
5

PARALLEL CO-VOLUME SUBJECTIVE
SURFACE METHOD FOR 3D

MEDICAL IMAGE SEGMENTATION

Karol Mikula
Department of Mathematics and Descriptive
Geometry, Slovak University of Technology,
Bratislava, Slovakia

Alessandro Sarti
Dipartmento di Elettronica, Informatica e
Sistemistica, University of Bologna, Bologna, Italy

In this chapter we present a parallel computational method for 3D image segmentation. It is
based on a three-dimensional semi-implicit complementary volume numerical scheme for
solving the Riemannian mean curvature flow of graphs called the subjective surface method.
The parallel method is introduced for massively parallel processor (MPP) architecture using
the message passing interface (MPI) standard, so it is suitable, e.g., for clusters of Linux
computers. The scheme is applied to segmentation of 3D echocardiographic images.

1. INTRODUCTION

The aim of segmentation is to find boundaries of an object in an image. In a
generic situation these boundaries correspond to edges. In the presence of noise,
which is intrinsically linked to modern noninvasive acquisition techniques (such
as ultrasound), the object boundaries (image edges) can be very irregular or even
interrupted. The same happens in images with occlusions, subjective contours (in

Address all correspondence to: Karol Mikula, Department of Mathematics and Descriptive Geometry,
Slovak University of Technology, Radlinsk‚ho 11, 813 68 Bratislava, Slovakia. Phone: 02 5292 5787;
Fax: 02 5292 5787. mikula@vox.svf.stuba.sk

123

124 KAROL MIKULA and ALESSANDRO SARTI

some psychologically motivated examples), or in case of partly missing informa-
tion (like in problems of inpainting). Then simple segmentation techniques fail
and image analysis becomes a difficult task. In all these situations, the subjective
surface method can help significantly. It is an evolutionary method based on nu-
merical solution of time-dependent highly nonlinear partial differential equations
(PDEs), solving a Riemannian mean curvature flow of a graph problem. The seg-
mentation result is obtained as a “steady state” of this evolution. In case of a large
dataset (3D images or image sequences), where the ammount of processed infor-
mation is huge, a discretization of the partial differential equation leads to systems
of equations with a huge amount of unknowns. Then parallel implementation of
the method is necessary, first, due to a large memory requirement, and second,
due to a necessity for fast computing times. For both purposes, an implementation
on the massively parallel processor (MPP) architecture using the message passing
interface (MPI) standard is a favourable solution.

2. MATHEMATICAL MODELS IN IMAGE SEGMENTATION

Image segmentation based on the subjective surface method is related to geo-
desic (or conformal) mean curvature flow of level sets (level curves in case of 2D
images and level surfaces in case of 3D images). Let us outline first the curve and
surface evolution models and their level set formulations, preceding the subjective
surface method.

A simple approach to image segmentation (similar to various discrete region-
growing algorithms) is to place a small seed, e.g., a small circle in the 2D case, or
a small ball in the 3D case, inside the object and then evolving this segmentation
curve or segmentation surface to find automatically the object boundary (cf. [1]).
Complex mathematical models as well as Lagrangean numerical schemes have
been suggested and studied for evolving curves and surfaces over the last two
decades (see, e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10]). For moving curves and surfaces the
robust level set models and methods were introduced (see, e.g., [11, 12, 13, 14,
15, 16, 17, 18]). A basic idea in the level set methods is that the moving curve or
surface corresponds to the evolution of a particular level curve or level surface of
the so-called level set function u that solves some form of the following general
level set equation: ut = F |∇u|, where F represents the normal component of the
velocity of this motion.

The first segmentation level set model with the speed of the segmentation
curve (surface) modulated by F = g0 ≡ g(|∇Gσ ∗ I0|), where Gσ is a smoothing
kernel and g is a smooth edge detector function, e.g., g(s) = 1/(1 + Ks2), and
was given in [19] and [20]. Due to the shape of the Perona-Malik function g,
the moving curve is strongly slowed down in a neighbourhood of an edge, and a
“steady state” of the segmentation curve is taken as the boundary of segmented
object. However, if an edge is crossed during evolution (e.g., in a noisy image),

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 125

Figure 1. Left: A graph of the image intensity function I0(x). Right: Image given by the
intensity I0(x) plotted together with arrows representing the vector field −∇g(|∇I0(x)|).
See attached CD for color version.

there is no mechanism to reverse the motion since F is always positive. Moreover,
if there is a missing part of the object boundary, such an algorithm, as with any
other simple region-growing method, is completely useless.

Not only the segmentation models but also image smoothing (filtering) models
and methods have been suggested either using the original Perona-Malik idea of
nonlinear diffusion depending on an edge indicator (cf. [21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34]) or using geometrical PDEs in the level set formulations
(cf. [35, 36, 37, 38, 16, 39, 40, 41, 42]).

Later on, the level set models for image segmentation were significantly im-
proved by introducing a driving force in the form −∇g(|∇I0(x)|) ([43, 44, 45,
46, 47]). The vector field −∇g(|∇I0(x)|) has an important geometric property:
it points toward regions where the norm of the gradient ∇I0 is large (see Figure 1,
illustrating the 2D situation). If an initial segmentation curve or surface belongs to
a neighborhood of an edge, it is driven automatically to this edge by the velocity
field.

However, the situation is more complicated in the case of noisy images (see
Figure 2). The advection is not sufficient, the evolving curve can be attracted
to spurious edges, and no reasonably convergent process is observed. Adding a
curvature dependence (regularization) to the normal velocity F , the sharp curve
irregularities are smoothed, as presented in the right-hand part of Figure 2. It turns
out that an appropriate regularization term is given by g0k, where the amount of
curve intrinsic diffusion is small in the vicinity of an un-spurious edge. Following
this 2D example, we can write the geometrical equation for the normal velocity v

126 KAROL MIKULA and ALESSANDRO SARTI

Figure 2. Evolution only by advection leads to attracting a curve (initial ellipse) to spurios
edges, but adding a regularization term related to the curvature of evolving curve, the edge
is found smoothly also in the case of a 2D noisy image (right).

as

v = g0k + ∇g0 · �N

of the segmentation curve, where k is its curvature and �N is its normal vector.
Similarly, the geometrical equation for the moving segmentation surface has the
form

v = g0H + ∇g0 · �N,

where H is its mean curvature and �N is its normal vector. The level set formulation
of either such curve or surface evolution is given by ([43, 44, 45, 46, 47])

ut = g0|∇u|∇.

(
∇u

|∇u|

)
+ ∇g0.∇u = |∇u|∇.

(
g0 ∇u

|∇u|

)
, (1)

where the moving curve or surface is given by the same evolving level line and,
respectively, level surface of the level set function u.

There is still a practical problem with the previous approach. It gives satis-
factory results if the initial segmentation curve or surface belongs to the vicinity
of an edge; otherwise, it is difficult to drive an arbitrary initial state there. An im-
portant observation, leading to the subjective surface method ([48, 49, 50]), is that
Eq. (1) moves not only one particular level set, but all the level sets, by the above
mentioned advection-diffusion mechanism. So we can consider the evolution of
the whole (hyper)surface u, which we call the segmentation function, composed
by those level sets. Moreover, we are a bit free in choosing the precise form of the

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 127

diffusion term in the segmentation model. In fact,

ut =
√

ε2 + |∇u|2∇ ·
(

g(|∇Gσ ∗ I0|) ∇u√
ε2 + |∇u|2

)
, (2)

where the Evans-Spruck regularization [51]

|∇u| ≈ |∇u|ε =
√

ε2 + |∇u|2 (3)

is used, gives the same advection term −∇g0 ·∇u as (1). The parameter ε shifts the
model from the mean curvature motion of level sets (ε = 0) to the mean curvature
flow of graphs (ε = 1). This means that either level sets of the segmentation func-
tion move in the normal direction proportionally to the (mean) curvature (ε = 0),
or the graph of the segmentation function itself moves (as a 2D surface in 3D space
in segmentation of 2D images, or a 3D hypersurface in 4D space in segmentation
3D images) in the normal direction proportionally to the mean curvature. In both
cases large variations in the graph of the segmentation function outside edges are
smoothed due to large mean curvature. On edges the advection dominates, so all
the level sets that are close to the edge are attracted from both sides to this edge
and a shock (steep gradient) is subsequently formed. For example, if the initial
“point-of-view” surface, as plotted in the top right portion of Figure 3, illustrating
the 2D situation, is evolved by Eq. (2), the so-called subjective surface is formed
finally (see Figure 3, bottom right), and it is easy to use one of its level lines, e.g.,
(max(u) + min(u))/2, to get the boundary of the segmented object.

In the next example we illustrate the role of the regularization parameter ε.
The choice of ε = 1 is not appropriate for segmentation of an image object with
a gap, as seen in Figure 4 (top). However, decreasing ε, i.e., if we go closer to
the level set flow Eq. (1), we get very good segmentation results for that image
containing a circle with a large gap, as presented in Figure 4 (middle and bottom).
If the image is noisy, the motion of the level sets to the shock is more irregular,
but finally the segmentation function is smoothed and flattened as well. For a
comprehensive overview of the role of all the model parameters, the reader is
referred, e.g., to [52].

The subjective surface segmentation (2) is accompanied by Dirichlet boundary
conditions:

u(t, x) = uD in [0, T] × ∂Ω, (4)

where ∂Ω is a Lipschitz continuous boundary of a computational domain Ω ⊂ IRd,
d = 3, and with initial condition

u(0, x) = u0(x) in Ω. (5)

We assume that the initial state of the segmentation function is bounded, i.e.,
u0 ∈ L∞(Ω). The segmentation is an evolutionary process given by the solution

128 KAROL MIKULA and ALESSANDRO SARTI

Figure 3. Subjective surface-based segmentation of a “batman” image. In the left column
we plot the black-and-white image to be segmented together with isolines of the segmen-
tation function. In the right column there is the shape of the segmentation function. The
rows correspond to time steps 0, 1, and 10, which gives the final result. The regularization
parameter ε = 1 is used in this example. See attached CD for color version.

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 129

Figure 4. Segmentation of the circle with a big gap using ε = 1 (top), ε = 10−2 (middle),
and ε = 10−5 (bottom). For a bigger missing part, a smaller ε is desirable. In the left
column we see how closely to the edges the isolines are accumulating and closing the gap;
on the right we see how steep the segmentation function is along the gap. See attached
CD for color version.

130 KAROL MIKULA and ALESSANDRO SARTI

of Eq. (2), where T represents a time when a segmentation result is achieved. The
Perona-Malik function g : IR+

0 → IR+ is nonincreasing, g(0) = 1, admitting
g(s) → 0 for s → ∞ [21]. Usually we use the function g(s) = 1/(1 + Ks2),
K ≥ 0. Gσ ∈ C∞(IRd) is a smoothing kernel, e.g., the Gauss function

Gσ(x) =
1

(4πσ)d/2 e−|x|2/4σ, (6)

which is used in pre-smoothing of image gradients by the convolution

∇Gσ ∗ I0 =
∫

IRd

∇Gσ(x − ξ)Ĩ0(ξ)dξ, (7)

with Ĩ0 the extension of I0 to IRd given by periodic reflection through the boundary
of the image domain. The computational domain Ω is usually a subdomain of
the image domain, and it should include the segmented object. In fact, in most
situations Ω corresponds to the image domain itself. Due to the properties of
function g and the smoothing effect of convolution, we always have 1 ≥ g0 ≥
νσ > 0 [22, 24]. In [51, 53], the existence of a viscosity solution [54] of the
curvature driven level set equation [11], i.e., Eq. (1) with g0 ≡ 1, was proven. For
analytical results on Eqs. (1) and (2), respectively, we refer the reader to [47, 45]
and [49, 55], respectively.

3. SEMI-IMPLICIT 3D CO-VOLUME SCHEME

Our computational method for solving the subjective surface segmentation
equation (2) uses an efficient and unconditionally stable semi-implicit time dis-
cretization, first introduced for solving level set-like problems in [16], and a three-
dimensional complementary volume spatial discretization introduced in [56] for
image processing applications. In this section we present the serial algorithm of
our method, and in the next section we introduce its parallel version suitable for
a massively parallel computer architecture using the message passing interface
standard.

For time discretization of nonlinear diffusion equations there are basically
three possibilities: implicit, semi-implicit, or explicit schemes. For spatial dis-
cretization usually finite differences [13, 14], finite volumes [57, 58, 59, 26], or
finite-element methods [60, 61, 62, 63, 64, 30, 24] are used. The co-volume tech-
nique (also called the complementary volume or finite volume-element method)
is a combination of the finite-element and finite-volume methods. The discrete
equations are derived using the finite-volume methodology, i.e., integrating an
equation into the so-called control (complementary, finite) volume. Very often the

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 131

control volumes are constructed as elements of a dual (complementary) grid to a
finite-element triangulation (tetrahedral grid in the 3D case). Then the nonlinear
quantities in PDEs, as an absolute value of the solution gradient in Eq. (2), are
evaluated using piecewise linear representation of the solution on a tetrahedral
grid thus employing the methodology of the linear finite-element method. The
finite-volume methodology brings in the naturally discrete minimum–maximum
principle. The piecewise linear representation (reconstruction) of the segmentation
function on the finite-element grid yields a fast and simple evaluation of nonlin-
earities. Implicit, i.e., nonlinear time discretization and co-volume techniques, for
solution of the level set equations were first introduced in [65]. The implicit time
stepping as in [65], although unconditionally stable, leads to solution of a non-
linear system in every discrete time update. On the other hand, the semi-implicit
scheme leads in every time step to solution of a linear algebraic system that is
much more efficient. Using explicit time stepping, stability is often achieved only
under severe time step restriction. Since in nonlinear diffusion problems (like the
level set equations or the subjective surface method) the coefficients depend on
the solution itself and thus must be recomputed in every discrete time update, an
overall computational time for an explicit scheme can be tremendous. From such
a point of view, the semi-implicit method seems to be optimal regarding stability
and computational efficiency.

In the next subsections we discuss the semi-implicit 3D co-volume method.
We present the method formally in discretization of Eq. (1), although we always
use its ε-regularization (2) with a specific ε > 0. The notation is simpler in case
of (1), and it will be clear where the ε-regularization appears in the numerical
scheme.

3.1. Semi-Implicit Time Discretization

We first choose a uniform discrete time step τ and a varianceσ of the smoothing
kernel Gσ . We then replace the time derivative in (1) by backward difference. The
nonlinear terms of the equation are treated from the previous time step while the
linear ones are considered on the current time level, which means semi-implicitness
of the time discretization. By such an approach we get our semi-discrete in a time
scheme:

Let τ and σ be fixed numbers, I0 be a given image, and u0 a given initial segmen-
tation function. Then, for every discrete time moment tn = nτ , n = 1, . . . N , we
look for a function un, the solution of the equation

1
|∇un−1|

un − un−1

τ
= ∇.

(
g0 ∇un

|∇un−1|

)
. (8)

132 KAROL MIKULA and ALESSANDRO SARTI

3.2. Co-Volume Spatial Discretization in 3D

A 3D digital image is given on a structure of voxels with a cubic shape, in
general. Since discrete values of image intensity I0 are given in voxels and they
influence the model, we will relate spatially discrete approximations of the seg-
mentation function u also to the voxel structure; more precisely, to voxel centers.
In every discrete time step tn of the method (8) we have to evaluate the gradient
of the segmentation function at the previous step |∇un−1|. To that goal we put
the 3D tetrahedral grid into the voxel structure and take a piecewise linear rep-
resentation of the segmentation function on such a grid. Such an approach will
give a constant value of the gradient in tetrahedra (which is the main feature of the
co-volume [65, 16] and linear finite-element [62, 63, 64] methods in solving the
mean curvature flow in the level set formulation), allowing simple, clear, and fast
construction of a fully-discrete system of equations.

The formal construction of our co-volumes will be given in the next paragraph,
and we will see that the co-volume mesh corresponds back to the image voxel
structure, which is reasonable in image processing applications. On the other hand,
the construction of the co-volume mesh has to use a 3D tetrahedral finite-element
grid to which it is complementary. This will be possible using the following
approach. First, every cubic voxel is split into 6 pyramids with a vertex given
by the voxel center and base surfaces given by the voxel boundary faces. The
neighbouring pyramids of the neighbouring voxels are joined together to form an
octahedron that is then split into 4 tetrahedra using diagonals of the voxel boundary
face (see Figure 5). In such way we get our 3D tetrahedral grid. Two nodes of
every tetrahedron correspond to the centers of neighbouring voxels, and the further
two nodes correspond to the voxel boundary vertices; every tetrahedron intersects a
common face of neighbouring voxels. In our method, only the centers of the voxels
will represent degree-of-freedom nodes (DF nodes), i.e., solving the equation at
a new time step, we update the segmentation function only in these DF nodes.
Additional nodes of the tetrahedra will not represent degrees of freedom, and we
will call them non-degree-of-freedom nodes (NDF nodes), and they will be used
in piecewise linear representation of the segmentation function. Let a function u
be given by discrete values in the voxel centers, i.e., in DF nodes. Then in the
NDF nodes we take the average value of the neighbouring DF nodal values. By
such defined values in the NDF nodes a piecewise linear approximation uh of u
on the tetrahedral grid is built.

For the tetrahedral grid Th, given by the previous construction, we construct
a co-volume (dual) mesh. We modify the approach given in [65, 16] in such a way
that our co-volume mesh will consist of cells p associated only with DF nodes p of
Th, say p = 1, . . . , M . Since there will be one-to-one correspondence between co-
volumes and DF nodes, without any confusion, we use the same notation for them.
For each DF node p of Th, let Cp denote the set of all DF nodes q connected to the
node p by an edge. This edge will be denoted by σpq and its length by hpq. Then

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 133

Figure 5. Neighbouring pyramids (left) that are joined together and which, after splitting
into four parts, give tetrahedra of our 3D grid. We can the see intersection of one of these
tetrahedra with the bottom face of the voxel co-volume (right). See attached CD for color
version.

every co-volume p is bounded by the planes epq that bisect and are perpendicular to
the edges σpq, q ∈ Cp. By this construction, if epq intersects σpq in its center, the
co-volume mesh corresponds exactly to the voxel structure of the image inside the
computational domain Ω where the segmentation is provided. Then the co-volume
boundary faces do cross in NDF nodes. So we can also say that the NDF nodes
correspond to zero-measure co-volumes and thus do not add additional equations
to the discrete model (cf. (10)), and they do not represent degrees of freedom in
the co-volume method. We denote by Epq the set of tetrahedra having σpq as an
edge. In our situation (see Figure 4), every Epq consists of 4 tetrahedra. For each
T ∈ Epq, let cT

pq be the area of the portion of epq that is in T , i.e., cT
pq = m(epq ∩T),

where m is a measure in IRd−1. Let Np be the set of all tetrahedra that have a DF
node p as a vertex. Let uh be a piecewise linear function on Th. We will denote a
constant value of |∇uh| on T ∈ Th by |∇uT | and define regularized gradients by

|∇uT |ε =
√

ε2 + |∇uT |2. (9)

We will use the notation up = uh(xp), where xp is the coordinate of the DF node
p of Th.

With these notations, we are ready to derive co-volume spatial discretization.
As is usual in finite-volume methods [59, 58, 57], we integrate ((8)) over every
co-volume p, ı = 1, . . . , M . We get∫

p

1
|∇un−1|

un − un−1

τ
dx =

∫
p

∇.

(
g0 ∇un

|∇un−1|

)
dx. (10)

134 KAROL MIKULA and ALESSANDRO SARTI

For the right-hand side of (10) using the divergence theorem we get∫
p

∇ ·
(

g0 ∇un

|∇un−1|

)
dx =

∫
∂p

g0

|∇un−1|
∂un

∂ν
ds

=
∑

q∈Cp

∫
epq

g0

|∇un−1|
∂un

∂ν
ds.

So we have an integral formulation of (8):∫
p

1
|∇un−1|

un − un−1

τ
dx =

∑
q∈Cp

∫
epq

g0

|∇un−1|
∂un

∂ν
ds, (11)

expressing a “local mass balance” in the scheme. Now the exact “fluxes”
∫

epq

g0

|∇un−1|
∂un

∂ν ds on the right-hand side and the “capacity function” 1
|∇un−1| on the

left-hand side (see, e.g., [59]) will be approximated numerically using piecewise
linear reconstruction of un−1 on the tetrahedral grid Th. If we denote by g0

T the
approximation of g0 on a tetrahedron T ∈ Th, then for the approximation of the
right-hand side of (11) we get

∑
q∈Cp

 ∑

T∈Epq

cT
pq

g0
T

|∇un−1
T |

 un

q − un
p

hpq
, (12)

and the left-hand side of (11) is approximated by

Mpm(p)
un

p − un−1
p

τ
, (13)

where m(p) is a measure in IRd of co-volume p and Mp is an approximation of the
capacity function inside the finite volume p. For that goal we use the averaging of
the gradients in tetraherda crossing co-volume p, i.e.,

Mp =
1

|∇un−1
p |

, |∇un−1
p | =

∑
T∈Np

m(T ∩ p)
m(p)

|∇un−1
T |. (14)

Then the regularization of the capacity function is given by

Mε
p =

1
|∇un−1

p |ε
, (15)

and if we define coefficients (where the ε-regularization is taken into account),

dn−1
p = Mε

pm(p), (16)

an−1
pq =

1
hpq

∑
T∈Epq

cT
pq

g0
T

|∇un−1
T |ε

, (17)

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 135

we get from (12)–(13) our 3D fully-discrete semi-implicit co-volume scheme:

Let u0
p, p = 1, . . . , M be given discrete initial values of the segmentation function.

Then, for n = 1, . . . , N we look for un
p , p = 1, . . . , M , satisfying

dn−1
p un

p + τ
∑

q∈Cp

an−1
pq (un

p − un
q) = dn−1

p un−1
p . (18)

The system (18) can be rewritten into the form

dn−1

p + τ
∑

q∈Cp

an−1
pq

un

p − τ
∑

q∈Cp

an−1
pq un

q = dn−1
p un−1

p , (19)

and, applying the Dirichlet boundary conditions (which contribute to the right-hand
side), it gives a system of linear equations with a matrix AM×M , the off-diagonal
elements of which are symmetric and nonpositive, namely Apq = −τan−1

pq , q ∈
Cp, Apq = 0, otherwise. Diagonal elements are positive, namely, App = dn−1

p +
τ
∑

q∈Cp

an−1
pq , and dominate the sum of the absolute values of the nondiagonal

elements in every row. Thus, the matrix of the system is symmetric and a diagonally
dominant M-matrix, which implies that it always has a unique solution for any
τ > 0, ε > 0, and for every n = 1, . . . , N . The M-matrix property gives us the
minimum–maximum principle:

min
p

u0
p ≤ min

p
un

p ≤ max
p

un
p ≤ max

p
u0

p, 1 ≤ n ≤ N, (20)

which can be seen by the following simple trick. We may temporary rewrite (18)
into the equivalent form:

un
p +

τ

dn−1
p

∑
q∈Cp

an−1
pq (un

p − un
q) = un−1

p , (21)

and let max(un
1 , . . . , un

M) be achieved in the node p. Then the whole second
term on the left-hand side is nonnegative, and thus max(un

1 , . . . , un
M) = un

p ≤
un−1

p ≤ max(un−1
1 , . . . , un−1

M). In the same way, we can prove the relation for
the minimum, and together we have

min
p

un−1
p ≤ min

p
un

p ≤ max
p

un
p ≤ max

p
un−1

p , 1 ≤ n ≤ N, (22)

which by recursion implies the L∞ stability estimate (20).

136 KAROL MIKULA and ALESSANDRO SARTI

The evaluation of g0
T included in coefficients (17) can be done in several ways.

First, we may replace the convolution by the weighted average to get I0
σ := Gσ ∗I0

(see, e.g., [26]), and then relate discrete values of I0
σ to voxel centers. Then,

as above, we may construct its piecewise linear representation on the grid and
get a constant value of g0

T ≡ g(|∇I0
σ|) on every tetrahedron T ∈ Th. Another

possibility is to solve numerically the linear heat equation for time t corresponding
to variance σ with the initial datum given by I0 (see, e.g., [30]) by the same method
as above. The convolution represents a preliminary smoothing of the data. It is also
a theoretical tool to have bounded gradients and thus a strictly positive weighting
coefficient g0. In practice, the evaluation of gradients on a fixed discrete grid (e.g.,
described above) always gives bounded values. So, working on a fixed grid, one
can also avoid the convolution, especially if preliminary denoising is not needed or
not desirable. Then it is possible to work directly with gradients of the piecewise
linear representation of I0 in evaluation of g0

T .
A change in the L2 norm of numerical solutions in subsequent time steps is

used to stop the segmentation process. We check whether√∑
p

m(p) (un
p − un−1

p)2 < δ, (23)

with a prescribed threshold δ. For our semi-implicit scheme and small ε, a good
choice of threshold is δ = 10−5.

We start all computations with an initial function given as a peak centered in
a “focus point” inside the segmented object. Such a function can be described at a
sphere with center s and radius R by u0(x) = 1

|x−s|+v , where s is the focus point

and 1
v gives a maximum of u0. Outside the sphere we take the value u0 equal to

1
R+v . R usually corresponds to the halved inner diameter of the image domain.
For small objects, a smaller R can be used to speed up computations. Usually we
put the focus point s inside a small neighborhood of a center of the mass of the
segmented object.

3.3. Semi-Implicit 3D Co-Volume Scheme in Finite-Difference Notation

The presented co-volume scheme is designed for the specific mesh given by
the cubic voxel structure of a 3D image. For simplicity of implementation, reader
convenience, and due to the relation to the next section devoted to parallelization,
we will write the co-volume scheme (18) in a “finite-difference notation.” As is
usual for 3D rectangular grids, we associate co-volume p and its center (DF node)
with a triple (i, j, k), i representing the index in the x-direction, j in the y-direction,
and k in the z-direction (see Figure 7 for our convention of coordinate notation).
The unknown value un

p then can be denoted by un
i,j,k. If Ω is a rectangular sub-

domain of the image domain (usually Ω is the image domain itself) and N1 + 1,
N2 + 1, N3 + 1 are the numbers of voxels of Ω in the x, y, z-directions, and if we

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 137

consider Dirichlet boundary conditions (i.e., the values un
p in boundary voxels are

not considered as unknown), then i = il, . . . , ir, j = jl, . . . , jr, k = kl, . . . , kr,
where ir − il ≤ N1 − 2, jr − jl ≤ N2 − 2, kr − kl ≤ N3 − 2. We define the
space discretization step h = 1

N1
, and for simplicity we assume that voxels have

cubic shape. For every co-volume p, the set Cp = {w, e, s, n, b, t} consists of
6 neighbours, west ui−1,j,k, east ui+1,j,k, south ui,j−1,k, north ui,j+1,k, bottom
ui,j,k−1, and top ui,j,k+1, and the set Np consists of 24 tetrahedra.

In every discrete time step n = 1, . . . , N and for every i, j, k, we compute
the absolute value of gradient |∇un−1

T | on these 24 tetrahedra. We denote by
Gz,l

i,j,k, l = 1, . . . , 4, z ∈ Cp the square of the gradient on the tetrahedra crossing
the west, east, south, north, bottom, and top co-volume faces. If we define (omitting
upper index n − 1)

si,j,k = (ui,j,k + ui−1,j,k + ui,j−1,k + ui−1,j−1,k +
+ ui,j,k−1 + ui−1,j,k−1 + ui,j−1,k−1 + ui−1,j−1,k−1)/8,

the value at the left-south-bottom NDF node of the co-volume, then for the west
face we get

Gw,1
i,j,k =

(
ui,j,k − ui−1,j,k

h

)2

+
(

si,j,k+1 − si,j,k

h

)2

+

(
ui,j,k + ui−1,j,k − si,j,k+1 − si,j,k

h

)2

,

Gw,2
i,j,k =

(
ui,j,k − ui−1,j,k

h

)2

+
(

si,j+1,k+1 − si,j,k+1

h

)2

+

(
si,j+1,k+1 + si,j,k+1 − ui,j,k − ui−1,j,k

h

)2

, (24)

Gw,3
i,j,k =

(
ui,j,k − ui−1,j,k

h

)2

+
(

si,j+1,k+1 − si,j+1,k

h

)2

+

(
si,j+1,k+1 + si,j+1,k − ui,j,k − ui−1,j,k

h

)2

,

Gw,4
i,j,k =

(
ui,j,k − ui−1,j,k

h

)2

+
(

si,j+1,k − si,j,k

h

)2

+

(
ui,j,k + ui−1,j,k − si,j+1,k − si,j,k

h

)2

,

and correspondingly we get all Gz,l
i,j,k for the further co-volume faces.

In the same way, but only once at the beginning of the algorithm, we compute
values Gσ,z,l

i,j,k , l = 1, . . . , 4, z ∈ Cp, changing u by I0
σ in the previous expressions,

and we apply function g to all these values to get discrete values of g0
T .

138 KAROL MIKULA and ALESSANDRO SARTI

Then in every discrete time step and for every i, j, k we construct (west, east,
south, north, bottom and top) coefficients

aw
i,j,k = τ

1
4

4∑
l=1

g(
√

Gσ,w,l
i,j,k)√

ε2 + Gw,l
i,j,k

, ae
i,j,k = τ

1
4

4∑
l=1

g(
√

Gσ,e,l
i,j,k)√

ε2 + Ge,l
i,j,k

,

as
i,j,k = τ

1
4

4∑
l=1

g(
√

Gσ,s,l
i,j,k)√

ε2 + Gs,l
i,j,k

, an
i,j,k = τ

1
4

4∑
l=1

g(
√

Gσ,n,l
i,j,k)√

ε2 + Gn,l
i,j,k

, (25)

ab
i,j,k = τ

1
4

4∑
l=1

g(
√

Gσ,b,l
i,j,k)√

ε2 + Gb,l
i,j,k

, at
i,j,k = τ

1
4

4∑
l=1

g(
√

Gσ,t,l
i,j,k)√

ε2 + Gt,l
i,j,k

,

and we use, cf. (14),

mi,j,k =
1√√√√ε2 +

(
1
24

∑
z∈Cp

4∑
l=1

√
Gz,l

i,j,k

)2

to define diagonal coefficients

ap
i,j,k = aw

i,j,k + ae
i,j,k + as

i,j,k + an
i,j,k + ab

i,j,k + at
i,j,k + mi,j,kh2.

If we define the right-hand sides at the nth discrete time step by

bi,j,k = mi,j,kh2un−1
i,j,k,

then for the DF node corresponding to triple (i, j, k) we get the equation

ap
i,j,kun

i,j,k − aw
i,j,kun

i−1,j,k − ae
i,j,kun

i+1,j,k − as
i,j,kun

i,j−1,k − (26)

an
i,j,kun

i,j+1,k − ab
i,j,kun

i,j,k−1 − at
i,j,kun

i,j,k+1 = bi,j,k.

Collecting these equations for all DF nodes and taking into account Dirichlet
boundary conditions we get the linear system to be solved.

3.4. Solution of Linear Systems

We can solve system (26) by any efficient preconditioned linear iterative solver
suitable for sparse, symmetric, diagonally dominant M-matrices [66]. For exam-
ple, the so-called SOR (Successive Over Relaxation) method can be used. Then,

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 139

at the nth discrete time step we start the iterations by setting u
n(0)
i,j,k = un−1

i,j,k,
i = il, . . . , ir, j = jl, . . . , jr, k = kl, . . . , kr, and in every iteration l = 1, . . .
and for every i = il, . . . , ir, j = jl, . . . , jr, k = kl, . . . , kr the following two-step
procedure is used:

Y = (aw
i,j,ku

n(l)
i−1,j,k + ae

i,j,ku
n(l−1)
i+1,j,k + as

i,j,ku
n(l)
i,j−1,k +

an
i,j,ku

n(l−1)
i,j+1,k + ab

i,j,ku
n(l)
i,j,k−1 + at

i,j,ku
n(l−1)
i,j,k+1 + bi,j,k)/ap

i,j,k,(27)

u
n(l)
i,j,k = u

n(l−1)
i,j,k + ω(Y − u

n(l−1)
i,j,k).

We define the squared L2-norm of the residuum after the lth SOR iteration by

R(l) =
∑
i,j,k

(ap
i,j,ku

n(l)
i,j,k − aw

i,j,ku
n(l)
i−1,j,k − ae

i,j,ku
n(l)
i+1,j,k −

as
i,j,ku

n(l)
i,j−1,k − an

i,j,ku
n(l)
i,j+1,kab

i,j,ku
n(l)
i,j,k−1 − at

i,j,ku
n(l)
i,j,k+1 − bi,j,k)2.

The iterative process is stopped if R(l) < TOL R(0). The relaxation parameter ω
is chosen by the user to improve the convergence rate of the method.

4. BUILDING UP THE PARALLEL ALGORITHM

4.1. MPI Programming

A parallel computer architecture (cf. [67]) is usually categorized by two as-
pects: whether the memory is physically centralized or distributed, and whether
or not the address space is shared. On one hand there is so-called SMP (symmet-
ric multi-processor) architecture that uses shared system resources, e.g., memory
and an input/output subsystem, equally accessible from all processors. On the
other hand, there is the MPP (massively parallel processors) architecture, where
the so-called nodes are connected by a high-speed network. Each node has its
own processor, memory, and input/output subsystem, and the operating system is
running on each node. Massively does not necessarily mean a large number of
nodes, so one can consider, e.g., a cluster of Linux system computers of a reason-
able size (and price) to solve a particular scientific or engineering problem. But,
of course, parallel computers with a huge number (hundreds) of nodes are used at
large computer centers.

The main goal of parallel programming is to utilize all available processors
and minimize the elapsed time of the program. In SMP architecture one can assign
the parallelization job to a compiler, which usually parallelizes some DO loops
(for image processing applications based on such an approach we refer the reader
to, e.g., [68]). This is a simple approach but is restricted to having such memory

140 KAROL MIKULA and ALESSANDRO SARTI

resources with a shared address space at one’s disposal. In MPP architecture,
where the address space is not shared among the nodes, parallel processes must
transmit data over a network to access data that other processes update. To that
goal, message-passing is employed.

In parallel execution, several programs can cooperate in providing computa-
tions and handling data. But our parallel implementation of the co-volume sub-
jective surface algorithm uses so-called the SPMD (single program multiple data)
model. In the SPMD model, there is only one program built, and each parallel
process uses the same executable working on different sets of data. Since all the
processes execute the same program, it is necessary to distinguish between them.
To that goal, each process has its own rank, and we can let processes behave dif-
ferently, although executing one program, using the value of rank. In our case, we
split the huge amount of voxels into several parts, proportional to the number of
processors, and then we have to rewrite the serial program in such a way that each
parallel process handles the correct part of the data and transmits the necessary
information to other processes.

Parallelization should reduce the time spent on computation. If there are
p processes involved in parallel execution, ideally, the parallel program could
be executed p times faster than a sequential one. However, this is not true in
practice because of the necessity for data transmission due to data splitting. This
drawback of parallelization can be overcome in an efficient and reliable way by
so-called message-passing, which is used to consolidate what has been separated
by parallelization.

The Message Passing Interface (MPI) is a standard specifying a portable in-
terface for writing parallel programs that have to utilize the message-passing. It
aims at practicality, efficiency, and flexibility at the same time. The MPI subrou-
tines solve the problems of environment management, point-to-point and collective
communication among processes, construction of derived data types, input/output
operations, etc.

The environment managment subroutines, MPI Init and MPI Finalize, initiate
and finalize an MPI environment. Using subroutine MPI Comm size, one can get a
number of processes involved in parallel execution belonging to a communicator–
identifier associated with a group of processes participating in the parallel job, e.g.,
MPI COMM WORLD. Subroutine MPI Comm rank gives a rank to a process
belonging to communicator. The MPI parallel program should include the file
mpi.h, which defines all MPI-related parameters (cf. Figure 6).

Collective communication subroutines allow one to exchange data among a
group of processes specified by the communicator, e.g., MPI Bcast sends data from
a specific process called the root to all the other processes in the communicator.
Or, subroutine MPI Allreduce does reduction operations such as summation of
data distributed over all processes in the communicator and places the result on all
of the processes.

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 141

Figure 6. Typical structure of an MPI parallel program.

Using point-to-point communication subroutines, a message is sent by one
process and received by another. We distinguish between unidirectional and bidi-
rectional communications. At the sending process, the data are first collected into
the user sendbuffer (scalar variables or arrays used in the program), and then one
of the MPI send subroutines is called, the system copies the data from the user
sendbuffer to system buffer, and finally the system sends the data from the sys-
tem buffer to the destination process. During the receiving process, one of the
MPI receive subroutines is called, the system receives the data from the source
process, and copies it to the system buffer, and then the system copies the data
from the system buffer to the user recvbuffer, and finally the data can be used by
the receiving process. In MPI, there are two modes of communication: blocking
and non-blocking. Using blocking communication subroutines, the program will
not return from the subroutine call until the copy to/from the system buffer has
finished. Using non-blocking communication subroutines such as MPI Isend and
MPI Irecv, the program immediately returns from the subroutine call. This indi-
cates that the copy to/from the system buffer is only initiated, so one has to assure
that it is also completed by using the MPI Wait subroutine. In other cases, incor-
rect data could be copied to the system buffer. In spite of the higher complexity of
non-blocking subroutines, we generally prefer them, because their usage is more
safe from deadlock in bidirectional communication. Deadlocks can take place
either due to the incorrect order of blocking send and receive subroutines or due
to the limited size of the system buffer, and when a deadlock occurs, the involved
processes will not proceed any further.

In the next subsection we show how the message-passing subroutines men-
tioned above are employed to parallelize the 3D semi-implicit co-volume subjec-
tive surface segmentation method.

142 KAROL MIKULA and ALESSANDRO SARTI

4.2. Parallelization of the Co-Volume Algorithm Using MPI

There are two main goals for parallelization of a program: to handle huge
amounts of data that cannot be placed into the memory of one single serial com-
puter, and to run the program faster. Let us suppose that in terms of running time,
a fraction p of a program can be parallelized. In an ideal situation, executing the
parallelized program on n processors, the running time will be 1 − p + p

n . We
can see that, if, e.g., only 80% of the program can be parallelized, i.e., p = 0.8,
the maximal speed-up (estimated from above by 1

1−p) cannot exceed 5, although
with infinitely many processors. This illustrative example shows that it is very
important to identify the fraction of the program that can be parallelized and maxi-
mize it. Fortunately, every time-consuming part of our algorithm can be efficiently
parallelized either directly (reading and writing data, computing coefficients of the
linear system), or it is possible to change the serial linear solver (SOR method) to
the parallel solver (e.g., RED-BLACK SOR method), which can be parallelized
efficiently. The next important issue in parallelization is to balance the workload
of the parallel processes. This problem can be addressed by as uniform as possible
splitting of the data so that every process provides approximately the same number
of operations. The final and very important step is to minimize the time spent for
communication. This leads, e.g., to a requirement that the data transmitted (e.g.,
multidimensional arrays) be contiguous in memory, so that one can exchange it
among processors directly in one message using only one call of MPI send and re-
ceive subroutines. For parallel algorithms implemented in C language this means
that multidimensional arrays should be distributed in row-wise blocks, or, better,
say we have to split the multidimensional array like u[i][j][k] in the first index i
(cf. Figure 7).

In Figure 8 we can see the main structure of our parallel program. First, the
MPI environment is initiated, and every process involved in parallel execution gets
its rank stored in variable myid = 0, . . . , nprocs − 1, where 0 represents the root
process and nprocs is the number of parallel processes. Then by the root process
we read the time step τ and the upper estimate of the number of time steps nts.
These parameters are sent to all processes by the MPI Bcast subroutine. In the
beginning of the algorithm we also read the image, compute the discrete values of
g0

T in function Coefficients0, and construct the initial segmentation function. All
these procedures work independently on their own (overlapping) subsets of data,
and no exchange of information between processes is necessary in this part of the
program. Then in the cycle we call procedure EllipticStep, which in every time
step contains computing of coefficients (25) and solving the linear system (26). In
the iterative solution of the linear system we will need to exchange overlapping
data between neighbouring processes. The cycle is finished when condition ((23))
is fulfilled, and finally the MPI environment is finalized.

Figure 9 shows our distribution of data among the processes. Both the 3D
image and the discrete values of the segmentation function are represented by a

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 143

Figure 7. Splitting of a 3D image to nprocs 3D rectangular subareas, where nprocs
corresponds to the number of processes involved in parallel execution. See attached CD
for color version.

Figure 8. Main structure of our MPI parallel program for the 3D semi-implicit co-volume
subjective surface segmentation method.

144 KAROL MIKULA and ALESSANDRO SARTI

Figure 9. Data distribution and its overlap over parallel processes.

three-dimensional array indexed by i, j, k. The 3D image is given in index ranges
i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1, k = 1, . . . , N1 + 3. Let us suppose that
our computational domain, i.e., the domain where we update the segmentation
function, is equal to the image domain. Then the boundary positions with i = 1,
i = N1 + 1, j = 1, j = N2 + 1, k = 1, k = N3 + 1 are reserved for Dirichlet
boundary conditions and all the inner voxel positions correspond to DF nodes of
the 3D co-volume algorithm. In order to distribute the data (3D image as well as the
segmentation function), we define n1 = N1

nprocs
+ 1, nlast

1 = N1 − (nprocs − 1)n1,
and we set n2 = N2, n3 = N3. Then on the root process with rank 0 we store
the first part of the 3D image as well as the first part of the discrete segmentation
function, namely, the array with indices i = 1, . . . , n1 + 1, j = 1, . . . , n2 + 1,
k = 1, . . . , n3+1 (cf. Figure 9). The next process with rank 1 handles the next part
of the image and the segmentation function, namely, all 2D slices j = 1, . . . , n2+1,
k = 1, . . . , n3+1 locally indexed by i in the range i = 0, . . . , n1+1, where the 2D
slice with index i = 0 corresponds to the slice with index i = n1 in the root process
(cf. Figure 9). This is similar for further processes, with the only difference that on
the last process with rank nprocs − 1 the index i of the last 2D slice is nlast

1 instead
of n1. The merging of all 2D slices for i = 1, . . . , n1 (nlast

1 on the last process)
from all the subsequent processes gives the non-distributed complete 3D image as
well as the complete segmentation function. In order to solve iteratively the linear
system and to compute its coefficients, we need the overlap. The overlap in which
it is necessary to exchange information between neighbouring processes is given
by the slices n1, n1 + 1 and slices 0, 1 of subsequent processes (cf. Figure 9).

As a first example showing how the data distribution is realized, we present the
procedure for the parallel reading of the 3D image in Figure 10. In all subsequent
figures the value of parameter p = 1. Depending on the rank of the process, we

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 145

Figure 10. Parallel reading of a 3D image.

start the reading of the input file at the desired position and put the graylevel image
intensity to the array 0 ≤ u[i][j][k] ≤ 1.

After reading of the image, the discrete values of g0
T are computed in the

procedure Coefficients0 (cf. the paragraph following (24)). Then we do not need
an image anymore in the program, so the discrete initial segmentation function is

146 KAROL MIKULA and ALESSANDRO SARTI

Figure 11. One iteration of the standard serial SOR method.

built and stored in the same array u[i][j][k] by the procedure InitialSegmentation-
Function.

In every time step, the values of the discrete segmentation function are updated
in the DF nodes, solving iteratively the linear system with coefficients given by
(25). Figure 11 shows one iteration of the serial SOR method described in (25).
We can see the dependence of the currently updated value u[i][j][k] on its six
neighbours (the west, east, south, north, bottom, and top DF nodes). In every
iteration three of them should already be known (cf. (27)), so in parallel run every
consecutive process should wait until its preceding process is finished in order to
get the west values updated. Such dependence is not well suited for parallelization.
But there exists an elegant way to change the standard SOR method to be efficiently
parallelized (see, e.g., [67]). It is possible to split all voxels to RED elements, given
by the condition that the sum of its indices is an even number, and to BLACK
elements, given by the condition that sum of its indices is an odd number. Then
the six neighbours of RED elements are BLACK elements (cf. Figure 12), and the
value of RED elements depends only on those of the BLACK elements, and vice
versa. Due to this fact, we can split one SOR iteration into two steps. First we
update RED elements and then BLACK elements, and this splitting is perfectly
parallelizable. Figure 13 shows one iteration of the so-called RED-BLACK SOR
method operating on RED elements.

After computing one RED-BLACK SOR iteration for the RED elements on
every parallel process, we have to exchange RED updated values in overlapping
regions, and then we can compute one iteration for BLACK elements. The data
exchange is implemented as shown in Figure 14 using non-blocking MPI Isend
and MPI Irecv subroutines. This iterative process is stopped using the condition
for a relative residual stated at the end of Section 3.4. Computing the initial residual
R(0) as well as all further residuals R(l), we have to collect partial information
from all the processes and send the collected value to all processes to check the
stopping criterion by every process. Figure 15 shows how the MPI Allreduce
subroutine is used toward that end in computing R(0). In fact, we compute by the

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 147

Figure 12. The RED element is in the middle, and its 6 neighbors (west, east, south, north,
bottom, and top) have the sum of indices different by 1 from the middle one, so they are all
BLACK elements. See attached CD for color version.

same strategy the residuals R(l) not after every RED-BLACK iteration, since it is
time consuming in itself, but after every ten RED-BLACK iterations. Fulfiling the
stopping criterion for the SOR iterations, we get an approximate solution in the
new time step. In checking the stopping condition (23) of the overall segmentation
process, we have to employ in a similar way the procedure MPI Allreduce in
evaluation of the L2 norm of difference of subsequent time step solutions.

Using the PARAVER software, in Figures 16–19 we visualize the run of our
parallel program, computing just one time step of the method on four proces-
sors. In Figure 16 we can see in green color the time spent for the MPI Init and
MPI Finalize functions. In blue color we can see the running time of the pro-
gram outside the MPI subroutines. First there is the parallel reading of the image,
computing g0

T coefficients and construction of the initial segmentation function,
and then we can see 50 iterations of the RED-BLACK SOR method, indicated
by yellow lines corresponding to data exchanges. Figure 17 shows the zoom of
the previous visualization at the start of the iteration process. The time spent
in the MPI Allreduce subroutine by every process is visualized in orange. This
corresponds to a synchronization of all processes at the first computation of ini-
tial residual before starting iterations of the RED-BLACK SOR method. Next,
MPI Allreduce we can see almost on the right end of the picture, when the residual
after ten RED and ten BLACK iterations is computed. Figure 18 zooms in on this
part of the parallel run. Together with MPI Allreduce in orange, we can see the
MPI Wait procedure in red, the data exchanges expressed by the yellow lines, and

148 KAROL MIKULA and ALESSANDRO SARTI

Figure 13. One iteration for RED elements in the parallel RED-BLACK SOR method. One
iteration for BLACK elements differs only in the Boolean condition of the if command,
which has the form (i + j + k) % 2 == 1.

of course in blue we can see the running of the program in updating the values
of u[i][j][k], either for all RED elements or for all BLACK elements by every
process. Figure 19 gives insight into the MPI data transmission process. The time
spent in MPI Isend is shown in violet, MPI Irecv in gray, and we can see again
MPI Wait in red, which controls so that the desired data are completely transfered
from one process to another.

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 149

Figure 14. Point-to-point communication after one RED-BLACK SOR iteration for RED
elements. The same exchange of data is done also after one iteration for BLACK elements.

5. DISCUSSION OF COMPUTATIONAL RESULTS

In this section we discuss the numerical examples computed using scheme
(18) and by its parallel implementation as presented in the previous section.

In [56] we have shown, using comparisons of our numerical solutions with
known nontrivial exact solutions, that the 3D semi-implicit co-volume method
(18) is second-order accurate for smooth (or mildly singular) solutions and first-
order accurate for highly singular solutions (when the gradient is vanishing on a
large subset of a domain and a discontinuity set of the gradient field is nontrivial).
This means that the method is experimentally convergent and reliable for comput-
ing graph evolutions forming the flat regions as arising in the subjective surface
segmentation method.

150 KAROL MIKULA and ALESSANDRO SARTI

Figure 15. Computing the initial residual in parallel.

Figure 16. Visualization of the parallel run on 4 processors. See attached CD for color
version.

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 151

Figure 17. Zoom of the parallel run. See attached CD for color version.

Figure 18. Further zoom of the parallel run. See attached CD for color version.

Figure 19. Final zoom of the parallel run. See attached CD for color version.

152 KAROL MIKULA and ALESSANDRO SARTI

Figure 20. Subjective surface segmentation of 3D sphere with four holes. See attached
CD for color version.

As a first example, we segment a 3D image with 813 voxels containing a white
sphere with four holes on a black background. One 2D slice along the equator
is presented in Figure 20 (left). On the right-hand side of Figure 20 we can see
a 2D cut of the segmentation function in the same 2D slice after 28 steps of the
semi-implicit scheme using τ = 0.002, ε = 10−3, K = 1, TOL = 0.001 and
δ = 10−5. This state of the segmentation function with a shock profile along the
edges continuing also into gaps can be successively used to segment the sphere
with completion of the holes. The result, where we visualize level surface 0.03, is
plotted in Figure 21.

Figure 21. Result of subjective surface segmentation of a 3D sphere with four holes. See
attached CD for color version.

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 153

Table 1. Computing times and speed-up of parallel
program running on 2 to 32 processors.

processors 2 4 8 16 32

time(secs) 373.4 198.15 112.5 62.85 38.5

speed-up 2 3.77 6.64 11.88 19.4

rel. speed-up 1 0.94 0.83 0.74 0.61

In the next example, we solve the same problem but with an image resolution
given by 1283 voxels. This 3D example we solved on an MPP cluster at CINECA in
Bologna. Since due to the huge amount of unknowns we cannot solve the problem
on a single processor, we started the report on the results with computation on two
processors. Table 1 shows the computing times in seconds for 34 time steps when
the segmentation was achieved using the same parameters as above. As we can
see, the computation times are well scaled using a larger number of processors. As
expected, due to the increasing complexity of communication using a large number
of processors, the relative speed-up (i.e., speed-up over a number of processors)
is decreasing.

Next, we present an example of subjective surface segmentation of a 3D
echocardiographic image of size 81 × 87 × 166 voxels. We use τ = 0.001,
K = 1, TOL = 0.001, and δ = 10−5. As one can see from the volume rendering
visualization in Figure 22, the 3D image is very noisy; however, the surface of
the left ventricle is observable. How noisy is the image intensity can be seen also
from Figure 23, where we plot intensity and its graph in one 2D slice. Due to the
high complexity of this image, we start the segmentation process with an initial
function with maxima in several “points of view” inside the desired object. We
again evolve the segmentation function until the L2 norm of the difference of the
two subsequent time steps is less than the prescribed threshold δ. We then check
a 2D slice with relatively good ventricular boundary edges (Figure 24), where we
can see an accumulation of level sets along the inner boundary of the ventricle
(Figure 24, left). The largest gap in the histogram (Figure 24, right) indicates
the shock in the segmentation function, which can be used for segmentation. We
choose one level inside the gap, and plot it inside the slice (Figure 25, left). We
can check what this level set looks like in other noisy slices (Figure 25, right,
Figure 27), and then we visualize the corresponding 3D isosurface (Figure 28),
which gives a realistic representation of the left ventricle.

154 KAROL MIKULA and ALESSANDRO SARTI

Figure 22. Volume rendering of the original 3D data set. See attached CD for color
version.

Figure 23. Plot of image intensity in slice k = 130 (left), and its 3D graphical view (right).
See attached CD for color version.

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 155

Figure 24. Plot of accumulated level sets in slice k = 130 (left); the histogram of the
segmentation function in this slice (right). See attached CD for color version.

Figure 25. Plot of image intensity together with level line 0.052 in slices k = 130 (left)
and k = 125 (right). Visualization of 3D surface in Figure 22 is done with the same level
set. See attached CD for color version.

156 KAROL MIKULA and ALESSANDRO SARTI

Figure 26. Plot of image intensity together with level line 0.052 in slices k = 115 (left)
and k = 100 (right). Visualization of 3D surface in Figure 22 is done with the same level
set. See attached CD for color version.

Figure 27. Plot of image intensity together with level line 0.052 in two other slices, j = 40.
Visualization of 3D surface in Figure 22 is done with the same level set. See attached CD
for color version.

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 157

Figure 28. Isosurface visualization of the segmentation result for the left ventricle. See
attached CD for color version.

6. ACKNOWLEDGMENTS

This work was supported by Project HPC-EUROPA at the CINECA Super-
Computing Center, Bologna, by EU projects Embryomics, and BioEmergences
and by grants VEGA 1/3321/06 and APVT-20-040902. We thank to G. Ballabio,
C. Calonaci, and R. Gori from CINECA for an introduction to MPI parallel pro-
gramming and for 3D visualizations.

7. REFERENCES

1. Kass M, Witkin A, Terzopulos D. 1987. Snakes: active contour models. Int J Comput Vision
1:321–331.

2. Gage M, Hamilton RS. 1986. The heat equation shrinking convex plane curves. J Diff Geom
23:69–96.

3. Grayson M. 1987. The heat equation shrinks embedded plane curves to round points. J Diff
Geom 26:285–314.

4. Dziuk G. 1991. Algorithm for evolutionary surfaces. Numer Math 58:603–611.

5. Dziuk G. 1994. Convergence of a semi-discrete scheme for the curve shortening flow. Math
Models Methods Appl Sci 4:589–606.

6. Dziuk G. 1999. Discrete anisotropic curve shortening flow. SIAM J Numer Anal 36:1808–1830.

158 KAROL MIKULA and ALESSANDRO SARTI

7. Mikula K, Ševčovič D. 2001. Evolution of plane curves driven by a nonlinear function of
curvature and anisotropy. SIAM J Numer Anal 61:1473–1501.

8. Mikula K, Ševčovič D. 2004. Computational and qualitative aspects of evolution of curves
driven by curvature and external force. Comput Visualiz Sci, 6(4):211–225.

9. Mikula K, Ševčovič D. 2004. A direct method for solving an anisotropic mean curvature flow
of planar curve with an external force. Math Methods Appl Sci 27(13):1545–1565.

10. K. Mikula, Ševčovič D. 2006. Evolution of curves on a surface driven by a geodesic curvature
and external force. Applic Anal 85(4):345–362.

11. Osher S, Sethian JA. 1988. Front propagating with curvature dependent speed: algorithms
based on the Hamilton-Jacobi formulation. J Comput Phys 79:12–49.

12. Sethian JA. 1990. Numerical algorithm for propagating interfaces: Hamilton–Jacobi equations
and conservation laws. J Diff Geom 31:131–161.

13. Sethian JA. 1999. Level set methods and fast marching methods. In Evolving interfaces in
computational geometry, fluid mechanics, computer vision, and material science. Cambridge:
Cambridge UP.

14. Osher S, Fedkiw R. 2003. Level set methods and dynamic implicit surfaces. New York: Springer.
15. Sapiro G. 2001. Geometric partial differential equations and image analysis. Cambridge: Cam-

bridge UP.
16. Handlovičová A, Mikula K, Sgallari F. 2003. Semi-implicit complementary volume scheme

for solving level set-like equations in image processing and curve evolution. Numer Math
93:675–695.

17. Frolkovič P, Mikula K. 2003. Flux-based level set method: a finite volume method for evolv-
ing interfaces. Preprint IWR/SFB 2003-15, Interdisciplinary Center for Scientific Computing,
University of Heidelberg.

18. Frolkovič P, Mikula K. 2005. High resolution flux-based level set method. Preprint 2005-
12, Department of Mathematics and Descriptive Geometry, Slovak University of Technology,
Bratislava.

19. Caselles V, Catté F, T. Coll, Dibos F. 1993. A geometric model for active contours in image
processing. Numer Math 66:1–31.

20. Malladi R, Sethian JA, Vemuri B. 1995. Shape modeling with front propagation: a level set
approach. IEEE Trans Pattern Anal Machine Intell 17:158–174.

21. Perona P, Malik J. 1990. Scale space and edge detection using anisotropic diffusion. IEEE Trans
Pattern Anal Machine Intell 12(7):629–639.

22. Catté F, Lions PL, Morel JM, Coll T. 1992. Image selective smoothing and edge detection by
nonlinear diffusion. SIAM J Numer Anal, 29:182–193.

23. Weickert J, Romeny BMtH, Viergever MA. 1998. Efficient and reliable schemes for nonlinear
diffusion filtering. IEEE Trans Image Processing 7:398–410.

24. Kačur J, Mikula K. 1995. Solution of nonlinear diffusion in image smoothing and edge detection.
Appl Numer Math 17:47–59.

25. Kačur J, Mikula K. 2001. Slow and fast diffusion effects in image processing. Comput Visualiz
Sci 3(4):185–195.

26. Mikula K, Ramarosy N. 2001. Semi-implicit finite volume scheme for solving nonlinear dif-
fusion equations in image processing. Numer Math 89(3):561–590.

27. Mikula K, Sgallari F. 2003. Semi-implicit finite volume scheme for image processing in 3D
cylindrical geometry. J Comput Appl Math 161(1):119–132.

28. Mikula K. 2002. Image processing with partial diferential equations. In Modern methods in
scientific computing and applications, pp. 283–321. Eds A Bourlioux, MJ Gander. NATO
Science Ser. II, Vol. 75. Dodrecht: Kluwer Academic.

29. Krivá Z, Mikula K. 2002. An adaptive finite volume scheme for solving nonlinear diffusion
equations in image processing. J Vis Commun Image Represent 13:22–35.

30. E. Bänsch, Mikula K. 1997. A coarsening finite element strategy in image selective smoothing.
Comput Visualiz Sci 1(1):53–61.

PARALLEL CO-VOLUME SUBJECTIVE SURFACE METHOD 159

31. E. Bänsch, Mikula K. 2001. Adaptivity in 3D image processing. Comput Visualiz Sci 4(1):21–
30.

32. Sarti A, Mikula K, Sgallari F. 1999. Nonlinear multiscale analysis of three-dimensional echocar-
diographic sequences. IEEE Trans Med Imaging 18:453–466.

33. Sarti A, Mikula K, Sgallari F, Lamberti C. 2002. Nonlinear multiscale analysis models for fil-
tering of 3D + time biomedical images. In Geometric methods in biomedical image processing,
pp. 107–128. Ed R Malladi. New York: Springer.

34. Sarti A, Mikula K, Sgallari F, Lamberti C. 2002. Evolutionary partial differential equations for
biomedical image processing. J Biomed Inform 35:77–91.

35. Alvarez L, Lions PL, Morel JM. 1992. Image selective smoothing and edge detection by non-
linear diffusion, II. SIAM J Numer Anal 29:845–866.

36. L Alvarez, Guichard F, Lions PL, Morel JM. 1993. Axioms and fundamental equations of image
processing. Arch Rat Mech Anal 123:200–257.

37. Mikula K, Sarti A, Lamberti C. 1997. Geometrical diffusion in 3D-echocardiography.
In Proceedings of ALGORITMY’97, a conference on scientific computing, pp. 167–181.
http://www.math.sk/mikula/msl alg97.pdf

38. Handlovičová A, Mikula K, Sarti A. 1999. Numerical solution of parabolic equations related
to level set formulation of mean curvature flow. Comput Visualiz Sci 1.(2):179–182.

39. Handlovičová A, Mikula K, Sgallari F. 2002. Variational numerical methods for solving non-
linear diffusion equations arising in image processing. J Vis Commun Image Represent 13:217–
237.

40. Mikula K. 2001. Solution and applications of the curvature driven evolution of curves and
surfaces. In Numerical methods for viscosity solutions and applications, pp. 173–196. Eds M
Falcone, Ch Makridakis. Advances in Mathematics for Applied Sciences, Vol. 59. Singapore:
World Scientific.

41. Mikula K, Preusser T, Rumpf M, Sgallari F. 2002. On anisotropic geometric diffusion in 3D
image processing and image sequence analysis. In Trends in nonlinear analysis, pp. 307–322.
Ed M Kirkilionis, et al. New York: Springer.

42. Mikula K, Preusser T, Rumpf M. 2004. Morphological image sequence analysis. Comput Vi-
sualiz Sci 6(4):197–209.

43. Caselles V, Kimmel R, Sapiro G. 1995. Geodesic active contours. In Proceedings of the fifth
international conference on computer vision (ICCV’95), pp. 694–699. Washington, DC: IEEE
Computer Society.

44. Caselles V, Kimmel R, Sapiro G. 1997. Geodesic active contours. Int J Comput Vision 22:61–79.
45. Caselles V, Kimmel R, Sapiro G, Sbert C. 1997. Minimal surfaces: a geometric three dimen-

sional segmentation approach. Numer Math 77:423–451.
46. Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A. 1995. Gradient flows and geo-

metric active contours models. In Proceedings of the fifth international conference on computer
vision (ICCV’95), pp. 810–815. Washington, DC: IEEE Computer Society.

47. Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A. 1996. Conformal curvature
flows: from phase transitions to active vision. Arch Rat Mech Anal 134:275–301.

48. Sarti A, Malladi R, Sethian JA. 2000. Subjective surfaces: a method for completing missing
boundaries. Proc Natl Acad Sci USA Vol. 12(97):6258–6263.

49. Sarti A, Citti G. 2001. Subjective surfaces and riemannian mean curvature flow graphs. Acta
Math Univ Comenianae 70(1):85–104.

50. Sarti A, Malladi R, Sethian JA. 2002. Subjective surfaces: a geometric model for boundary
completion. Int J Comput Vision 46(3):201–221.

51. Evans LC, Spruck J. 1991. Motion of level sets by mean curvature, I. J Diff Geom 33:635–681.
52. Mikula K, Sarti A, Sgallari F. 2005. Semi-implicit co-volume level set method in medical

image segmentation. In Handbook of biomedical image analysis: segmentation and registration
models, pp. 583–626. Ed JS Suri, D Wilson, S Laxminarayan. New York: Springer.

160 KAROL MIKULA and ALESSANDRO SARTI

53. Chen Y-G, Giga Y, Goto S. 1991. Uniqueness and existence of viscosity solutions of generalized
mean curvature flow equation. J Diff Geom 33:749-786.

54. Crandall MG, Ishii H, Lions PL. 1992. User’s guide to viscosity solutions of second order
partial differential equations. Bull Amer Math Soc 27:1–67.

55. Citti G, Manfredini M. 2002. Long time behavior of Riemannian mean curvature flow of graphs.
J Math Anal Appl 273(2):353–369.

56. Corsaro S, Mikula K, Sarti A, Sgallari F. 2004. Semi-implicit co-volume method in 3D image
segmentation. Preprint 2004-12, Department of Mathematics and Descriptive Geometry, Slovak
University of Technology, Bratislava.

57. Patankar S. 1980. Numerical heat transfer and fluid flow. New York: Hemisphere Publishing.
58. Eymard R, Gallouet T, Herbin R. 2000. The finite volume method. In Handbook for numerical

analysis, Vol. 7, pp. 715–1022. Ed Ph Ciarlet, JL Lions. New York: Elsevier.
59. Le Veque R. 2002. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied

Mathematics, Cambridge: Cambridge UP.
60. Brenner SC, Scott LR. 2002. The mathematical theory of the finite element method. New York:

Springer.
61. Thomée V. 1997. Galerkin finite element methods for parabolic problems. Berlin: Springer.
62. Deckelnick K, Dziuk G. 1995. Convergence of a finite element method for non-parametric

mean curvature flow. Numer Math 72:197-222.
63. Deckelnick K, Dziuk G. 2000. Error estimates for a semi-implicit fully discrete finite element

scheme for the mean curvature flow of graphs. Interfaces Free Bound 2(4):341–359.
64. Deckelnick K, Dziuk G. 2003. Numerical approximation of mean curvature flow of graphs

and level sets. In Mathematical aspects of evolving interfaces, pp. 53–87. Ed L Ambrosio, K
Deckelnick, G Dziuk, M Mimura, VA Solonnikov, HM Soner. New York: Springer.

65. Walkington NJ. 1996. Algorithms for computing motion by mean curvature. SIAM J Numer
Anal, 33(6):2215–2238.

66. Saad Y. 1996. Iterative methods for sparse linear systems. Spanish Fork, UT: PWS Publishing.
67. Aoyama Y, Nakano J. 1999. RS/6000 SP: Practical MPI Programming, IBM

www.redbooks.ibm.com.
68. Mikula K. 2001. Parallel filtering of three dimensional image sequences. In Science and super-

computing at CINECA, pp. 674–677. Ed F Garofalo, M Moretti, M Voli. Bologna: CINECA.
69. Kanizsa G. 1979. Organization in vision. New York: Praeger.
70. Mikula K, Sarti A, Sgallari F. 2006. Co-volume method for Riemannian mean curvature flow

in subjective surfaces multiscale segmentation. Comput Visualiz Sci 9(1):23–31.

