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Abstract In this paper we develop a new efficient and stable Lagrangian numer-
ical method for computing the evolution of 3D curves driven in the normal plane
by a driving force and curvature. This new method contains asymptotically uniform
tangential redistribution of grid points designed originally for 3D curve evolution
in this paper which makes our computations stable and is crucial for the presented
application. Together with the design of new tangentially stabilized algorithm for 3D
evolving curves, we develop a new method for the fully automatic finding of the
optimal trajectory of the camera in the virtual colonoscopy. The proposed method
consists of three steps: 3D segmentation of the colon from CT images, finding an
initial trajectory guess inside the segmented 3D subvolumes, and driving the initial
3D curve to its optimal position. To that goal, a suitable intrinsic advection-diffusion
partial differential equation with a driving force is designed and solved numerically
in fast and robust way in order to find a smooth uniformly discretized 3D curve
representing the ideal path of the camera in the virtual colonoscopy.
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1 Introduction

In this paper we develop a new asymptotically uniform tangential grid point redis-
tribution algorithm for 3D evolving curves in parametric representation. The method
is designed for 3D curve evolutions depending on a general velocity field and on
curvature. It is based on direct Lagrangean approach for which a suitable tangen-
tial redistribution is crucial in order to get fast and stable solution methods. There
exist several successful tangential redistributions in 2D for various normal veloci-
ties, namely, the ones preserving the ratio of local grid point distances [10, 13, 14],
the locally diffusive redistributions [7, 16] and also the redistributions making the
local grid point distances uniformly distributed [1, 15, 17]. The asymptotically uni-
form tangential redistribution was originally introduced in [15] and its description
for a very general 2D curve evolution models including driving forces, curvature and
the Laplacian of curvature is given in [17]. For the evolution of 3D curves depend-
ing on curvature there exists a tangential redistribution method based on a special
κ1 − κ2 − ω − L curve evolution formulation [11] and there is also a special finite
element approximation of gradient flows presented in [2].

Our method is designed for 3D curve evolutions driven by the general driv-
ing forces given in the form of velocity vector fields and by the curvature. It was
inspired by a methodology developed in [11] and it can be understood as a gener-
alization of the asymptotically uniform tangential redistribution method from [15].
Its development was strongly influenced by the application in virtual colonoscopy
where our goal was the design of new fast and robust method for the fully auto-
matic extraction of the ideal path of the virtual camera where nor user interaction
nor additional parameters are involved. Since we understand the ideal path as the
3D curve which passes along the centerline of the colon, is smooth and uniformly
discretized, the smoothly evolved and tangentially redistributed 3D discrete curves
are suitable mathematical models to reach that goal. There are three basic steps in
our method for finding the ideal path. First, the 3D segmentation of the colon from
CT images is performed. Due to the quality of CT data, the classical approaches
like the thresholding and the region growing are used, see e.g., [3]. As the result
we get all simply-connected parts of the large and small intestines filled with the
gas. The next step consists in finding an initial guess for the camera trajectory in
every simply-connected segmented subvolume of the intestine. Such initial guess is
obtained by using the Dijkstra algorithm [5] for computing an approximate distance
from point sources inside the segmented subvolumes followed by the backtracking
in the steepest descent direction [21]. The third step is the core of our approach. It
consists in driving the initial guess to its optimal position in a smooth and stable
way. To that goal we construct a vector field given by the gradient of distance func-
tion to the segmented intestine borders which is computed by a 3D generalization of
the approach from [4] based on the numerical solution of the time relaxed eikonal
equation. Then, our 3D curve evolution algorithm with tangential redistribution is
applied to the initial curve. The curve is driven by the velocity given by the projection
of the computed distance gradient vector field to the plane normal to the evolving
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curve, the evolution is regularized by the curvature, which makes it smooth, and it is
accompanied by the suitable choice of the tangential velocity which makes the curve
uniformly discretized during the evolution. Such 3D curve evolution model is writ-
ten in the form of an intrinsic advection-diffusion partial differential equation with a
driving force which is then solved by the fast and stable semi-implicit scheme. The
resulting smooth uniformly discretized 3D curve representing the ideal trajectory of
the camera in virtual colonoscopy is found (performing all steps) in about 8 s on stan-
dard PC. Thus the method is highly competitive and is being implemented into the
medical software TomoCon of the TatraMed spol s r.o., Bratislava company.

The paper is organized as follows. In Section 2 we briefly comment on the vir-
tual colonoscopy method. In Section 3 we discuss our colon segmentation method.
In Section 4 we discuss our method for the fully automatic finding of the optimal
camera trajectory. Here we emphasize the design, implementation and results of our
new tangentially stabilized 3D curve evolution algorithm presented and discussed in
details in Sections 4.4 and 4.5. We also note, that the first presentation of our new
method was given in the conference proceedings paper [18].

2 Virtual colonoscopy

A classical optical colonoscopy is an examination of the colon (large intestine) which
can successfully detect colon polyps and colorectal tumours. The examination takes
15–60 min and it is performed by a colonoscope which is a flexible tube with a
miniature camera and which may also provide a tool for removing a tissue. The
colonoscope is introduced into the colon through the rectum, it moves along the
colon and a physician can see the situation in the colon on the screen. Because this
examination is uncomfortable and painful, the patient receives a medication absorb-
ing the pain or it is done under the general anesthesia. On the other hand, the virtual
colonoscopy, introduced in [8], is an examination performed by using the computed
tomography (CT). The colon is inflated (with air or CO2) and then the patient is
scanned in two positions (on the abdomen and on the back) by CT. The colon can be
viewed similarly to the classical optical colonoscopy, but the physician controls the
so-called virtual camera by using its computed ”ideal” trajectory. The computation
of the ideal path is the important part of the process and an illustration of approach
described in this paper is given in Fig. 1. We can see visualization of the colon bor-
der and in green the extracted optimal camera trajectory together with the red arrow
indicating a polyp found by the voyage along the virtual path. By the literature, the
results achieved by the virtual colonoscopy are comparable to the classical approach
[12]. Moreover, the images can be viewed at any time, it provides the option to view
panoramas of the colon surface, to make its unfolding etc. In addition to these ben-
efits, the virtual colonoscopy allows to examine the colon parts impassable for the
colonoscope and it avoids a risk of perforation of the colon. A disadvantage is the
radiation during CT examination and the fact that if the physician has found a polyp
or tumour, it cannot be removed by the virtual approach.
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Fig. 1 Polyps found in the large intestine using the virtual colonosopy

3 The colon segmentation and the initial trajectory guess

The 3D colon image data sets obtained by CT are given by a sequence of 2D slices
(512 × 512 pixels) with a typical slice thickness about 0.75 mm. For our further
goals, it is sufficient to subsample data and work with 3D images of the typical size
256 × 256× 400 voxels. First, we use a thresholding corresponding to the air (about
−1000 HU) in CT scans and detect all subvolumes filled by the gas. All voxels of
these subvolumes get value 1, the others were set to 0. Next, we apply the region
growing method in order to find all simply connected parts of the large and small
intestines. The first seed is put to a corner of the 3D image and the region growing
algorithm finds all voxels outside the body, their value is put to 0, so this subvolume
is ignored. Next, we go subsequently through the whole 3D image and the seed for
the next region growing is the next voxel found with the value 1. This seed and all
voxels found by the region growing get number 2 which is set also as the number
of this first inner body subvolume. We continue such procedure until all seeds for
the next region growings are found. During the current region growing all detected
voxel values are set to the number of the currently segmented subvolume which is
given by the increment of the previously detected subvolume number. We also count
the number of detected voxels in each subvolume which gives us the approximate
size of the segmented structures. The last segmentation step consists in removing all
spuriously detected subvolumes inside the body. By checking of the size, we remove
small inner structures filled by the gas (detected e.g., in lungs). Then we compute
the distance function of all inner voxels to the border of the segmented subvolume
(by the method from Section 4.1) and if the global maximum of the distance function
(maximal thickness of the structure) is less then a prescribed threshold we ignore such
subvolume (representing e.g., the gas between the body and the CT desk). In such
way we end up with one (rarely) or several simply connected subregions of the colon
(and also of the small intestine) for which we find then the optimal virtual camera
trajectories. The visualization of our segmentation results is presented in Fig. 2. The
segmented subvolumes are parts of the small and large intestine inflated with the air.
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Fig. 2 The examples of segmentation of the large and small intestines

The initial trajectory guess in any colon subvolume is constructed by computing
a distance from a point source by the Dijkstra algorithm (in which the graph edges
connecting neighbouring voxels have value 1) followed by the backtracking. We note
that instead of Dijkstra’s algorithm the fast marching method [20] can be also used.

First, we take any point of the subvolume and fix the distance in this point to 0.
Then we compute the distance, in the sense of the Dijkstra algorithm, to this fixed
point for all voxels inside the subvolume. Since the colon is ablong organ, we take
the point with the maximal distance as the first endpoint of the segmented subvol-
ume. Now, we fix the zero value at this first endpoint and use the Dijkstra algorithm
again, the point with the maximal distance from the first endpoint will represent the
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second endpoint of the subvolume. From this second endpoint we start the backtrack-
ing of the computed distances in the steepest descent direction, we end up in the first
endpoint of the subvolume. The voxel coordinates of such descending path represent
the parametrized 3D curve, the initial guess of the virtual camera trajectory inside the
subvolume.

It is clear that the approach described in the above paragraph is fully automatic.
For every subvolume of the colon we get the parametrized 3D curve localized inside
and connecting its two endpoints. It is important to note that our method is robust
with respect to a position and discretization of such initial trajectory guess because
the final trajectory will be made smooth, uniformly discretized and centered inside
the colon subvolume by a suitable 3D curve evolution model designed in the next
section. The only important point is that we have obtained the parametric 3D curve
which thus can be used as the initial condition for the suggested 3D curve evolution
model.

In order to illustrate and test the particular steps of our method, we constructed
2D and 3D artificial data shown in Fig. 3, the connected circles on the left mimic
the typically alternating very thin and thick colon parts (mostly problematic for the
algorithms) and U-like volume on the right mimics an overall colon shape. As one
can see in Figs. 4–5, the initial trajectory guess is nor smooth nor centered, it touches
very often the boundary of the segmented volume. On the other hand, it gives the
first parametric representation of the 3D curve which can be evolved to the optimal
position by the approach discussed in the next section.

4 Finding the optimal camera trajectory

In this section we discuss important issues leading to a suitable 3D curve evolution
model which will drive the initial curve to its optimal position. Our model will be
based on a careful construction of the velocity in normal direction, on the regulariza-
tion of the motion by curvature and on the suitable tangential velocity yielding the

Fig. 3 The 2D and 3D image data sets used for testing the proposed method



3D curve evolution in virtual colonoscopy 825

Fig. 4 The graph of the distances (left) and the initial trajectory guess (right)

uniform discretization of the evolving curve. We show that all these issues are nec-
essary ingredients in order to get the smooth and correctly centered virtual camera
trajectory in the real colon data of complicated shape.

4.1 Construction of the velocity vector field

In order to get the velocity field by which the 3D curve will be moving to its optimal
position we solve the eikonal equation with the zero fixed values in the boundary
voxels of the segmented subvolume. Its solution is a distance function which has
a ridge along the centerline of the segmented subvolume and the gradient of such
distance function points towards the ridge. The initial 3D curve should be driven in
a smooth way into that ridge position. Our method for finding the distance function,

Fig. 5 Initial 3D curve in the test data (left) and in the real segmented colon (right)
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which gives the above mentioned vector field, is based on the numerical solution of
the time relaxed eikonal equation

dt + |∇d| = 1 (1)

by the so-called Roy-Tourin scheme [4, 19]. Let us denote by dnijk approximate solu-
tion d in time step n in the middle of voxel with spatial coordinates (i, j, k), τD the
length of the time step and hD the size of the voxel. Let us define expressions Mpqr

ijk ,
where p, q, r ∈ {−1, 0, 1}, |p| + |q| + |r| = 1, by

M
pqr
ijk =

(
min

(
dni+p,j+q,k+r − dnijk, 0

))2
. (2)

Then the scheme for solving (1) is given by

dn+1
ijk = dnijk + τD − (3)

τD

hD

√
max

(
M

−1,0,0
ijk ,M

1,0,0
ijk

)
+ max

(
M

0,−1,0
ijk ,M

0,1,0
ijk

)
+ max

(
M

0,0,−1
ijk ,M

0,0,1
ijk

)
.

The values at specified points to which the distance is computed numerically are fixed
to zero. In all other points the numerical values are increasing monotonically and if
they become changeless we can fix them on the fly [4]. Since the colon is an ablong
organ, the method (3) is sufficiently fast and easily implementable and applicable
to any complicated shape. After computing the distance function we compute the
vector field v = ∇d by using the central finite difference approximation of the partial
derivatives. In Figs. 6–7 we show visualization of the computed 2D distance function
and the associated vector field.

4.2 3D curve evolution in a vector field

In the parametric Lagrangian approach presented in this paper, the evolving 3D curve
is represented by discrete points rni = (

xni , y
n
i , z

n
i

)
, where i = 0, . . . , m, denotes the

grid point number and n represents the discrete time stepping. We consider that the

Fig. 6 The distance function to the boundary of 2D testing shape (left) and its detailed graph (right)
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Fig. 7 The detail of the vector field given by the gradient of the distance function

endpoints of the curve (i.e. the 0-th and the m-th point) are fixed. The simplest model
for the motion of the curve in the vector field v is given by

∂tr = v(r), (4)

the numerical discretization of which can be written as

rn+1
i = rni + τv

(
rni

)
, (5)

where τ being a discrete time step. The results achieved by this approach can be
seen in Fig. 8 where all the grid points were moved into the ridge position, but due
to the specific direction and length of the velocity field (which is nonzero also on

Fig. 8 The results obtained using the velocity field given by the gradient of the distance to the boundary
of segmented object in 2D (left) and 3D (right) test data
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the ridge), they are packed together and thus it is difficult to get the smooth virtual
camera path by using such final curve state. A group of points may contain curve
self-intersections (due to numerics) and their distances are irregular so there is no
guarantee that the curve would not cross the edge of the colon on the way between the
far-distant points. Such situation is not rare in the real data where the colon has com-
plicated structure similar to our connected circles testing example. We note that many
standard approaches to virtual colonoscopy, see e.g., [9, 22], uses a combination (e.g.,
a weighted sum) of two distance functions, the one constructed in the previous sec-
tion (distance to one fixed endpoint) and the one computed here (distance to the colon
borders), followed by a minimization procedure. As we can see, it can lead to a seri-
ous troubles, in trajectory representation or to stacking in a local minimum, which
are then solved by some heuristic and/or semi-automatic approaches.

The main difficulty of the above simple approach is given by the fact that the grid
points just moved independently on each other by the numerical discretization of
ODE in direction of the basic velocity field v. There is no mechanism by which the
neighbouring points influence each other and thus move smoothly without degener-
acy of their distances. All these problems will be solved, without any heuristic, by
our new approach described below.

4.3 Adding the curvature regularization

We know that the motion of the curve can be decomposed into the movement in
tangential and normal directions and that the overall shape of the evolving curve
with the fixed endpoints is determined by the normal component of the velocity only.
The tangential velocity influences the redistribution of points along the curve, thus
if it is not controlled, it can cause the accumulation of grid points as in the above
mentioned examples. As the first modification of the vector field v we shall consider
its projection to the evolving curve normal plane and thus removing completely the
unsuitable tangential motion. This makes the model nonlinear (because the curve
normal plane depends on the current curve shape) but it greatly improves the result.
Moreover, if we want that the evolving curve points are tied together we have to move
from the ordinary to a partial differential equation. A natural intrinsic PDE arising in
this case is the one obtained by adding the curvature regularization to the motion by
using the curvature vector kN which is again in the curve normal plane. Let T be the
unit tangent vector to the curve, the projection of vector field v to the curve normal
plane is then defined by

Nv = v − (T.v)T , (6)

see Fig. 9, and the regularized motion of the curve in the normal plane is given by

∂tr = μNv + εkN , (7)

where μ and ε are the model parameters. We can consider its explicit numerical
discretization in the form

rn+1
i − rni

τ
= μ (Nv)

n
i + ε

2

hni+1 + hni

(
rni+1 − rni

hni+1
− rni − rni−1

hni

)
, (8)
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Fig. 9 Visualization of the curve normal plane

for i = 1, . . . , m − 1, where the second term on the right hand side represents the
discretization of the curvature vector kN, see e.g., [6], and the first term is the approx-
imation of the vector Nv at the i-th curve grid point, both at the previous time step n.
The distances between the grid points are given by the expressions

hni =
√(

xni − xni−1

)2 + (
yni − yni−1

)2 + (
zni − zni−1

)2
. (9)

Since we removed the unsuitable tangential component of the velocity and used the
curvature regularization, the ridge in the testing data is found in much more regu-
lar way, see Fig. 10. The only problem which is still remaining is the nonuniform
distribution of the grid points at the final state and also during the subsequent curve
evolution which may cause problems during the motion inside complicated shapes.
The uniform curve representation would guarantee that the properties of the projected
vector field are taking into account uniformly and thus the motion of the curve is

Fig. 10 The results obtained using the projection of the original vector field into the normal plane to the
evolving 3D curve accompanied by the curvature regularization
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done in the most correct way. The uniform curve discretization will be controlled by
adding a suitable tangential velocity into the mathematical model and its numerical
discretization.

4.4 Asymptotically uniform tangential redistribution of grid points

Let us consider Eq. 7 accompanied by a controlled tangential motion in the form

∂tr = μNv + εkN + αT . (10)

In order to determine a suitable tangential velocity α we introduce the local orthog-
onal basis smoothly varying along the 3D curve, cf. [11]. In our approach, it will
consist of tangent vector T and two orthogonal vectors in the normal plane defined as

N1 = Nv

|Nv| , N2 = N1 × T . (11)

If |Nv| = 0 we redefine N1 due to the smoothness requirement, e.g., in discrete
settings by the averaged value from the neighboring grid points. Let us define

k1 = kN.N1, k2 = kN.N2 , (12)

the projections of the curvature vector onto N1 and N2. Then the curvature vector
satisfies kN = k1N1 + k2N2 and the evolution Eq. 10 can be written as

∂tr = UN1 + VN2 + αT, (13)

with the free parameter α representing the tangential component of the velocity, and
with the normal components given by

U = εk1 + μ|Nv|, V = εk2. (14)

Let us consider the curve � with the fixed endpoints parametrized by the position
vector r, and define its local length

g = |ru| =
∣∣∣∣
∂r
∂u

∣∣∣∣ =
∂s

∂u
, (15)

where u ∈ [0, 1] and s is the arclength parameter. In discrete settings it is approx-
imated by g ≈ |ri−ri−1|

h
with h = 1

m
and this quantity is useful in design of the

asymptotically uniform tangential grid point redistribution. We will study the time
evolution of the local length g. To that goal we compute

gt = |ru|t =
ru
|ru| · (ru)t (16)

and we also have

ru = ∂r
∂s

∂s

∂u
= gT , (17)

(ru)t = (rt )u = (UN1 + VN2 + αT)u = g(UN1 + VN2 + αT)s . (18)
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Then

gt = gT · (UN1 + VN2 + αT)s
= gT · (UsN1 + U(N1)s + VsN2 + V (N2)s + αsT + αTs)

= gUT · (N1)s + gV T · (N2)s + gαsT · T + gαT · Ts . (19)

Since T · T = 1 and thus (T · T)s = 0 we have Ts · T + T · Ts = 0 from where
T · Ts = 0. Further, by the Frenet formula we have Ts = kN = k1N1 + k2N2 and
since N1.T = 0 we have

T · (N1)s = −N1 · Ts = −N1 · (k1N1 + k2N2) = −k1

and similarly T · (N2)s = −k2. So finally we get from Eq. 19 the equation for the
local length time evolution

∂tg = g∂sα − g(Uk1 + V k2). (20)

Integrating this equation along the curve i.e. for u ∈ [0, 1] and considering the fixed
endpoints with α(0) = 0 and α(1) = 0, we get also the time evolution for the total
length L

dL

dt
= − < Uk1 + V k2 >� L (21)

where

< Uk1 + V k2 >�= 1

L

∫

�

Uk1 + V k2 ds

denotes the quantity Uk1 + V k2 averaged along the curve �. In order to define the
tangential velocity leading to the asymptotically uniform grid points redistribution, it
is worth to study the fraction

g

L
≈ |ri − ri−1|

Lh
= |ri − ri−1|(

L
m

) = hi(
L
m

) (22)

representing in discrete settings the ratio of the actual and averaged length of the
curve segments. The goal is to design a model in which this ratio tends to 1 or such
that the quantity θ = ln

( g
L

)
converges to 0. Using Eqs. 20 and 21 we get for its time

evolution the relation

∂tθ = ∂sα − (Uk1 + V k2)+ < Uk1 + V k2 >� . (23)

On the other hand, if we set ∂tθ = (
e−θ − 1

)
ωr , where ωr is a speed of redistribution

process, we get that θ → 0 as t → ∞ and we obtain equation for the tangential
velocity α guaranteeing the asymptotically uniform redistribution of 3D curve grid
points

∂sα = Uk1 + V k2− < Uk1 + V k2 >� +
(
L

g
− 1

)
ωr. (24)
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4.5 The intrinsic PDE and its numerical discretization

As our final 3D curve evolution model we consider the Eq. 10 with the tangential
velocity discussed above. Since T = ∂sr and kN = ∂ssr we get the final model in
the form of the following intrinsic advection-diffusion PDE with a driving force

∂tr = μNv + ε ∂ssr + α∂sr (25)

with α given by Eq. 24 and accompanied by the Dirichlet boundary conditions (fixed
endpoints of the curve). Our final step is the numerical discretization of Eqs. 24–25
by the so-called flowing finite volume method [14, 17] which is adopted here to the
3D curve evolution and, due to a good stability and efficiency properties, we use the
so-called semi-implicit approach. Details of such discretization are presented in the
sequel.

Let us consider a time difference rn+1−rn
τ

instead of the time derivative in Eq. 25,

where τ denotes a uniform discrete time step. Let us denote by

[
rn
i− 1

2
, rn

i+ 1
2

]
a (dual)

segment of the curve � at the time step tn = nτ , where rn
i− 1

2
is the middle point of

the (primal) segment
[
rni−1, rni

]
. Discretization of the intrinsic PDE (25) is obtained

by an integration over the dual segment and taking linear terms at the current time
step while the nonlinear terms at the previous time step. First we get

rn
i+ 1

2∫

rn
i− 1

2

rn+1 − rn

τ
ds =

rn
i+ 1

2∫

rn
i− 1

2

μ (Nv)
nds +

rn
i+ 1

2∫

rn
i− 1

2

ε ∂ssrn+1ds +
rn
i+ 1

2∫

rn
i− 1

2

αn∂srn+1ds (26)

where by
∫ rn

i+ 1
2

rn
i− 1

2

ψds we denote an integral of the quantity ψ over the corresponding

curve arc. Since the length of the dual segment can be approximated by
∣∣∣∣rni+ 1

2
− rn

i− 1
2

∣∣∣∣ =
hni + hni+1

2
. (27)

where

hni = |rni − rni−1| =
√(

xni − xni−1

)2 + (
yni − yni−1

)2 + (
zni − zni−1

)2
(28)

are Euclidean distances between the grid points approximating lengths of the curve
arcs, we get from Eq. 26

hni+1 + hni

2

rn+1
i − rni

τ
= μ

hni+1 + hni

2
(Nv)

n
i + ε

[
∂srn+1

]rn
i+ 1

2
rn
i− 1

2

+ αn
i

(
rn
i+ 1

2
− rn

i− 1
2

)

where (Nv)
n
i and αn

i represent the normal velocity vector Nv and the tangential veloc-
ity α at the grid point rni . Finally, when we approximate the first derivatives in the
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second term on the right hand side by the finite differences and consider the average
of grid points in the third term we get the system of equations

hni+1 + hni

2

rn+1
i − rni

τ
= μ

hni+1 + hni

2
(Nv)

n
i + (29)

ε

(
rn+1
i+1 − rn+1

i

hni+1
− rn+1

i − rn+1
i−1

hni

)
+ αn

i

2

(
rn+1
i+1 − rn+1

i−1

)
,

for i = 1, . . . , m − 1, with rn+1
0 and rn+1

m prescribed, by solving which we get
the x, y, z coordinates of the grid points representing a new curve position. In order
to compute (Nv)

n
i and αn

i for Eq. 29 we use the following approach. First we
approximate the tangential vector

Tn
i = rni+1 − rni−1

hni+1 + hni
(30)

and then we compute (Nv)
n
i by the formula (6) where we assume that the external

velocity field v is given. In our application, it is given as a piecewise constant function
in image voxels, so we just have to check in which voxel the current grid point rni
is located. In order to compute αn

i we integrate the Eq. 24 in the primal segment[
rni−1, rni

]
and we get

rni∫

rni−1

∂sα ds =
rni∫

rni−1

Uk1 + V k2− < Uk1 + V k2 >� +
(
L

g
− 1

)
ωr ds (31)

from where we obtain

αn
i = αn

i−1 + hni
(
Un
i k

n
1i + V n

i k
n
2i

)− hni < Uk1 +V k2 >n
� +

(
Ln

m
− hni

)
ωr , (32)

for i = 1, . . . , m− 1, setting αn
0 = 0 and getting αn

m = 0. In Eq. 32

< Uk1 + V k2 >n
�=

1

Ln

m∑
l=1

hnl
(
Un
l k

n
1l + V n

l k
n
2l

)
, Ln =

m∑
l=1

hnl (33)

and the terms Un
i , k

n
1i, V

n
i , k

n
2i are approximations of the corresponding quantities in

the discrete curve segment
[
rni−1, rni

]
which are obtained as averages of these quan-

tities computed in the grid points rni−1 and rni . In order to get them we first compute
the discrete curvature vector

(kN)ni = 2

hni+1 + hni

(
rni+1 − rni

hni+1
− rni − rni−1

hni

)
(34)

and then we compute (N1)
n
i , (N2)

n
i by Eq. 11, kn1i , kn2i by Eq. 12 and Un

i , V
n
i

by Eq. 14.
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The system of Eq. 29 can be written as

An
i rn+1

i−1 + Bn
i rn+1

i + Cni rn+1
i+1 = Fn

i (35)

with coefficients given by

An
i = − ε

hni
+ αn

i

2
, Cni = − ε

hni+1
− αn

i

2
, Bn

i = hni + hni+1

2τ
− (An

i + Cni
)
,

Fn
i = hni + hni+1

2τ
rni + μ (Nv)

n
i

hni + hni+1

2
and it represents three tridiagonal systems for the x, y, z coordinates of the grid points
representing a new curve position which are solved by the Thomas algorithm which
is a fast procedure, numerically stable provided that the system matrix is strictly diag-
onally dominant. The strict diagonal dominance of the system matrix is equivalent to
the condition

|Bn
i | > |An

i | + |Cni | (36)

for every i = 1, .., m − 1 and every n. The term Bn
i is always positive and if both

terms An
i and Cni are less or equal to zero, the condition (36) is clearly fulfilled. The

condition (36) could be violated only if |αni2 | > ε
hni

but then we can decrease the

time step τ in order to keep the strict diagonal dominance of the system matrix and
thus guarantee the solvability of the system by the Thomas algorithm. The solvability
condition is given by

τ <
1

2

hni + hni+1

|An
i | + |Cni | +

(An
i + Cni

) , (37)

and must be tested for all i = 1, .., m− 1, where either An
i or Cni is positive. If that

happens one has to decrease the time step according to the condition (37). As one can
see from Eq. 37, this condition is not restrictive in practice because the time step is

Fig. 11 The results for the test data obtained using the tangential redistribution
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Fig. 12 The results obtained on the helix. The initial (left) and the final (right) path obtained by using the
tangential redistribution

just proportional to the spatial discretization step which is uniform along the discrete
curve. Although we have to perform additional tests, the numerical solution by the
Thomas algorithm is still an efficient procedure and thus the numerical evolution to
the steady state is realized in the fast and stable way.

The results for our testing data as well as for the real virtual colonoscopy data are
presented in Figs. 11, 12 and 13. In the presented computations we used parameters
μ = ε = τ = ωr = 1. The parameter μ gives the velocity of the evolving curve
in the normal direction and standardly μ = 1. Then, if we consider the voxel size
equal to 1, the standard choice of the time step is τ = 1 (provided that the condition
(37) is fulfilled) in order to move the curve not more than one voxel size in one time
step. The parameter ε influences the smoothness of the curve during the evolution
and in the final time, the choice ε = 1 is appropriate and any choice close to 1 gives
a similar result. The last parameter ωr controls the speed of tangential redistribution
in order to be uniform. Its moderate values, like ωr = 1, are sufficient to get uniform
discretization of the curve during the evolution and in the final state. However, any

Fig. 13 The comparison of the
grid point distances: the basic
vector field (red), the projected
vector field plus the curvature
regularization (blue), the final
model (24–25) (violet)
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Fig. 14 The results for the real data obtained using the final model (24–25)

choice of ωr ≈ O(1) is reasonable and yield a comparable result. As one can see, the
standard choice of parameters is possible and their slight modification does not alter
significantly the final result (Fig. 14).

The illustrative 2D experiments were performed by the method from [17].
Figure 13 shows differences in the grid point distances for our 3D test data (Figs. 8,
10, 11 right), the red curve for the basic velocity field, the blue for the projected
vector field plus the curvature regularization and the violet curve for the final model
(24–25). In the final model the grid point distances are uniform, the final curve is
smoothly centered and can be successively used for the virtual voyage inside the
colon.



3D curve evolution in virtual colonoscopy 837

Acknowledgments This work has been performed in cooperation with the company TatraMed spol
s r.o., Bratislava and supported by the grant APVV-0184-10.

References

1. Barrett, J.W., Garcke, H., Nürnberg, R.: On the variational approximation of combined second and
fourth order geometric evolution equations. SIAM J. Sci. Comput. 29/3, 1006–1041 (2007)

2. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of gradient flows for closed curves
in Rd . IMA J. Numer. Anal. 30(1), 4–60 (2010)

3. Bovik, A.: Handbook of Image and Video Processing. Academic Press, New York (2000)
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14. Mikula, K., Ševčovič, D.: Evolution of plane curves driven by a nonlinear function of curvature and

anisotropy. SIAM J. Appl. Math. 61, 1473–1501 (2001)
15. Mikula, K., Ševčovič, D.: A direct method for solving an anisotropic mean curvature flow of planar

curve with an external force. Math. Method. Appl. Sci. 27, 1545–1565 (2004)
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