0, and d) vi−1/2>0, vi+1/2<0. In both cases, a) and b), we have
one inflow and one outflow cell boundary, while in case c) we have only outflows and
in d) only inflows.

Let us first look at the cases a) and b). We write our transport equation as
∂tu + f(v, ∂xu) = 0 with f(v, ∂xu) := v(x)∂xu. We will use notations un := u(tn),
fn := f(v, ∂xu

n). The Taylor expansion in time yields

un = un−1 + τ∂tu
n−1 +

τ2

2
∂2
t u

n−1 +O(τ3), un−1 = un − τ∂tu
n +

τ2

2
∂2
t u

n +O(τ3).
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Subtracting these two equations we derive relation

un − un−1 =
τ

2
(∂tu

n + ∂tu
n−1) +

τ2

4
(∂2

t u
n−1 − ∂2

t u
n) +O(τ3). (4.4)

We can see that the second term on the right hand side is also O(τ3) and using the
equation ∂tu+ f(v, ∂xu) = 0, we get for the first term of the right hand side

I =
τ

2
(∂tu

n + ∂tu
n−1) = −τ

2
(fn + fn−1) (4.5)

Using the notation fi := f(xi) = v(xi)∂xu(xi), by the Taylor expansion in space we
have for case a)

fn
i−1/2 = fn

i − h

2
∂xf

n
i +O(h2), fn−1

i+1/2 = fn−1
i +

h

2
∂xf

n−1
i +O(h2) (4.6)

or for case b)

fn−1
i−1/2 = fn−1

i − h

2
∂xf

n−1
i +O(h2), fn

i+1/2 = fn
i +

h

2
∂xf

n
i +O(h2) (4.7)

We continue for case a). Using (4.5)-(4.6) we derive

Ii = −τ

2
(fn

i + fn−1
i ) = −τ

2

(
fn
i−1/2 + fn−1

i+1/2 +
h

2
(∂xf

n
i − ∂xf

n−1
i ) +O(h2)

)
.

The term h
2 (∂xf

n
i − ∂xf

n−1
i ) in the brackets on the right hand side is of order O(τh)

and we shall analyse the term fn
i−1/2 + fn−1

i+1/2. We know that

∂xu
n
i−1/2 =

1

h
(un

i − un
i−1) +O(h2), ∂xu

n−1
i+1/2 =

1

h
(un−1

i+1 − un−1
i ) +O(h2)

and resubstituting for fn
i−1/2 = vi−1/2∂xu

n
i−1/2 and fn−1

i+1/2 = vi+1/2∂xu
n−1
i+1/2 we get

Ii = −τ

2

(
vi−1/2

1

h
(un

i − un
i−1) + vi+1/2

1

h
(un−1

i+1 − un−1
i )

)
+O(τ2h) +O(τh2). (4.8)

From (4.4) and (4.8) we finally get

un
i − un−1

i =− τ

2

(vi−1/2

h
(un

i − un
i−1) +

vi+1/2

h
(un−1

i+1 − un−1
i )

)
+O(τ2h) +O(τh2) +O(τ3)

where we recognize the scheme (3.3) for case a), cf. also (4.1), and dividing by τ we
get the consistency error of the I2OE scheme stated in the theorem. The result for
case b) follows analogously to a), using (4.7) instead of (4.6).

The cases c) and d) have to be treated differently, as in c) only explicit fluxes and
in d) only implicit fluxes are used in the scheme. Let us start with case c). We start
from Taylor expansion in time with only explicit evaluations of time derivatives.

un − un−1 = τ∂tu
n−1 +

τ2

2
∂2
t u

n−1 +O(τ3). (4.9)

With the expansion of the explicit fluxes

fn−1
i−1/2 = fn−1

i − h

2
∂xf

n−1
i +O(h2), fn−1

i+1/2 = fn−1
i +

h

2
∂xf

n−1
i +O(h2) (4.10)
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we now obtain using ∂tu+ f(v, ∂xu) = 0,

τ∂tu
n−1
i = −τfn−1

i = −τ

2
(fn−1

i−1/2 + fn−1
i+1/2 +O(h2)) (4.11)

Next, we will show that the term τ2

2 ∂2
t u

n−1 of (4.9) is actually O(τ2h) due to the
smallness of the velocity in this case. Using ∂tu+ f(v, ∂xu) = 0, we get

∂2
t u

n−1
i = ∂tf

n−1
i = vi∂t∂xu

n−1
i . (4.12)

As the velocity field is smooth and changes sign within the cell (xi−1/2, xi+1/2, there
exists some x⋆ ∈ (xi−1/2, xi+1/2) with v(x⋆) = 0. Hence, by Taylor expansion we get

vi = v(xi) = v(x⋆)︸ ︷︷ ︸
=0

+(xi − x⋆)∂xv(x
⋆) +O(h2).

Thus, we have vi = O(h) and we obtain

τ2

2
∂2
t u

n−1
i =

τ2

2
vi∂t∂xu

n−1
i = O(τ2h). (4.13)

Together with (4.9) and (4.11) we thus obtain the result, i.e.

un − un−1 = −τ

2
(fn−1

i−1/2 + fn−1
i+1/2) +O(τh2) +O(τ2h) +O(τ3).

Case d) is obtained analogously to c) by using Taylor expansion in time with
only implicit evaluations of time derivatives and replacing the explicit fluxes by cor-
responding implicit ones.

Theorem 4.5 (L∞(L2) stability) Let us consider the advection equation in 1D with
constant velocity v ≥ 0 (or v ≤ 0) and the I2OE scheme on a uniform grid with
periodic boundary conditions. Then the scheme is L2 stable and the following a priori
estimate holds∑

i∈I

∫
pi

(uN
i )2 +

∑
i∈I

∫
pi

|v|τ
4h

(uN
i − uN

i−1)
2 =

∑
i∈I

∫
pi

(u0
i )

2 +
∑
i∈I

∫
pi

|v|τ
4h

(u0
i+1 − u0

i )
2.

Proof. Without loss of generality, let us assume constant velocity v ≥ 0. The
basic I2OE scheme then reads

un
i − un−1

i

τ
+

1

2
v
(un

i − un
i−1

h
+

un−1
i+1 − un−1

i

h

)
= 0,

where i ∈ I, n = 1, ..., N , I is the number of finite volumes and N is the number of
time steps. Testing with 1

2 (u
n
i + un−1

i ) yields after integration over cell pi and time
interval (tn, tn+1) and summation

N∑
n=1

∑
i∈I

∫ tn+1

tn

∫
pi

(Tt + Ts) = 0, (4.14)

where the time and space terms are given as

Tt :=
1

2τ
(un

i − un−1
i )(un

i + un−1
i ) =

1

2τ

(
(un

i )
2 − (un−1

i )2
)
, (4.15)

Ts :=
v

4h

(
(un

i − un
i−1) + (un−1

i+1 − un−1
i )

)
(un

i + un−1
i ). (4.16)
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By simple algebraic manipulation, we further get for Ts

Ts =
v

8h

(
(un

i − un
i−1) + (un−1

i+1 − un−1
i )

)(
(un

i − un
i−1)− (un−1

i+1 − un−1
i )

)
+

v

8h

(
(un

i + un−1
i+1 )− (un

i−1 + un−1
i )

)(
(un

i + un−1
i+1 ) + (un

i−1 + un−1
i )

)
=

v

8h

(
(un

i − un
i−1)

2︸ ︷︷ ︸
=:(∆n

i−1)
2

− (un−1
i+1 − un−1

i )2︸ ︷︷ ︸
=:(∆n−1

i )2

+(un
i + un−1

i+1 )
2︸ ︷︷ ︸

=:(S
n+1/2
i )2

− (un
i−1 + un−1

i )2︸ ︷︷ ︸
=:(S

n+1/2
i−1 )2

)
.

In this form of the space term, it can be seen that the term (∆n−1
i )2 is a space-time

shift of (∆n
i−1)

2, and (S
n+1/2
i )2 is a space shift of (S

n+1/2
i−1 )2. We thus obtain from

(4.14) with periodicity and using the shift correlation in the Tt and Ts-terms

0 =
∑
i∈I

∫
pi

1

2

(
(uN

i )2 − (u0
i )

2
)
+
∑
i∈I

∫
pi

vτ

8h

(
(∆N

i−1)
2 − (∆0

i )
2
)
. (4.17)

Hence, we obtain with the definition of the ∆-terms

∑
i∈I

∫
pi

(uN
i )2 +

∑
i∈I

∫
pi

vτ

4h
(uN

i − uN
i−1)

2 =
∑
i∈I

∫
pi

(u0
i )

2 +
∑
i∈I

∫
pi

vτ

4h
(u0

i+1 − u0
i )

2.

As the proof of the stability estimate only relies on space and time shifts, it
transfers immediately also to the case of uniform rectangular grids in multiple space
dimensions.

Theorem 4.6 (L∞(L∞) stability of the stabilized I2OE schemes) Let us con-
sider the advection equation (1.1) with given variable velocity. Then, the stabilized
S1I2OE and S2I2OE schemes are unconditionally stable in the L∞(L∞) sense and the
following minimum-maximum property holds

min
q∈Th

u0
q ≤ un

p ≤ max
q∈Th

u0
q, ∀q ∈ Th, n = 0, . . . , N. (4.18)

Proof. The theorem follows from the construction of the stabilized I2OE schemes
as discussed in Section 2 above.

5. Numerical experiments. This section is devoted to numerically analyze
and validate the robustness and accuracy of our new I2OE scheme at classical bench-
mark problems and more involved multi-dimensional applications. We start the eval-
uation with one dimensional advection with constant speed of a quadratic polynomial,
a smooth hump and discontinuous piecewise constant initial data. For each case we
compare our new basic and stabilized methods with the classical implicit up-wind
scheme and the implicit up-wind Gear’s scheme. Here we are in particular interested
in an evaluation of the methods when large time steps are used that exceed the time
step given from the CFL condition. For further one dimensional experiments involving
also advection with non divergence free velocity and for comparison with higher order
explicit methods we refer to the exposition in [13, 14]. Finally, the last part of this
section will be devoted to two dimensional benchmark problems and an evaluation of
the scheme for real applications in medical image segmentation.
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Table 5.1
Case a) L1(I, L1) errors of the I2OE , S1I2OE, S2I2OE, implicit up-wind, and Gear’s up-wind
schemes for advection of a quadratic polynomial. The relation τ = h is used in the first 4 rows,
τ = h/2 in the next 4 rows, τ = 2h in the next 4 rows, τ = 10h in the next 4 rows and the last 5
rows report the errors for fixed n = 160 and refining time step from τ = 80h to τ = 5h.

implicit Gear’s
n NTS I2OE S1I2OE S2I2OE up-wind scheme
20 10 1.8 10−16 4.63 10−3 3.8 10−16 8.80 10−2 5.56 10−2

40 20 3.5 10−16 1.18 10−3 4.9 10−16 4.28 10−2 2.44 10−2

80 40 7.5 10−16 3.12 10−4 6.3 10−16 2.11 10−2 1.13 10−2

160 80 1.4 10−15 8.35 10−5 7.2 10−16 1.05 10−2 5.44 10−3

20 20 3.7 10−16 1.75 10−3 5.2 10−16 6.43 10−2 4.61 10−2

40 40 8.0 10−16 4.60 10−4 5.1 10−16 3.17 10−2 2.20 10−2

80 80 1.1 10−15 1.23 10−4 7.9 10−16 1.57 10−2 1.07 10−2

160 160 2.4 10−15 3.22 10−5 1.2 10−15 0.78 10−2 5.28 10−3

20 5 2.1 10−16 1.12 10−2 1.9 10−16 1.38 10−1 8.70 10−2

40 10 2.1 10−16 2.77 10−3 2.1 10−16 6.60 10−2 3.31 10−2

80 20 3.9 10−16 7.04 10−4 2.6 10−16 3.21 10−2 1.35 10−2

160 40 5.7 10−16 1.80 10−4 4.1 10−16 1.58 10−2 6.01 10−3

20 1 4.3 10−16 2.18 10−1 6.4 10−16 6.31 10−1 6.31 10−1

40 2 1.0 10−15 4.91 10−2 8.5 10−16 2.8 10−1 2.20 10−1

80 4 1.5 10−15 1.13 10−2 1.8 10−15 1.29 10−1 7.12 10−2

160 8 2.5 10−15 2.66 10−3 3.1 10−15 0.61 10−1 2.19 10−2

160 1 2.6 10−15 2.11 10−1 1.2 10−15 5.75 10−1 5.75 10−1

160 2 2.6 10−15 4.62 10−2 2.7 10−15 2.61 10−1 2.00 10−1

160 4 2.6 10−15 1.07 10−2 3.5 10−15 1.23 10−1 6.51 10−2

160 8 2.6 10−15 2.66 10−3 3.1 10−15 6.12 10−2 2.19 10−2

160 16 2.6 10−15 7.31 10−4 4.6 10−15 3.23 10−2 9.71 10−3

5.1. 1D advection with constant velocity. As a classical benchmark let us
consider one dimensional advection with constant speed given by equation (3.1) with
v(x) ≡ 1. In all our computations, we restrict to the space interval Ω = (−1, 1) and
time interval I = (0, T ) with T = 1. We consider three representative examples in
this subsection:

a) advection of the quadratic polynomial u0(x) = 1− 1
2 (x

2 + x),
b) advection of a smooth hump defined as u0(x) = max(0, cos5(π(x+0.5)), and
c) advection of a discontinuous piecewise constant profile given as u0(x) = 1 for

x ∈ [−0.75,−0.25] and u0(x) = 0 otherwise.
The exact solution for all these examples is given by shifting in time the initial profile,
i.e. u(x, t) = u0(x− vt).

Case a) As proven in Section 4, the basic I2OE is exact for advection of a
quadratic polynomial. This is of course also seen numerically up to machine accuracy,
as depicted in the third column of Table 5.1. However, exactness is not the case for
the stabilized S1I2OE scheme, which is just second order, but it is again true for the
stabilized S2I2OE scheme, cf. fourth and fifth column of Table 5.1. The fully implicit
up-wind scheme is only first order and Gear’s scheme shows only slightly higher order
than 1 for a coupling τ = Ch with C moderately bigger than 1, while it shows order
about 1.5 for fine grids and large time steps (cf. last two columns of Table 5.1).
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Fig. 5.1. Case b) Smooth initial data (blue curves), exact solution (green curves), and numerical
results at T = 1 (red curves) for the stabilized schemes with quadratic reconstruction S2I2OE(top
left), S1I2OE (top right) in comparison to the results with Gear’s up-wind scheme (bottom left) and
implicit up-wind scheme (bottom right). For these computations, n = 1280 and the relation τ = 8h
is used, i.e. CFL = 8.

In all cases, the S1I2OE absolute errors are about one order less than the errors of
the two up-wind implicit schemes. Clearly the S2I2OE scheme is superior because it
conserves the exactness of the quadratic solution for time steps given by an integer
multiplication of h and when using local quadratic reconstruction also for time steps
less than h, cf. Table 5.1.

Case b) For the more general smooth profile we analyze both, the accuracy
and the local mass conservation error (area error) of the respective stabilized I2OE
schemes. For smooth solutions we observe that the S2I2OE scheme with quadratic
reconstruction behaves similar as the basic I2OE scheme, while the S1I2OE scheme
with quadratic reconstruction stabilizes a bit more and thus shows slightly worse
accuracy in the L1 error and the area error. We also compare the new stabilized
schemes with the up-wind implicit and Gear’s up-wind schemes. A visual comparison
of all these methods is shown in Figure 5.1. While the S2I2OE scheme shows visually
perfect matching with the exact solution, there is a little bit more smearing of the
hump for the S1I2OE scheme. However, both new methods show better accuracy as
the implicit Gear’s scheme and much better behavior as the very dissipative classical
implicit up-wind scheme. The visual comparison is detailed in the convergence study
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Table 5.2
Case b) Report on the L1(I, L1) and area errors of the S1I2OE, S2I2OE schemes (with quadratic
reconstruction) and L1(I, L1) errors of the implicit up-wind and Gear’s up-wind schemes. The
relation τ = h is used in the first 6 rows and τ = 8h in the next 4 rows.

implicit Gear’s
S1I2OE S1I2OE S2I2OE S2I2OE up-wind scheme

n NTS L1-error area error L1-error area error L1-error L1-error
40 20 9.53 10−2 6.69 10−2 9.19 10−2 1.93 10−2 1.96 10−1 1.49 10−1

80 40 3.51 10−2 6.58 10−3 2.80 10−2 2.98 10−3 1.32 10−1 8.82 10−2

160 80 9.66 10−3 2.06 10−3 7.69 10−3 2.69 10−4 8.21 10−2 4.90 10−2

320 160 2.69 10−3 6.26 10−4 1.97 10−3 1.94 10−5 4.71 10−2 2.61 10−2

640 320 7.00 10−4 1.63 10−4 4.97 10−4 1.28 10−6 2.56 10−2 1.35 10−2

1280 640 1.80 10−4 4.16 10−5 1.24 10−4 8.14 10−8 1.33 10−2 6.89 10−3

640 40 1.03 10−2 2.96 10−3 7.23 10−3 2.81 10−4 9.02 10−2 2.83 10−2

1280 80 2.77 10−3 7.75 10−4 1.86 10−3 2.03 10−5 5.23 10−2 1.03 10−2

2560 160 7.12 10−4 1.94 10−4 4.67 10−4 1.32 10−6 2.86 10−2 4.21 10−3

5120 320 1.82 10−4 4.81 10−5 1.16 10−4 8.35 10−8 1.49 10−2 1.91 10−3

Table 5.3
Case c) Report on the L1(I, L1) and area errors of the S1I2OE, S2I2OE schemes with quadratic
reconstruction and on the L1(I, L1) errors of the implicit up-wind and Gear’s up-wind schemes.
The relation τ = h is used in the first 6 rows and τ = 8h in the next 4 rows.

implicit Gear’s
S1I2OE S1I2OE S2I2OE S2I2OE up-wind scheme

n NTS L1-error area error L1-error area error L1-error L1-error
40 20 2.03 10−1 1.06 10−3 2.02 10−1 6.17 10−4 3.25 10−1 2.57 10−1

80 40 1.31 10−1 5.32 10−5 1.30 10−1 5.09 10−5 2.37 10−1 1.77 10−1

160 80 8.38 10−2 5.47 10−7 8.38 10−2 5.47 10−7 1.68 10−1 1.23 10−1

320 160 5.35 10−2 5.69 10−10 5.34 10−2 5.68 10−10 1.19 10−1 8.55 10−2

640 320 3.41 10−2 3.34 10−15 3.41 10−2 3.33 10−15 8.42 10−2 5.99 10−2

1280 640 2.16 10−2 4.28 10−16 2.16 10−2 4.24 10−16 5.95 10−2 4.22 10−2

640 40 9.22 10−2 4.22 10−7 9.22 10−2 4.22 10−7 1.79 10−1 1.16 10−1

1280 80 5.74 10−2 3.77 10−10 5.74 10−2 3.77 10−10 1.27 10−1 7.54 10−2

2560 160 3.58 10−2 4.01 10−15 3.58 10−2 4.29 10−15 8.95 10−2 4.88 10−2

5120 320 2.24 10−2 4.96 10−15 2.24 10−2 2.60 10−14 6.32 10−2 3.14 10−2

with respect to the solution, and, for the new schemes, with respect to the mass
conservation error in Table 5.2. It can be seen that both stabilized I2OE schemes
show second order convergence, both for small (τ = h) and large (τ = 8h) time step
sizes. The mass conservation error also converges to zero with second order for the
S1I2OE, while it shows higher then fourth order convergence for the S1I2OE scheme.
As expected, the implicit up-wind scheme is only first order, while Gear’s up-wind
scheme shows first order convergence for small time steps and slightly higher order
(around 1.4) for larger time step sizes (cf. last two columns of Table 5.2).

Case c) Finally, we compare our methods for the discontinuous piecewise con-
stant initial profile. Similar as in case b), Table 5.3 shows the detailed convergence
behavior of the stabilized S1I2OE, and S2I2OE schemes with quadratic reconstruction.
First of all, it can be observed that in this case both new stabilized schemes show
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Fig. 5.2. Case c) Results of the S2I2OE (with quadratic reconstruction) (top left) and S2I2OE
(without quadratic reconstruction) (top right) schemes, Gear’s up-wind (bottom left) and implicit
up-wind (bottom right) schemes. The initial profile is given in blue, the exact solution in green, and
the numerical solution in red. We used n = 1280 and the relation τ = 2h.
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Fig. 5.3. Case c) Here, the same comparison as in Figure 5.2 is plotted for larger choice of the
time step size, i.e. we used n = 1280 and the relation τ = 8h.
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Table 5.4
2D centered paraboloid rotated around the origin: report on the L1(I, L1) errors of the I2OE,
S1I2OE, and S2I2OE methods for refined space and time step sizes.

I2OE S1I2OE S2I2OE
n τ NTS L1(I, L1) L1(I, L1) L1(I, L1)
20 0.1 10 5.938 10−16 5.938 10−16 5.938 10−16

40 0.05 20 7.388 10−16 7.388 10−16 7.388 10−16

80 0.025 40 1.079 10−15 1.079 10−15 1.079 10−15

160 0.0125 80 1.367 10−15 1.367 10−15 1.367 10−15

approximately the same convergence behavior. Moreover, also the absolute errors
in the solution and with respect to mass conservation are nearly the same. In this
non-smooth example, the experimental order of convergence is about 2/3 for both
stabilized I2OE schemes, while it is only about 1/2 for the classical implicit up-wind
scheme and Gear’s up-wind scheme. For Gear’s up-wind scheme the experimental
order of convergence increases to about 0.62 in the case of larger time steps (τ = 8h),
but in this case the higher order of convergence comes with a loss of positivity as
also depicted in the bottom left picture of Figure 5.3. Concerning the mass conserva-
tion error, both new stabilized schemes show exponential convergence to zero in this
example.

A visual comparison of our new stabilized schemes (with and without quadratic
reconstruction) with the up-wind implicit and Gear’s up-wind schemes is given in
Figures 5.2, 5.3. In both Figures we only plot the numerical results for the S2I2OE
scheme, as the results for the S1I2OE are the same as for S2I2OE in this example.
The results in Figure 5.2 were obtained for n = 1280 and τ = 2h, i.e. CFL= 2, while
in Figure 5.3 n = 1280 and τ = 8h, i.e. CFL= 8, were used. It can be observed that
our new method is clearly superior to the classical implicit schemes in both cases.
Although our new stabilized scheme is a little bit more diffusive when larger time
steps are used, this effect is much more pronounced by the classical implicit up-wind
scheme. In contrast, Gear’s up-wind scheme does not preserve positivity and produces
oscillations in the case of CFL= 8. A comparison of our new stabilized scheme with
and without quadratic reconstruction shows that there is nearly no difference in the
behavior of the scheme in this example. Thus, both variants may be used and produce
nice results also for large time steps which exceed the CFL restriction.

5.2. 2D advection by a constant velocity vector field and by a rotation.
First, let us consider a second order radially symmetric polynomial initial function in
the form of paraboloid u0(x1, x2) = x2

1 + x2
2 − 0.25 and the vector field v(x1, x2) =

(−x2, x1) which rotates the initial function around the origin. Since it is radially
symmetric the exact solution does not change in time. This test problem as well
as all further 2D examples in this section are solved in the spatial domain Ω =
(−1, 1) × (−1, 1) which is split into n × n finite volumes. The time interval (0, T ) is
equal (0, 1) for this example and one can see in Table 5.4 that the exact solution is
reproduced numerically up to machine precision by any of the I2OE methods. The
system matrix and the right hand side of the I2OE method is constructed in such way
that it does not touch this exact solution, which holds true in this case also for the
stabilized methods.

The second example represents transport of the quadratic polynomial u0(x1, x2) =
2x2

1 + x2
2 − x1 + x2 − 0.25 by the constant vector field v(x1, x2) = (−1.0, 0.5). We
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Table 5.5
2D paraboloid transported by a constant vector field: report on the L1(I, L1) errors of the I2OE,
S1I2OE, and S2I2OE methods for refined space and time step sizes.

I2OE S1I2OE S2I2OE
n τ NTS L1(I, L1) L1(I, L1) L1(I, L1)
20 0.1 10 2.624 10−15 1.838 10−2 5.544 10−3

40 0.05 20 8.170 10−15 2.959 10−3 1.084 10−3

80 0.025 40 1.421 10−14 4.987 10−4 2.315 10−4

160 0.0125 80 2.045 10−14 8.291 10−5 4.537 10−5

Table 5.6
2D rotating paraboloid centered outside the origin: report on the L1(I, L1) errors of the I2OE,
S1I2OE, and S2I2OE methods for refined space and time step sizes.

I2OE S1I2OE S2I2OE
n τ NTS L1(I, L1) L1(I, L1) L1(I, L1)
20 0.157 20 2.042 10−2 3.184 10−2 2.340 10−2

40 0.0785 40 4.564 10−3 6.422 10−3 5.501 10−3

80 0.03925 80 1.068 10−3 1.379 10−3 1.225 10−3

160 0.019625 160 2.571 10−4 3.104 10−4 2.897 10−4

can see in Table 5.5 that, as given by the theory, the numerical solution by the I2OE
scheme is exact up to a machine precision, while the two stabilized methods are second
order.

In the third example we consider the same paraboloid as in the first example but
shifted to (0.5, 0), i.e. u0(x1, x2) = (x1 − 0.5)2 + x2

2 − 0.25 and the same rotational
vector field. The problem is solved in the larger time interval (0, 3.14). All I2OE
methods are second order accurate, as one can see in Table 5.6. Here, no special
attention to a CFL condition was given when choosing τ and h.

In the next two experiments we test the I2OE methods in the case of standard 2D
benchmarks, the rotations of a smooth hump and a discontinuous function around the
origin, i.e. v(x1, x2) = (−x2, x1). The initial smooth function is given by u0(x1, x2) =
cos5(π

√
(x1 + 0.5)2 + x2

2) inside a circle with radius 0.5 centered in (−0.5, 0) and by
0 elsewhere. In the case of a rotating cylinder we have u0(x1, x2) = 1 inside a circle
with radius 0.45 centered in (−0.5, 0) and 0 elsewhere. We compute the numerical
solutions until for half a rotation (T = 3.14) without any special care to the CFL
condition. In case of the smooth hump rotation we see second order convergence and
very precise conservation of the rotating shape, cf. Table 5.7 and Figure 5.4. In case
of the discontinuous solution we see a convergence rate of about 2/3 for the stabilized
I2OE schemes and also good conservation of the initial shape after half a rotation, cf.
Table 5.8 and Figure 5.5. This is much better than for any other standard implicit
scheme with large time steps.

5.3. 2D advection by non-divergence free velocities including advective
level set motion in normal direction with topological changes. In the next
example we test the I2OE schemes for transport in the non-divergence free velocity
field

v(x) = − x

|x|
, x = (x1, x2). (5.1)
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Table 5.7
2D rotating smooth hump centered outside the origin: report on the L1(I, L1) errors of the I2OE,
S1I2OE, and S2I2OE methods for refined space and time step sizes.

I2OE S1I2OE S2I2OE
n τ NTS L1(I, L1) L1(I, L1) L1(I, L1)
20 0.157 20 4.563 10−1 2.680 10−1 2.888 10−1

40 0.0785 40 1.628 10−1 1.210 10−1 1.220 10−1

80 0.03925 80 4.426 10−2 3.927 10−2 3.084 10−2

160 0.019625 160 1.112 10−2 1.091 10−2 1.061 10−2

320 0.0098125 320 2.767 10−3 2.824 10−3 2.772 10−3

640 0.00490625 640 6.8982 10−4 7.067 10−4 6.993 10−4

Fig. 5.4. 2D rotating smooth hump centered outside the origin: the initial condition (left) and
the S2I2OE numerical solution after half a rotation (right), n = 320, cf. Table 5.7.

The exact solution is given by u(x, t) = u0(x + tx
|x| ) where u0(x) is an initial profile.

We consider the initial function u0(x1, x2) = −x2
1 − x2

2 + 1 and solve the problem in
the time interval (0, 0.6) on subsequently refined grids. In this case there is a point
singularity formed in the origin due to subsequent arrival of initial function values
from circular neighborhoods. For this example all I2OE methods are second order
accurate and give similar results as one can see in Table 5.9.

In the last example of this section we look at level set motion in normal direc-
tion with topological changes. In detail we consider the resolution of the topological
changes for the shrinking of an initial quatrefoil (top left in Figure 5.6) by a velocity
field in normal direction with constant speed equal to 1. Thus, the vector field now
depends on the solution and is given by v = − ∇u

|∇u| , cf. alsoSection 3.2. In the further

plots of Figure 5.6 we present the evolution of the zero level line representing the qua-
trefoil evolution (left column) and 2D (middle column) and 3D (right column) plots
of the evolution of the level set function u computed by the S2I2OE scheme, n = 640,
τ = 2h. For further numerical results of I2OE schemes in the level set context we
refer to [12] and the discussions therein.
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Table 5.8
2D rotating cylinder centered outside the origin: report on the L1(I, L1) errors of the I2OE, S1I2OE,
and S2I2OE methods for successively refined space and time step sizes.

I2OE S1I2OE S2I2OE
n τ NTS L1(I, L1) L1(I, L1) L1(I, L1)
20 0.157 20 1.532 100 8.979 10−1 9.004 10−1

40 0.0785 40 1.161 100 5.758 10−1 5.820 10−1

80 0.03925 80 8.612 10−1 3.698 10−1 3.769 10−1

160 0.019625 160 6.357 10−1 2.374 10−1 2.431 10−1

320 0.0098125 320 4.668 10−1 1.521 10−1 1.560 10−1

640 0.00490625 640 3.413 10−1 9.720 10−2 9.998 10−2

Fig. 5.5. 2D rotating cylinder centered outside the origin: the initial condition (left) and the
S2I2OE numerical solution after half a rotation (right), n = 320, cf. Table 5.8.

Table 5.9
Transport in the non-divergence free velocity field (5.1) with singular solution in the origin: report
on the L1(I, L1) errors of the I2OE, S1I2OE, and S2I2OE methods for successively refined space
and time step sizes.

I2OE S1I2OE S2I2OE
n τ NTS L1(I, L1) L1(I, L1) L1(I, L1)
20 0.1 6 6.572 10−3 6.572 10−3 6.572 10−3

40 0.05 12 1.480 10−3 1.480 10−3 1.480 10−3

80 0.025 24 3.504 10−4 3.504 10−4 3.504 10−4

160 0.0125 48 8.521 10−5 8.521 10−5 8.521 10−5

320 0.00625 96 2.101 10−5 2.101 10−5 2.101 10−5
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Fig. 5.6. 2D level set motion in normal direction: shrinking of the quatrefoil with topological
changes. The numerical solution is plotted at the discrete times 0, 0.05, 0.1, 0.15. The zero level
line representing the quatrefoil evolution is plotted in the left column, the 2D color coded level set
function in the middle and a 3D visualization of the level set function in the right column.
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Fig. 5.7. Prostate segmentation: 2D image (left) and the same image together with a red
contour representing segmentation of the prostate by GSUBSURF model (5.2) using the S2I2OE
scheme in the advective part.

5.4. 2D medical image segmentation. In the last numerical experiment we
present an application of the S2I2OE scheme in medical image segmentation. Here, we
segment a 2D image with resolution 150 x 150 pixels, plotted in Figure 5.7 left, with
the goal to precisely extract the prostate. Prostate segmentation is a very difficult task
in medical image analysis due to a poor contrast and a high level of noise intrinsically
linked to the image. We use the so-called generalized subjective surface (GSUBSURF)
model which represents a robust method for biomedical image segmentation and is
a useful generalization of the original approach presented in [17]. The GSUBSURF
model has the form of the following PDE [15, 20, 3]

ut − wa∇g · ∇u− wdg
√
ε2 + |∇u|2∇ ·

(
∇u√

ε2 + |∇u|

)
= 0, (5.2)

where u(t, x) is an evolving segmentation function starting from an initial condition,
u(0, x) = u0(x), usually given by a peak located approximately in the center of the
mass of the segmented object. Then, the segmentation function is evolved by the
advection (the second term on the left hand side of (5.2)) regularized by the mean
curvature flow (the third term on the left hand side of (5.2)) to a shock-like profile.
The central isoline of this profile gives the segmentation result, for the segmentation
function evolution see Figure 5.9 and for the resulting isoline, which gives very precise
localization of the prostate see Figure 5.7, right. The important part of the model
is given by the advection with the nontrivial velocity vector field −wa∇g where the
function g = 1

1+Ks2 depends on the norm of the gradient s = |∇I| of the image
intensity function I smoothed by the mean curvature flow filter [6]. This nontrivial
velocity field points towards the edges in the image. Its details in the prostate region
are plotted in Figure 5.8. Opposite to previous implementations of the GSUBSURF
model [15, 20, 3] where the advective part was treated by an explicit scheme – which
put a severe restriction to the computational time step – we use here the S2I2OE
scheme with a time step size exceeding more than 10 times the standard CFL con-
dition. Similarly to [15, 3], for the curvature part we use an unconditionally stable
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Fig. 5.8. Prostate segmentation: a detail of the nontrivial velocity vector field used in segmen-
tation of the prostate.

semi-implicit diamond-cell finite volume method. As one can see in the right picture of
Figure 5.7, we obtain precise results using such overall semi-implicit scheme (both in
advection and curvature). Moreover, this scheme always guarantees solvability of the
system and stability of the computation and thus represents an important improve-
ment of the GSUBSURF segmentation method. Since we are interested in coming to
an ”equilibrium” segmentation shape, the choice of larger time step sizes is important
from the CPU–time point of view. The model and computational parameters in this
example were h = 0.5 (pixel size), τ = 5h, K = 10000, ε2 = 10−6, wa = 5h, wd = 4h.

6. Conclusions. In this article we introduced new stabilized I2OE schemes for
solving variable velocity advection equations. We gave some theoretical and numerical
background with respect to solvability, local mass conservation, accuracy and stabil-
ity for the basic I2OE scheme and its stabilized versions. As demonstrated in several
numerical benchmark problems, in particular the S2I2OE scheme with quadratic re-
construction shows very nice resolution and stability properties. It preserves all solv-
ability and accuracy properties of the basic I2OE scheme for smooth solutions, while
at the same time statisfying strong L∞-stability, even in settings with discontinuous
solutions. Moreover, all presented I2OE schemes keep their accuracy and stability
properties for arbitrary large time step sizes which makes this family of methods par-
ticular attractive for real applications as demonstrated here for 2D medical image
segmentation.
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Fig. 5.9. Prostate segmentation: graphs of subsequently evolving segmentation function, tend-
ing from the initial profile (top left) to the final shock-like shape (bottom right) which is used for
extracting the segmentation contour plotted in red in Figure 5.7 right.
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08/09 - N A. Dedner, R. Klöfkorn, M. Nolte, M. Ohlberger: A generic interface
for parallel and adaptive scientific computing: Abstraction principles
and the DUNE-FEM module

09/09 - N P. Henning, M. Ohlberger: A-posteriori error estimate for a heterogeneous
multiscale finite element method for advection-diffusion problems with
rapidly oscillating coefficients and large expected drift

01/10 - N K. Mikula, M. Ohlberger: A New Inflow-Implicit/Outflow-Explicit Finie
Volume Method for Solving Variable Velocity Advection Equations

02/10 - N M. Drohmann, B. Haasdonk, M. Ohlberger: Reduced Basis Approximation
for Nonlinear Parametrized Evolution Equations based on Empirical
Operator Interpolation

03/10 - N M. Ohlberger, K. Smetana: A new problem adapted hierarchical model
reduction technique based on reduced basis methods and dimensional
splitting

04/10 - I M. Steuwer, P. Kegel, S. Gorlatch: SkelCL – A Portable Multi-GPU
Skeleton Library

01/11 - N P. Henning, M. Ohlberger: A-posteriori error estimation for a
heterogeneous multiscale method for monotone operators and beyond
a periodic setting

02/11 - N M. Ohlberger, K. Smetana: A new Hierarchical Model Reduction-Reduced
Basis technique for advection-diffusion-reaction problems

03/11 - N S. Kaulmann, M. Ohlberger, B. Haasdonk: A New Local Reduced Basis
Discontinuous Galerkin Approach for Heterogeneous Multiscale Problems

04/11 - N P. Henning: Convergence of MsFEM approximations for elliptic,
non-periodic homogenization problems

01/12 - N K. Mikula, M. Ohlberger, J. Urbán: Inflow-Implicit/Outflow-Explicit Finite
Volume Methods for Solving Advection Equations


