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We introduce a new class of methods for solving non-stationary advection equations. 
The new methods are based on finite volume space discretizations and a semi-implicit 
discretization in time. Its basic idea is that outflow from a cell is treated explicitly while 
inflow is treated implicitly. This is natural, since we know what is outflowing from a cell 
at the old time step but we leave the method to resolve a system of equations determined 
by the inflows to a cell to obtain the solution values at the new time step. The matrix 
of the system in our inflow-implicit/outflow-explicit (IIOE) method is determined by the 
inflow fluxes which results in an M-matrix yielding favorable stability properties for the 
scheme. Since the explicit (outflow) part is not always dominated by the implicit (inflow) 
part and thus some oscillations can occur, we build a stabilization based on the upstream 
weighted averages with coefficients determined by the flux-corrected transport approach 
[2,19] yielding high resolution versions, S1IIOE and S2IIOE, of the basic scheme. We prove 
that our new method is exact for any choice of a discrete time step on uniform rectangular 
grids in the case of constant velocity transport of quadratic functions in any dimension. 
We also show its formal second order accuracy in space and time for 1D advection 
problems with variable velocity. Although designed for non-divergence free velocity fields, 
we show that the basic IIOE scheme is locally mass conservative in case of divergence 
free velocity. Finally, we show L2-stability for divergence free velocity in 1D on periodic 
domains independent of the choice of the time step, and L∞-stability for the stabilized high 
resolution variant of the scheme. Numerical comparisons with the purely explicit schemes 
like the fully explicit up-wind and the Lax–Wendroff schemes were discussed in [13] and 
[14] where the basic IIOE was originally introduced. There it has been shown that the new 
scheme has good properties with respect to a balance of precision and CPU time related to 
a possible choice of larger time steps in our scheme. In this contribution we compare the 
new scheme and its stabilized variants with widely used fully implicit up-wind method. 
In this comparison our new schemes show better behavior with respect to stability 
and precision of computations for time steps several times exceeding the CFL stability 
condition. Our new stabilized methods are L∞ stable, second order accurate for any smooth 
solution and with accuracy of order 2/3 for solutions with moving discontinuities. This 
is opposite to implicit up-wind schemes which have accuracy order 1/2 only. All these 
properties hold for any choice of time step thus making our new method attractive for 
practical applications.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: karol.mikula@stuba.sk (K. Mikula), mario.ohlberger@uni-muenster.de (M. Ohlberger), jozo.urban@gmail.com (J. Urbán).

http://dx.doi.org/10.1016/j.apnum.2014.06.002
0168-9274/© 2014 IMACS. Published by Elsevier B.V. All rights reserved.



Author's personal copy

K. Mikula et al. / Applied Numerical Mathematics 85 (2014) 16–37 17

1. Introduction

In this article we present the inflow-implicit/outflow-explicit (IIOE) method, and its stabilized (S1IIOE, S2IIOE) high-
resolution variants, for solving general time dependent variable velocity advection equations of the form

ut + v · ∇u = 0 (1)

where u ∈ Rd ×[0, T ] is the unknown function and v is a vector field which may vary in space, e.g. v = v(x, u, ∇u). Variable 
velocity vector fields arise in many applications, e.g. in transport equations with non-divergence free velocities or nonlinear 
conservation laws [11], in the Eulerian level set methods for evolving fronts [18], in a tangentially stabilized Lagrangean 
methods for evolving interfaces [1,16] or in other applications like an image segmentation by active contours in a form of 
generalized subjective surface method [3,4,9,15,17,20]. In such case of image segmentation, the spatially varying vector field 
v(x) depends on the gradient of the image intensity function. For motion of level sets in normal direction with speed F (x)
we have v = F (x) ∇u

|∇u| [12,18]. In this case the basic IIOE method coincides with the semi-implicit forward–backward diffu-
sion approach recently presented by the authors in [12]. In the context of level set equations the originality of the approach 
in [12] consists in rewriting the level set equation for motion in normal direction in terms of an equation containing the 
forward and backward diffusion. Then naturally, the forward diffusion dominated parts of the model are treated implicitly, 
while the backward diffusion dominated parts are treated explicitly. The resulting scheme is a semi-implicit second order 
numerical scheme that allows large time steps. Hence, our new IIOE method presented in [13,14] and in this paper can be 
seen as a generalization of the approach from [12] to arbitrary variable velocity advection equations.

The basic idea of our new IIOE method is that outflow from a cell is treated explicitly while inflow is treated implicitly. 
Such an approach is natural, since we know what is flowing out from a cell at an old time step n − 1 but we leave the 
method to resolve a system of equations determined by the inflows to obtain a new value in the cell at time step n. Since 
the matrix of the system is determined by the inflow fluxes, it is an M-matrix and thus it has favorable solvability and 
stability properties. It is worth to note that a similar idea to construct the M-matrix in the implicit part has also been 
introduced by Kuzmin and his co-authors by using a purely algebraic approach in the context of solving advection equations 
by the Galerkin finite element method combined usually with the Crank–Nicolson time stepping, see [10] for the latest 
state-of-the-art and related references.

Since the explicit (outflow) part is not always dominated by the implicit (inflow) part, some oscillations can occur in 
the basic IIOE scheme. One way is to leave them propagate and perform some postprocessing of the numerical solution, 
or another way is to incorporate a stabilization mechanism into the scheme itself. As it was shown in [12], a special local 
averaging was sufficient to stabilize the forward–backward diffusion approach in order to get stable second order solution 
in case of smooth level set interface motion in normal direction, but in general, such local averaging does not guarantee
fulfilling sharply the discrete minimum–maximum principle. In this paper we build a new stabilization of the basic IIOE 
scheme based on the so-called flux-corrected transport approach [2,19] yielding L∞ stable high resolution variant of the 
scheme.

We also present theoretical results for our new scheme, namely, its exactness for any choice of time step on uniform 
rectangular grids in the case of constant velocity transport of quadratic functions in any dimension and its formal second 
order accuracy in space and time for 1D advection problems with variable velocity. Although designed for non-divergence 
free velocity fields, we show that the basic IIOE scheme is locally mass conservative in case of divergence free velocity. 
Finally, we show L2-stability for divergence free velocity in 1D on periodic domains independent of the choice of the time 
step, and L∞-stability for the stabilized high resolution variant of the scheme.

Numerical comparisons with the fully explicit schemes like the fully explicit up-wind and the (limited) Lax–Wendroff 
method were discussed in [13] and [14]. There, the positive properties of the new scheme have been shown with respect to 
a balance of precision and CPU time. Thus, in this paper we concentrate mainly on a comparison of the new IIOE scheme and 
its stabilized variants with the well-known and widely used fully implicit up-wind method for solving advection equations. 
We show superior behavior of our new schemes with respect to stability and precision of computations for time steps 
largely exceeding CFL stability condition. Our new schemes are L∞ stable, second order accurate for smooth solutions and 
with accuracy of order 2/3 for solutions with moving discontinuities, opposite to the implicit up-wind schemes which have 
accuracy order only 1/2 in the discontinuous case. Moreover, all these properties hold for any choice of time step and thus 
make our new methods attractive from the point of view of practical applications where no concern on CFL restrictions is 
preferable.

The rest of the article is organized as follows. In Section 2 we introduce the general formulation of the basic and 
stabilized IIOE schemes on unstructured grids in several space dimensions. In Section 3, for clarity and also due to the 
reasons of our theoretical study, we write a 1D version of the IIOE scheme and also its higher dimensional form in the case 
of advective motion of level sets in normal direction in order to clearly see its relation to the forward–backward diffusion 
approach from [12]. In Section 4 we present theoretical results for our new schemes and in Section 5 we present several 
representative 1D and higher dimensional numerical experiments demonstrating interesting properties of the method.
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2. The inflow-implicit/outflow-explicit scheme

Let us consider Eq. (1) in a bounded polygonal domain Ω ⊂ Rd , d = 2, 3, and time interval [0, T ]. Let Qh denote a primal 
polygonal partition of Ω . Let p be a finite volume (cell) of a corresponding dual Voronoi tessellation Th with measure 
mp and let epq be an edge between p and q, q ∈ N(p), where N(p) is a set of neighboring finite volumes (i.e. p̄ ∩ q̄ has 
nonzero (d − 1)-dimensional measure). Let us note that the Voronoi property is introduced just due to a formulation of the 
scheme for advective motion of level sets in normal direction, presented in Section 3.2, where approximation of the solution 
gradient is necessary. Let cpq be the length of epq and npq be the unit outer normal vector to epq with respect to p. We 
shall consider Th to be an admissible mesh in the sense of [5], i.e., there exists a representative point xp in the interior of 
every finite volume p such that the joining line between xp and xq , q ∈ N(p), is orthogonal to epq . We denote by xpq the 
intersection of this line segment with the edge epq . The length of this line segment is denoted by dpq , i.e. dpq := |xq − xp |. 
As we have constructed Th based on the primal mesh Qh , we assume that the points xp coincide with the vertices of Qh . 
Let us denote by up a (constant) value of the solution in a finite volume p computed by the scheme. For the solution 
representation inside the finite volume p we either use this value up or a reconstructed (but again constant) value denoted 
by up . A constant value of the solution assigned to the edge epq (given again by a reconstruction) is denoted by upq .

In order to motivate our new scheme, let us rewrite (1) in the formally equivalent form with conserving and non-
conserving parts [7,8]

ut + ∇ · (vu) − u∇ · v = 0. (2)

Integrating (2) over a finite volume p then yields∫
p

ut dx +
∫
p

∇ · (vu)dx −
∫
p

u∇ · v dx = 0.

Using a constant representation of the solution on the cell p denoted by up and applying the divergence theorem we get∫
p

ut dx +
∑

q∈N(p)

∫
epq

uv · npq ds − up

∑
q∈N(p)

∫
epq

v · npq ds = 0.

Denoting by upq another representative constant value of the solution on the interface epq , we further get∫
p

ut dx +
∑

q∈N(p)

upq

∫
epq

v · npq ds − up

∑
q∈N(p)

∫
epq

v · npq ds = 0.

If we denote the integrated fluxes in the inward normal direction to the finite volume p by

v̄ pq = −
∫

epq

v · npq ds, (3)

we finally arrive at the balance law∫
p

ut dx +
∑

q∈N(p)

v̄ pq(up − upq) = 0. (4)

The major new idea of our scheme is to split the resulting fluxes into the corresponding inflow and outflow parts to the 
cell p. This is done by defining

ain
pq = max(v̄ pq,0), aout

pq = min(v̄ pq,0). (5)

We then approximate ut by the time difference un
p−un−1

p

τ , where τ is a uniform time step size, and take the inflow parts im-
plicitly and the outflow parts explicitly in (4). This yields the following system of equations for the finite volume solution un

p , 
p ∈ Th at the n-th discrete time step

un
p + τ

mp

∑
q∈N(p)

ain
pq

(
un

p − un
pq

) = un−1
p − τ

mp

∑
q∈N(p)

aout
pq

(
un−1

p − un−1
pq

)
(6)

for all p ∈ Th .
The most natural choice for reconstructions um

p and um
pq , m = n, n − 1 is given by

um
p = um

p , um
pq = 1

2

(
um

p + um
q

)
(7)
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and leads to the basic IIOE scheme

un
p + τ

2mp

∑
q∈N(p)

ain
pq

(
un

p − un
q

) = un−1
p − τ

2mp

∑
q∈N(p)

aout
pq

(
un−1

p − un−1
q

)
(8)

which for a uniform squared grids in two space dimensions with a finite volume side width h reduces to the following 
simple system

un
p + τ

2h2

∑
q∈N(p)

ain
pq

(
un

p − un
q

) = un−1
p − τ

2h2

∑
q∈N(p)

aout
pq

(
un−1

p − un−1
q

)
. (9)

Before proceeding further let us remark that, Eq. (4) has the form of a discretization of a diffusion equation, where v̄ pq

would represent the so-called transmissive coefficients (integrated diffusion fluxes divided by distances between cell cen-
ters). In a standard forward diffusion all these coefficients are strictly positive which leads to a weighted averaging of the 
solution and the implicit schemes are natural in this case. On the other hand the negative coefficients would correspond to a 
backward diffusion in which case information propagates outside the cell and explicit schemes are thus natural. In our case 
the sign of the coefficients is given by the inflow or outflow character of the cell boundary and the inflow-implicit/outflow-
explicit approach is thus natural. This forward–backward diffusion relationship with the inflow–outflow fluxes is inspired 
by [12] where the forward–backward diffusion formulation was used for solving advective motion of level sets in normal 
direction. Let us also note that a term hd−1 is included in the definition of the numerical fluxes v̄ pq and a term hd in 
definition of mp . Thus, taking this into account we see that a τ/h term is in front of the sums in (9) which is standard 
in advection discretization schemes. It is also well-known that in any second order scheme for solving advection equations 
one can identify the “forward diffusion” part (like the first order up-winding) and the “backward diffusion” part (additional 
sharpening terms coming (sometimes surprisingly) from the second order Taylor’s expansions), a classical example is e.g. 
the Lax–Wendroff scheme [11]. In our method this splitting arises naturally and, as we will see theoretically in Section 4, it 
gives the second order accuracy. Since the “backward diffusion” part of the scheme is clearly given, its stabilization can be 
built straightforwardly if it is necessary to suppress some (not unboundedly growing) oscillations.

The basic scheme (8) allows to use any time step size τ and obtain a solution of the linear system given by the left 
hand implicit side. This follows from the M-matrix property of the system and we call it the solvability property of the 
scheme. However, the right hand explicit side may cause oscillations especially in case of singularities or large gradients 
in a solution. These oscillations do not grow unboundedly in time, but if one prefers to remove them we present here 
a strategy how to make our method unconditionally stable in the L∞ sense and keep its second order accuracy for smooth 
solutions. The stabilization approach is based on an adaptive upstream weighted choice for the averages um

pq , m = n, n − 1

at the cell interfaces. Instead of taking um
pq = 1

2 (um
p + um

q ) as suggested for the basic scheme, we relax (7) to the choice

um
p = um

p , um
pq = (

1 − θm
pq

)
um

p + θm
pqum

q (10)

for some weighting parameter θm
pq ∈ [0, 1] that we will choose locally in such a way that the resulting scheme becomes 

unconditionally stable in L∞. With this relaxation we recover the basic scheme for θn
pq = θn−1

pq = 1/2, while θm
pq = 1 corre-

sponds to full up-wind for inflows (and full down-wind for outflows) and θm
pq = 0 to full down-wind for inflows (and full 

up-wind for outflows). Since in our scheme the inflows appear in the implicit part, i.e. with index m = n, and outflows 
appear in the explicit part, i.e. for m = n − 1, we will use notation θ in,n

pq for inflow relaxation parameters and θout,n−1
pq for 

outflow relaxation parameters. Plugging reconstructions (10) in both inflow-implicit and outflow-explicit parts of (6) we get

un
p + τ

mp

∑
q∈N(p)

ain
pq

(
un

p − ((
1 − θ in,n

pq

)
un

p + θ in,n
pq un

q

))

= un−1
p − τ

mp

∑
q∈N(p)

aout
pq

(
un−1

p − ((
1 − θout,n−1

pq

)
un−1

p + θout,n−1
pq un−1

q

))
(11)

from where we obtain the general form of a stabilized IIOE scheme

un
p + τ

mp

∑
q∈N(p)

θ in,n
pq ain

pq

(
un

p − un
q

) = un−1
p − τ

mp

∑
q∈N(p)

θout,n−1
pq aout

pq

(
un−1

p − un−1
q

)
(12)

where θout,n−1
pq , θ in,n

pq will be chosen using ideas of the so-called flux-corrected transport (FCT) methodology [2,19]. The sta-
bilized IIOE scheme can be understood as a high-resolution variant of the basic IIOE scheme which may locally decrease 
the outflow contributions, and, when not considering the outflows at all, it corresponds to a fully implicit up-wind method, 
where only inflows are considered. The local choice of the relaxation parameters will be done in such a way, that the stabi-
lized IIOE scheme reduces to the basic IIOE in case of well resolved smooth solutions (and thus it is second order in smooth 
case), whereas it switches locally towards a fully implicit discretization at grid points where the minimum–maximum prin-
ciple would be violated. We show by numerical computations that unlike the classical first order implicit up-wind method 
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which has for linearly advected solutions with discontinuities convergence order 1/2, the new method has in such cases 
convergence order 2/3 for any choice of time step.

As noticed above, the choice of θ -stabilization coefficients follows the FCT approach. In our semi-implicit method, the 
only part which may cause the violation of the global minimum–maximum principle is the right hand explicit side of (12). 
Thus, we require that the relaxation parameters θout,n−1

pq are chosen in such a way that the following two conditions are 
fulfilled locally in every finite volume p

un−1
p − τ

mp

∑
q∈N(p)

θout,n−1
pq aout

pq

(
un−1

p − un−1
q

) ≤ umax,n−1
p , (13)

un−1
p − τ

mp

∑
q∈N(p)

θout,n−1
pq aout

pq

(
un−1

p − un−1
q

) ≥ umin,n−1
p . (14)

Here, umax,n−1
p and umin,n−1

p denote a maximum, respectively minimum in a local neighborhood of p at time step n − 1. 
A particular choice of the parameters θout,n−1

pq is determined as follows. Let us denote by nout the number of nonzero 
outflows from the finite volume p, i.e.

nout = −
∑

q∈N(p)

sign
(
aout

pq

)
.

For all q ∈ N(p) where aout
pq < 0 and (un−1

p − un−1
q ) 
= 0 we require that the following two conditions are satisfied

1

nout
un−1

p − τ

mp
θout,n−1

pq aout
pq

(
un−1

p − un−1
q

) ≤ 1

nout
umax,n−1

p , (15)

1

nout
un−1

p − τ

mp
θout,n−1

pq aout
pq

(
un−1

p − un−1
q

) ≥ 1

nout
umin,n−1

p . (16)

It is clear that by summation of the conditions (15) over all q ∈ N(p) we get (13) and similarly by summation of (16) we 
get (14). The conditions (15), (16) are not necessarily optimal ones, but they are sufficient to get (13) and (14). Since on 
the right hand side of (13), (14) there are local minima and maxima which are inside the range of the global minimum and 
maximum at the time step n − 1, due to the M-matrix property of the system on the left hand side of (12), we have that 
the overall solution in the new time step fulfills the global minimum–maximum principle. From (15) and (16) we get two 
conditions for θout,n−1

pq

θout,n−1
pq ≤

1
nout (umax,n−1

p − un−1
p )

− τ
mp

aout
pq (un−1

p − un−1
q )

, if
(
un−1

p − un−1
q

)
> 0, (17)

θout,n−1
pq ≤

1
nout (umin,n−1

p − un−1
p )

− τ
mp

aout
pq (un−1

p − un−1
q )

, if
(
un−1

p − un−1
q

)
< 0 (18)

from which we define

θout,n−1
pq = Min

(
1

2
,

mp(umax,n−1
p − un−1

p )

τnoutaout
pq (un−1

q − un−1
p )

)
if aout

pq

(
un−1

q − un−1
p

)
> 0 (19)

θout,n−1
pq = Min

(
1

2
,

mp(umin,n−1
p − un−1

p )

τnoutaout
pq (un−1

q − un−1
p )

)
if aout

pq

(
un−1

q − un−1
p

)
< 0. (20)

If aout
pq = 0 or un−1

p − un−1
q = 0, θout,n−1

pq could be theoretically arbitrary, but we set

θout,n−1
pq = 1

2
, if aout

pq

(
un−1

q − un−1
p

) = 0. (21)

Finally, it remains to define the relaxation parameters θ in,n
pq for the implicit inflow parts. If θ in,n

pq is considered for an inflow 
face to volume p, it is natural that θout,n−1

qp is associated with an outflow face of the neighboring cell q. Thus, a natural 
choice that makes the reconstruction un

pq at the interface epq unique, is

θ in,n
pq = 1 − θout,n−1

qp (22)

where θout,n−1
qp is defined through (19)–(21). The scheme (12) with the choice of relaxation parameters given by (19)–(22)

represent our first stabilized S1IIOE scheme. Let us note that our definitions of relaxation parameters ensure that for outflow 
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faces we always have θout,n−1
pq ∈ [0, 1/2] and for inflow faces θ in,n

pq ∈ [1/2, 1]. Thus, the relaxation may only shift the recon-
struction at cell interfaces towards an upstream average. The conditions (19)–(21) guarantee L∞ stability, while condition 
(22) keeps the scheme consistent and ensures uniqueness of the cell interface reconstructions.

Performing numerical experiments, we have found and built also a second approach to stabilization that results in our
S2IIOE scheme which is given by a two-step procedure in every discrete time step:

1st step: first use the basic IIOE scheme, i.e. solve (12) with θ
in,n
pq = θ

out,n−1
pq = 1/2.

2nd step: if un
p > umax,n−1

p or un
p < umin,n−1

p we redefine θ
out,n−1
pq and θ

in,n
qp according to (19)–(22).

(23)

The usage of the S2IIOE scheme is motivated by the fact that conditions (13), (14) may be too strong. Although they are 
not fulfilled sharply, the implicit part can keep the numerical solution in the minimum–maximum range. Thus, we mark the 
points where the minimum–maximum principle is violated when applying the basic IIOE scheme and only in those points 
we redefine the relaxation parameters. On the first view, this approach seems slower concerning CPU than S1IIOE, because 
we have to solve the linear system twice. But, on the other hand, the redefinition of relaxation parameters, which takes its 
own CPU time, occurs only in few points while in S1IIOE it is done in every grid point. Our computational experience is 
that S2IIOE scheme is only slightly (like 10–20%) slower than S1IIOE scheme while, especially in case of smooth solutions, 
it increases precision significantly.

Further useful modification of both stabilized schemes is that we can consider umax,n−1
p and umin,n−1

p in (13), (14) and 
subsequent formulas taking into account a local quadratic reconstruction of the numerical solution at time step n − 1. This 
can be useful, because the maximum (minimum) does not necessarily transfer to a grid point in a consecutive time step. 
The quadratic reconstruction allows the reconstructed numerical solution to be slightly higher (lower) than just values at 
grid points and thus keeps overall maximum (minimum) with higher order accuracy. In particular, it makes our stabilized 
S2IIOE method exact for an advection of a quadratic function by a constant velocity for any choice of time step, similarly to 
such property of the basic IIOE scheme, because the θ coefficients are not redefined when using quadratic reconstruction.

We summarize our new inflow-implicit/outflow-explicit methods in the following general definition.

Definition 2.1 (IIOE schemes). Let initial data u0 ∈ C0(Ω) and Dirichlet boundary data uD ∈ C0(∂Ω ×[0, T ]) be given. Further-
more, let R p and R pq denote suitable local reconstructions of the solution on the cell p and the interface epq , respectively 
and gpq denote a suitable numerical flux that approximates − 

∫
epq

v · npq ds. These operators may differ depending on the 
inflow or outflow character of the cell interface (such dependence will be denoted by superscripts in and out).

Then the general inflow-implicit/ outflow-explicit method (IIOE) is defined as follows:

Initial data: For n = 0 define the piecewise constant approximation u0
h through

u0
h

∣∣
p(x) := u0

p := πp(u0), ∀x ∈ p, p ∈ Th, (24)

where πp : C0(p) → P0(p) is a suitable local projection to a constant.

Time step (n − 1) → n: For n > 0 we define un
h through un

p , p ∈ Th as follows

a) Definition of boundary values at time tn: For all xp ∈ ∂Ω we set

un
p := uD

(
xp, tn). (25)

b) Definition of the interior values at time tn:
i) Inflow/outflow splitting of the fluxes. For all interfaces epq we define

ain,n
pq = max

(
gin

pq

(
v, un

h

)
,0

)
, aout,n−1

pq = min
(

gout
pq

(
v, un−1

h

)
,0

)
. (26)

ii) For all xp ∈ Ω \ ∂Ω we define un
p as the solution of the following linear system

un
p + τ

mp

∑
q∈N(p)

ain,n
pq

(
Rin

p

(
un

h

) − Rin
pq

(
un

h

))

= un−1
p + τ

mp

∑
q∈N(p)x

aout,n−1
pq

(
Rout

p

(
un−1

h

) − Rout
pq

(
un−1

h

))
. (27)

Note that (26) and (27) may result in a non-linear system of equations for un
h , if the velocity field depends on the 

solution.
c) Definition of un

h:
We define the piecewise constant approximation un

h as

un
h|p(x) := un

p, ∀x ∈ p, p ∈ Th.
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A specific IIOE scheme is obtained by specifying the reconstruction operators Rin
p , Rin

pq , Rout
p , Rout

pq and the numerical flux 
function gin

pq , gout
pq . The most natural choice of reconstruction operators are given in (7) and (3) and lead to our basic IIOE 

scheme. More sophisticated choices are given by (10) with stabilization parameters chosen from (19)–(22), or from (23) and 
lead to the S1IIOE, and S2IIOE schemes, respectively. These schemes are used in all computations presented in Section 5. 
Further particular choices of reconstructions are possible, e.g. a local averaging, as presented in the context of motion of 
level sets in normal direction in [12].

3. Special cases of the IIOE scheme

For clearer exposition and to prepare for the theoretically analysis in Section 4, we now detail the method in two 
particular cases, for one dimensional transport with variable velocity, and for motion of level sets in normal direction.

3.1. IIOE scheme for 1D variable velocity case

Let us derive the scheme for the one-dimensional equation

ut + vux = 0, (28)

where v = v(x). Again (28) is written in the form

ut + (vu)x − uvx = 0, (29)

and integrated in pi , the cell with the spatial index i, length h, center point xi , left border xi− 1
2

and right border xi+ 1
2

. Let 
us denote vi = v(xi), vi− 1

2
= v(xi− 1

2
), vi+ 1

2
= v(xi+ 1

2
), un

i the value of the numerical solution at time step n and un
i , un

i− 1
2

the reconstructed values. Using the Newton–Leibniz formula we get∫
pi

ut dx + vi+ 1
2

ui+ 1
2

− vi− 1
2

ui− 1
2

− ui(vi+ 1
2

− vi− 1
2
) = 0,

which can be rewritten as∫
pi

ut dx + vi− 1
2
(ui − ui− 1

2
) + (−vi+ 1

2
)(ui − ui+ 1

2
) = 0.

If vi− 1
2

> 0 it represents inflow from the left to the cell and if (−vi+ 1
2
) > 0 it represents inflow from the right to the cell. If 

the signs are opposite it represents outflows. Thus, we define

ain
i− 1

2
= max(vi− 1

2
,0), aout

i− 1
2

= min(vi− 1
2
,0),

ain
i+ 1

2
= max(−vi+ 1

2
,0), aout

i+ 1
2

= min(−vi+ 1
2
,0).

If we use a finite difference approximation of the time derivative, take inflow implicitly and outflow explicitly and use the 
simple reconstructions un

i = un
i , un

i− 1
2

= 1
2 (un

i + un
i−1) in both time steps, we end up with the basic one-dimensional IIOE 

scheme:

un
i + τ

2h
ain

i− 1
2

(
un

i − un
i−1

) + τ

2h
ain

i+ 1
2

(
un

i − un
i+1

)
= un−1

i − τ

2h

(
aout

i− 1
2

(
un−1

i − un−1
i−1

) + aout
i+ 1

2

(
un−1

i − un−1
i+1

))
. (30)

The scheme (30) requires to solve a tridiagonal system in every time step which is very fast using the standard tridiagonal 
solver (also called the Thomas algorithm). The stabilized one-dimensional S1IIOE and S2IIOE schemes are obtained by (12)
with the formulas (19)–(22) and (19)–(23), respectively.

3.2. IIOE scheme for motion of level sets in normal direction

In the case of motion of level sets in normal direction we consider Eq. (1) with velocity depending on the gradient of 
solution, i.e. v = F ∇u

|∇u| . Let us consider Cartesian grids in two space dimensions with finite volume side width h and define

v pq = F h
(un−1

p − un−1
pq )

(h/2)|∇un−1
pq | = 2F (un−1

p − un−1
pq )

|∇un−1
pq | (31)
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where |∇un−1
pq | is computed by the diamond-cell strategy as detailed in [12]. Plugging expression (31) for integrated inward 

fluxes into the basic IIOE scheme (9) and comparing it with the scheme (2.5) in [12] we see that they form exactly the 
same system. One can also see the correspondence of the forward diffusion coefficients in [12] and inflow coefficients in 
the IIOE scheme (9), respectively the backward diffusion coefficients in [12] and outflow coefficients in the IIOE scheme (9). 
The FBD and FBD2 schemes from [12] are obtained using their reconstruction stencils (Definitions 2.3 and 3.1), and the role 
of the forward diffusion contribution D f

p respectively the backward diffusion contribution Db
p in general Definition 2.1 of 

[12] is played by the total inflow Din
p respectively the total outflow Dout

p defined by

Din
p =

∑
q∈N(p)

ain
pq, Dout

p =
∑

q∈N(p)

aout
pq . (32)

Numerical experiments for such an IIOE scheme are presented in [12] and also the results of the new stabilized versions of 
the basic scheme presented in this paper in Section 5.3 are similar to those.

4. Analysis of the scheme

The aim of this section is to give some theoretical backup for the IIOE schemes. In particular we address local mass 
conservation, exactness for transport of quadratic polynomials with constant velocity with arbitrary time steps, formal order 
of consistency, L∞(L2) stability, as well as L∞(L∞) stability. As we first look at local mass conservation, let us first recall 
that such property is automatically satisfied for the general class of finite volume schemes in conservation form, defined as 
follows.

Definition 4.1 (Finite volume scheme in conservation form). Let Θ ∈ [0, 1]. A finite volume scheme is in conservation form if it 
can be written in the form

un
p − un−1

p = − τ

mp

(
Θ

∑
q∈N(p)

gn
pq + (1 − Θ)

∑
q∈N(p)

gn−1
pq

)

where the fluxes need to be conservative in the sense that gpq = −gqp . In 1D on uniform partitions this reduces to

un
i − un−1

i = −τ

h

(
Θ

(
gn

i+1/2 − gn
i−1/2

) + (1 − Θ)
(

gn−1
i+1/2 − gn−1

i−1/2

))
.

Lemma 4.2 (Local conservation property). For divergence free velocity field, the basic IIOE is locally mass conservative and can be 
written in conservation form with numerical fluxes at inflow boundaries (with respect to cell p) gpq := gin

pq := 1
2 (gin,n

pq + gin,n−1
pq )

with gin,n
pq := −ain

pqun
q , gin,n−1

pq := −ain
pqun−1

p and at outflow boundaries gpq := gout
pq := 1

2 (gout,n
pq + gout,n−1

pq ) and gout,n
pq := −aout

pq un
p , 

gout,n−1
pq := −aout

pq un−1
q . The conservation property holds, as we have with these definitions

gin
pq = −gout

qp , or respectively gout
pq = −gin

qp .

In the simple 1D case with constant positive velocity, the basic IIOE scheme thus reads

un
i − un−1

i = −τ

h

(
v

2

(
un

i + un−1
i+1

)
︸ ︷︷ ︸

=:gi+1/2

− v

2

(
un

i−1 + un−1
i

)
︸ ︷︷ ︸

=:gi−1/2

)
.

It is locally conservative with Θ := 1
2 and the following definition of the fluxes

gn
i+1/2 := vun

i , gn−1
i+1/2 := vun−1

i+1 , gn
i−1/2 := vun

i−1, gn−1
i−1/2 := vun−1

i .

Proof. The divergence free velocity field implies in our discrete setting that we have for a cell p∑
q∈N(p)

ain
pq +

∑
q∈N(p)

aout
pq = 0.

This implies a rewriting of the IIOE scheme as follows

un
p = un−1

p − τ

2mp

∑
q∈N(p)

ain
pq

(
un

p − un
q

) − τ

2mp

∑
q∈N(p)

aout
pq

(
un−1

p − un−1
q

)

= un−1
p − τ

2mp

∑
q∈N(p)

ain
pqun

p + τ

2mp

∑
q∈N(p)

ain
pqun

q
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− τ

2mp

∑
q∈N(p)

aout
pq un−1

p + τ

2mp

∑
q∈N(p)

aout
pq un−1

q

= un−1
p + τ

2mp

∑
q∈N(p)

aout
pq un

p + τ

2mp

∑
q∈N(p)

ain
pqun

q

+ τ

2mp

∑
q∈N(p)

ain
pqun−1

p + τ

2mp

∑
q∈N(p)

aout
pq un−1

q

= un−1
p + τ

mp

∑
q∈N(p)

ain
pq

1

2

(
un

q + un−1
p

)
︸ ︷︷ ︸

=−gin
pq

+ τ

mp

∑
q∈N(p)

aout
pq

1

2

(
un

p + un−1
q

)
︸ ︷︷ ︸

=−gout
pq

.

Let us consider that epq is an inflow boundary with respect to p, and hence an outflow boundary for q. With ain
pq = −aout

qp , 
we then obtain

gpq + gqp = gin
pq + gout

qp = −ain
pq

1

2

(
un

q + un−1
p

) − aout
qp︸︷︷︸

=−ain
pq

1

2

(
un

q + un−1
p

) = 0.

If epq is an outflow boundary with respect to p and inflow with respect to q, we analogously get

gpq + gqp = gout
pq + gin

qp = −aout
pq

1

2

(
un

p + un−1
q

) − ain
qp︸︷︷︸

=−aout
pq

1

2

(
un

p + un−1
q

) = 0.

This proves the lemma. �
Note, that the property of local mass conservation gets lost for the stabilized versions of the scheme. However, by 

numerical experiments we see that the global mass error for smooth solutions vanishes with the same order h2 as the 
solution error in case of S1IIOE scheme and with the much higher order h4 for the S2IIOE scheme, cf. Table 2. The area error 
is negligible, for dense grids below machine precision, in case of moving discontinuities by linear advection, cf. Table 3.

Theorem 4.3 (Exactness for quadratic polynomials). Let us consider Eq. (1) with constant velocity vector v and IIOE scheme (8) on 
uniform rectangular grids with grid sizes hi. Let the initial condition be given as a second order polynomial. Then the IIOE scheme (8)
gives the exact solution for any choice of time step τ .

Proof. For simplicity let us first consider the 1D case. A general second order polynomial initial condition is of the form 
u0(x) = ax2 + bx + c and exact solution at time τ is given by u(x, τ ) = u0(x − vτ ). With positive v the scheme (30) takes 
the form

un
i + τ v

2h

(
un

i − un
i−1

) = un−1
i − τ (−v)

2h

(
un−1

i − un−1
i+1

)
(33)

If we plug into the scheme (33) the exact values in grid points xi , xi−1, xi+1 at time steps tn−1 = 0 and tn = τ , namely

un−1
i = ax2

i + bxi + c, un−1
i+1 = a(xi + h)2 + b(xi + h) + c,

un
i = a(xi − vτ )2 + b(xi − vτ ) + c, un

i−1 = a(xi − h − vτ )2 + b(xi − h − vτ ) + c, (34)

we end-up with true identity. In fact, it can be easily checked, e.g. by a symbolic computing system like Mathematica, that 
both sides are equal to ax2

i + bxi − avτ xi − 1
2 bvτ − 1

2 ahvτ + c and thus their difference is 0. In case of negative velocity v
the scheme (30) takes the form

un
i + τ (−v)

2h

(
un

i − un
i+1

) = un−1
i − τ v

2h

(
un−1

i − un−1
i−1

)
(35)

and again plugging the exact values (34) into (35) gives true identity, both sides are equal to ax2
i + bxi − avτ xi − 1

2 bvτ +
1
2 ahvτ + c.

In the 3D case a general quadratic polynomial has the form a0 +a1x +a2 y +a3z +a4xy +a5xz +a6 yz +a7x2 +a8 y2 +a9z2

and the same procedure can be performed in a symbolic computer algebra system. Such calculations surely generalize to 
arbitrary space dimensions. �
Theorem 4.4 (Formal second order consistency). Let us consider Eq. (1) in 1D with variable smooth velocity and the IIOE scheme (30)
on a uniform grid. Then the scheme is formally second order and the consistency error is of order O(h2) +O(τh) +O(τ 2).
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Proof. As the scheme depends on inflow/outflow properties of the cell boundaries, we have to distinguish four cases: 
a) vi−1/2, vi+1/2 ≥ 0, b) vi−1/2, vi+1/2 ≤ 0, c) vi−1/2 < 0, vi+1/2 > 0, and d) vi−1/2 > 0, vi+1/2 < 0. In both cases, a) and b), 
we have one inflow and one outflow cell boundary, while in case c) we have only outflows and in d) only inflows.

Let us first look at the cases a) and b). We write our transport equation as ∂t u + f (v, ∂xu) = 0 with f (v, ∂xu) := v(x)∂xu. 
We will use notations un := u(tn), f n := f (v, ∂xun). The Taylor expansion in time yields

un = un−1 + τ∂t un−1 + τ 2

2
∂2

t un−1 +O(
τ 3), un−1 = un − τ∂t un + τ 2

2
∂2

t un +O(
τ 3).

Subtracting these two equations we derive relation

un − un−1 = τ

2

(
∂t un + ∂t un−1) + τ 2

4

(
∂2

t un−1 − ∂2
t un) +O(

τ 3). (36)

We can see that the second term on the right hand side is also O(τ 3) and using the equation ∂t u + f (v, ∂xu) = 0, we get 
for the first term of the right hand side

I = τ

2

(
∂t un + ∂t un−1) = −τ

2

(
f n + f n−1) (37)

Using the notation f i := f (xi) = v(xi)∂xu(xi), by the Taylor expansion in space we have for case a)

f n
i−1/2 = f n

i − h

2
∂x f n

i +O(
h2), f n−1

i+1/2 = f n−1
i + h

2
∂x f n−1

i +O(
h2) (38)

or for case b)

f n−1
i−1/2 = f n−1

i − h

2
∂x f n−1

i +O(
h2), f n

i+1/2 = f n
i + h

2
∂x f n

i +O(
h2) (39)

We continue for case a). Using (37)–(38) we derive

Ii = −τ

2

(
f n

i + f n−1
i

) = −τ

2

(
f n

i−1/2 + f n−1
i+1/2 + h

2

(
∂x f n

i − ∂x f n−1
i

) +O(
h2)).

The term h
2 (∂x f n

i − ∂x f n−1
i ) in the brackets on the right hand side is of order O(τh) and we shall analyze the term f n

i−1/2 +
f n−1

i+1/2. We know that

∂xun
i−1/2 = 1

h

(
un

i − un
i−1

) +O(
h2), ∂xun−1

i+1/2 = 1

h

(
un−1

i+1 − un−1
i

) +O(
h2)

and resubstituting for f n
i−1/2 = vi−1/2∂xun

i−1/2 and f n−1
i+1/2 = vi+1/2∂xun−1

i+1/2 we get

Ii = −τ

2

(
vi−1/2

1

h

(
un

i − un
i−1

) + vi+1/2
1

h

(
un−1

i+1 − un−1
i

)) +O(
τ 2h

) +O(
τh2). (40)

From (36) and (40) we finally get

un
i − un−1

i = −τ

2

(
vi−1/2

h

(
un

i − un
i−1

) + vi+1/2

h

(
un−1

i+1 − un−1
i

))

+O(
τ 2h

) +O(
τh2) +O(

τ 3)
where we recognize the scheme (30) for case a), cf. also (33), and dividing by τ we get the consistency error of the IIOE 
scheme stated in the theorem. The result for case b) follows analogously to a), using (39) instead of (38).

The cases c) and d) have to be treated differently, as in c) only explicit fluxes and in d) only implicit fluxes are used 
in the scheme. Let us start with case c). We start from Taylor expansion in time with only explicit evaluations of time 
derivatives.

un − un−1 = τ∂t un−1 + τ 2

2
∂2

t un−1 +O(
τ 3). (41)

With the expansion of the explicit fluxes

f n−1
i−1/2 = f n−1

i − h

2
∂x f n−1

i +O(
h2), f n−1

i+1/2 = f n−1
i + h

2
∂x f n−1

i +O(
h2) (42)

we now obtain using ∂t u + f (v, ∂xu) = 0,

τ∂t un−1
i = −τ f n−1

i = −τ

2

(
f n−1

i−1/2 + f n−1
i+1/2 +O(

h2)) (43)
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Next, we will show that the term τ 2

2 ∂2
t un−1 of (41) is actually O(τ 2h) due to the smallness of the velocity in this case. 

Using ∂t u + f (v, ∂xu) = 0, we get

∂2
t un−1

i = ∂t f n−1
i = vi∂t∂xun−1

i . (44)

As the velocity field is smooth and changes sign within the cell (xi−1/2, xi+1/2), there exists some x� ∈ (xi−1/2, xi+1/2) with 
v(x�) = 0. Hence, by Taylor expansion we get

vi = v(xi) = v
(
x�

)
︸ ︷︷ ︸

=0

+(
xi − x�

)
∂x v

(
x�

) +O(
h2).

Thus, we have vi =O(h) and we obtain

τ 2

2
∂2

t un−1
i = τ 2

2
vi∂t∂xun−1

i =O(
τ 2h

)
. (45)

Together with (41) and (43) we thus obtain the result, i.e.

un − un−1 = −τ

2

(
f n−1

i−1/2 + f n−1
i+1/2

) +O(
τh2) +O(

τ 2h
) +O(

τ 3). �
Case d) is obtained analogously to c) by using Taylor expansion in time with only implicit evaluations of time derivatives 

and replacing the explicit fluxes by corresponding implicit ones.

Theorem 4.5 (L∞(L2) stability). Let us consider the advection equation in 1D with constant velocity v ≥ 0 (or v ≤ 0) and the IIOE 
scheme on a uniform grid with periodic boundary conditions. Then the scheme is L2 stable and the following a priori estimate holds

∑
i∈I

∫
pi

(
uN

i

)2 +
∑
i∈I

∫
pi

|v|τ
4h

(
uN

i − uN
i−1

)2 =
∑
i∈I

∫
pi

(
u0

i

)2 +
∑
i∈I

∫
pi

|v|τ
4h

(
u0

i+1 − u0
i

)2
.

Proof. Without loss of generality, let us assume constant velocity v ≥ 0. The basic IIOE scheme then reads

un
i − un−1

i

τ
+ 1

2
v

(
un

i − un
i−1

h
+ un−1

i+1 − un−1
i

h

)
= 0,

where i ∈ I , n = 1, ..., N , I is the number of finite volumes and N is the number of time steps. Testing with 1
2 (un

i + un−1
i )

yields after integration over cell pi and time interval (tn, tn+1) and summation

N∑
n=1

∑
i∈I

tn+1∫
tn

∫
pi

(Tt + Ts) = 0, (46)

where the time and space terms are given as

Tt := 1

2τ

(
un

i − un−1
i

)(
un

i + un−1
i

) = 1

2τ

((
un

i

)2 − (
un−1

i

)2)
, (47)

Ts := v

4h

((
un

i − un
i−1

) + (
un−1

i+1 − un−1
i

))(
un

i + un−1
i

)
. (48)

By simple algebraic manipulation, we further get for Ts

Ts = v

8h

((
un

i − un
i−1

) + (
un−1

i+1 − un−1
i

))((
un

i − un
i−1

) − (
un−1

i+1 − un−1
i

))
+ v

8h

((
un

i + un−1
i+1

) − (
un

i−1 + un−1
i

))((
un

i + un−1
i+1

) + (
un

i−1 + un−1
i

))
= v

8h

((
un

i − un
i−1

)2

︸ ︷︷ ︸
=:(	n

i−1)2

− (
un−1

i+1 − un−1
i

)2

︸ ︷︷ ︸
=:(	n−1

i )2

+ (
un

i + un−1
i+1

)2

︸ ︷︷ ︸
=:(Sn+1/2

i )2

− (
un

i−1 + un−1
i

)2

︸ ︷︷ ︸
=:(Sn+1/2

i−1 )2

)
.

In this form of the space term, it can be seen that the term (	n−1
i )2 is a space–time shift of (	n

i−1)
2, and (Sn+1/2

i )2 is a 
space shift of (Sn+1/2

i−1 )2. We thus obtain from (46) with periodicity and using the shift correlation in the Tt and Ts-terms
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0 =
∑
i∈I

∫
pi

1

2

((
uN

i

)2 − (
u0

i

)2) +
∑
i∈I

∫
pi

vτ

8h

((
	N

i−1

)2 − (
	0

i

)2)
. (49)

Hence, we obtain with the definition of the 	-terms

∑
i∈I

∫
pi

(
uN

i

)2 +
∑
i∈I

∫
pi

vτ

4h

(
uN

i − uN
i−1

)2 =
∑
i∈I

∫
pi

(
u0

i

)2 +
∑
i∈I

∫
pi

vτ

4h

(
u0

i+1 − u0
i

)2
.

As the proof of the stability estimate only relies on space and time shifts, it transfers immediately also to the case of 
uniform rectangular grids in multiple space dimensions. �
Theorem 4.6 (L∞(L∞) stability of the stabilized IIOE scheme). Let us consider the advection equation (1) with given variable velocity. 
Then, the stabilized S1IIOE is unconditionally stable in the L∞(L∞) sense and the following minimum–maximum property holds

min
q∈Th

u0
q ≤ un

p ≤ max
q∈Th

u0
q, ∀q ∈ Th, n = 0, . . . , N. (50)

Proof. The theorem follows from the construction of the stabilized scheme as discussed in Section 2 above.

5. Numerical experiments

This section is devoted to numerically analyze and validate the robustness and accuracy of our new IIOE scheme at clas-
sical benchmark problems and more involved multi-dimensional applications. We start the evaluation with one dimensional 
advection with constant speed of a quadratic polynomial, a smooth hump and discontinuous piecewise constant initial data. 
For each case we compare our new basic and stabilized methods with the classical implicit up-wind scheme. Here we are in 
particular interested in an evaluation of the methods when large time steps are used that exceed the time step given from 
the CFL condition. For further one dimensional experiments involving also advection with non-divergence free velocity and 
for comparison with higher order explicit methods we refer to the exposition in [13,14]. Finally, the last part of this section 
will be devoted to two dimensional benchmark problems and an evaluation of the scheme for real applications in medical 
image segmentation.

5.1. 1D advection with constant velocity

As a classical benchmark let us consider one dimensional advection with constant speed given by Eq. (28) with v(x) ≡ 1. 
In all our computations, we restrict to the space interval Ω = (−1, 1) and time interval I = (0, T ) with T = 1. We consider 
three representative examples in this subsection:

a) advection of the quadratic polynomial u0(x) = 1 − 1
2 (x2 + x),

b) advection of a smooth hump defined as u0(x) = max(0, cos5(π(x + 0.5))), and
c) advection of a discontinuous piecewise constant profile given as u0(x) = 1 for x ∈ [−0.75, −0.25] and u0(x) = 0 other-

wise.

The exact solution for all these examples is given by shifting in time the initial profile, i.e. u(x, t) = u0(x − vt).
Case a) As proven in Section 4, the basic IIOE is exact for advection of a quadratic polynomial. This is of course also seen 

numerically up to machine accuracy, as depicted in the third column of Table 1. However, exactness is not the case for the 
stabilized S1IIOE scheme, which is just second order, but it is again true for the stabilized S2IIOE scheme, cf. fourth and fifth 
columns of Table 1. The fully implicit up-wind scheme gives the first order accuracy. Clearly, the S2IIOE scheme is superior 
because it conserves the exactness of the quadratic solution for time steps given by an integer multiplication of h and when 
using local quadratic reconstruction also for time steps less than h, cf. Table 1.

Case b) For the more general smooth profile we analyze both, the accuracy and the local mass conservation error (area 
error) of the respective stabilized IIOE schemes. For smooth solutions we observe that the S2IIOE scheme with quadratic 
reconstruction behaves similarly as the basic IIOE scheme, while the S1IIOE scheme with quadratic reconstruction stabilizes 
a bit more and thus shows slightly worse accuracy in the L1 error and the area error. A visual comparison of all these 
methods is shown in Fig. 1. While the S2IIOE scheme shows visually perfect matching with the exact solution, there is a 
little bit more smearing of the hump for the S1IIOE scheme. However, both new methods show much better behavior as the 
very dissipative classical implicit up-wind scheme. The visual comparison is detailed in the convergence study with respect 
to the solution and with respect to the mass conservation error in Table 2. It can be seen that both stabilized IIOE schemes 
show second order convergence, both for small (τ = h) and large (τ = 8h) time step sizes. The mass conservation error also 
converges to zero with second order for the S1IIOE, while it shows higher then fourth order convergence for the S2IIOE 
scheme.
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Table 1
Case a) L1(I, L1) errors of the IIOE, S1IIOE, S2IIOE and implicit up-wind schemes for advection of a quadratic polynomial. The relation τ = h is used in the 
first 4 rows, τ = h/2 in the next 4 rows, τ = 2h in the next 4 rows, τ = 10h in the next 4 rows and the last 5 rows report the errors for fixed n = 160 and 
refining time step from τ = 80h to τ = 5h.

n NTS IIOE S1IIOE S2IIOE Implicit up-wind

20 10 1.8 × 10−16 4.63 × 10−3 3.8 × 10−16 8.80 × 10−2

40 20 3.5 × 10−16 1.18 × 10−3 4.9 × 10−16 4.28 × 10−2

80 40 7.5 × 10−16 3.12 × 10−4 6.3 × 10−16 2.11 × 10−2

160 80 1.4 × 10−15 8.35 × 10−5 7.2 × 10−16 1.05 × 10−2

20 20 3.7 × 10−16 1.75 × 10−3 5.2 × 10−16 6.43 × 10−2

40 40 8.0 × 10−16 4.60 × 10−4 5.1 × 10−16 3.17 × 10−2

80 80 1.1 × 10−15 1.23 × 10−4 7.9 × 10−16 1.57 × 10−2

160 160 2.4 × 10−15 3.22 × 10−5 1.2 × 10−15 0.78 × 10−2

20 5 2.1 × 10−16 1.12 × 10−2 1.9 × 10−16 1.38 × 10−1

40 10 2.1 × 10−16 2.77 × 10−3 2.1 × 10−16 6.60 × 10−2

80 20 3.9 × 10−16 7.04 × 10−4 2.6 × 10−16 3.21 × 10−2

160 40 5.7 × 10−16 1.80 × 10−4 4.1 × 10−16 1.58 × 10−2

20 1 4.3 × 10−16 2.18 × 10−1 6.4 × 10−16 6.31 × 10−1

40 2 1.0 × 10−15 4.91 × 10−2 8.5 × 10−16 2.8 × 10−1

80 4 1.5 × 10−15 1.13 × 10−2 1.8 × 10−15 1.29 × 10−1

160 8 2.5 × 10−15 2.66 × 10−3 3.1 × 10−15 0.61 × 10−1

160 1 2.6 × 10−15 2.11 × 10−1 1.2 × 10−15 5.75 × 10−1

160 2 2.6 × 10−15 4.62 × 10−2 2.7 × 10−15 2.61 × 10−1

160 4 2.6 × 10−15 1.07 × 10−2 3.5 × 10−15 1.23 × 10−1

160 8 2.6 × 10−15 2.66 × 10−3 3.1 × 10−15 6.12 × 10−2

160 16 2.6 × 10−15 7.31 × 10−4 4.6 × 10−15 3.23 × 10−2

Fig. 1. Case b) Smooth initial data (blue curves), exact solution (green curves), and numerical results at T = 1 (red curves) for the stabilized schemes with 
quadratic reconstruction S2IIOE (top left), S1IIOE (top right) in comparison to the result obtained with the implicit up-wind scheme (bottom). For these 
computations, n = 1280 and the relation τ = 8h is used, i.e. CFL = 8. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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Table 2
Case b) Report on the L1(I, L1) and area errors of the S1IIOE, S2IIOE schemes (with quadratic reconstruction) and L1(I, L1) errors of the implicit up-wind 
scheme. The relation τ = h is used in the first 6 rows and τ = 8h in the next 4 rows.

n NTS S1IIOE L1-error S1IIOE area error S2IIOE L1-error S2IIOE area error Implicit up-wind L1-error

40 20 9.53 × 10−2 6.69 × 10−2 9.19 × 10−2 1.93 × 10−2 1.96 × 10−1

80 40 3.51 × 10−2 6.58 × 10−3 2.80 × 10−2 2.98 × 10−3 1.32 × 10−1

160 80 9.66 × 10−3 2.06 × 10−3 7.69 × 10−3 2.69 × 10−4 8.21 × 10−2

320 160 2.69 × 10−3 6.26 × 10−4 1.97 × 10−3 1.94 × 10−5 4.71 × 10−2

640 320 7.00 × 10−4 1.63 × 10−4 4.97 × 10−4 1.28 × 10−6 2.56 × 10−2

1280 640 1.80 × 10−4 4.16 × 10−5 1.24 × 10−4 8.14 × 10−8 1.33 × 10−2

640 40 1.03 × 10−2 2.96 × 10−3 7.23 × 10−3 2.81 × 10−4 9.02 × 10−2

1280 80 2.77 × 10−3 7.75 × 10−4 1.86 × 10−3 2.03 × 10−5 5.23 × 10−2

2560 160 7.12 × 10−4 1.94 × 10−4 4.67 × 10−4 1.32 × 10−6 2.86 × 10−2

5120 320 1.82 × 10−4 4.81 × 10−5 1.16 × 10−4 8.35 × 10−8 1.49 × 10−2

Table 3
Case c) Report on the L1(I, L1) and area errors of the S1IIOE, S2IIOE schemes with quadratic reconstruction and on the L1(I, L1) errors of the implicit 
up-wind scheme. The relation τ = h is used in the first 6 rows and τ = 8h in the next 4 rows.

n NTS S1IIOE L1-error S1IIOE area error S2IIOE L1-error S2IIOE area error Implicit up-wind L1-error

40 20 2.03 × 10−1 1.06 × 10−3 2.02 × 10−1 6.17 × 10−4 3.25 × 10−1

80 40 1.31 × 10−1 5.32 × 10−5 1.30 × 10−1 5.09 × 10−5 2.37 × 10−1

160 80 8.38 × 10−2 5.47 × 10−7 8.38 × 10−2 5.47 × 10−7 1.68 × 10−1

320 160 5.35 × 10−2 5.69 × 10−10 5.34 × 10−2 5.68 × 10−10 1.19 × 10−1

640 320 3.41 × 10−2 3.34 × 10−15 3.41 × 10−2 3.33 × 10−15 8.42 × 10−2

1280 640 2.16 × 10−2 4.28 × 10−16 2.16 × 10−2 4.24 × 10−16 5.95 × 10−2

640 40 9.22 × 10−2 4.22 × 10−7 9.22 × 10−2 4.22 × 10−7 1.79 × 10−1

1280 80 5.74 × 10−2 3.77 × 10−10 5.74 × 10−2 3.77 × 10−10 1.27 × 10−1

2560 160 3.58 × 10−2 4.01 × 10−15 3.58 × 10−2 4.29 × 10−15 8.95 × 10−2

5120 320 2.24 × 10−2 4.96 × 10−15 2.24 × 10−2 2.60 × 10−14 6.32 × 10−2

Case c) Finally, we compare our methods for the discontinuous piecewise constant initial profile. Similarly as in case b), 
Table 3 shows the detailed convergence behavior of the stabilized S1IIOE, and S2IIOE schemes with quadratic reconstruction. 
First of all, it can be observed that in this case both new stabilized schemes show approximately the same convergence 
behavior. Moreover, also the absolute errors in the solution and with respect to mass conservation are nearly the same. In 
this non-smooth example, the experimental order of convergence is about 2/3 for both stabilized IIOE schemes, while it 
is only about 1/2 for the classical implicit up-wind scheme. Concerning the mass conservation error, both new stabilized 
schemes show exponential convergence to zero in this example.

A visual comparison of our new stabilized schemes (with and without quadratic reconstruction) with the implicit up-
wind scheme is given in Figs. 2, 3. In both figures we only plot the numerical results for the S2IIOE scheme, as the results 
for the S1IIOE are the same as for S2IIOE in this example. The results in Fig. 2 were obtained for n = 1280 and τ = 2h, i.e. 
CFL = 2, while in Fig. 3 n = 1280 and τ = 8h, i.e. CFL = 8, were used. It can be observed that our new method is clearly 
superior to the classical implicit scheme in both cases. Although our new stabilized scheme is a little bit more diffusive 
when larger time steps are used, this effect is much more pronounced by the classical implicit up-wind scheme. A compari-
son of our new stabilized scheme with and without quadratic reconstruction shows that there is nearly no difference in the 
behavior of the scheme in this example. Thus, both variants may be used and produce nice results also for large time steps 
which exceed the CFL restriction.

5.2. 2D advection by a constant velocity vector field and by a rotation

First, let us consider a second order radially symmetric polynomial initial function in the form of paraboloid u0(x1, x2) =
x2

1 + x2
2 − 0.25 and the vector field v(x1, x2) = (−x2, x1) which rotates the initial function around the origin. Since it is 

radially symmetric the exact solution does not change in time. This test problem as well as all further 2D examples in this 
section are solved in the spatial domain Ω = (−1, 1) × (−1, 1) which is split into n × n finite volumes. The time interval 
(0, T ) is equal (0, 1) for this example and one can see in Table 4 that the exact solution is reproduced numerically up to 
machine precision by any of the IIOE methods. The system matrix and the right hand side of the IIOE method is constructed 
in such way that it does not touch this exact solution, which holds true in this case also for the stabilized methods.

The second example represents transport of the quadratic polynomial u0(x1, x2) = 2x2
1 + x2

2 − x1 + x2 − 0.25 by the 
constant vector field v(x1, x2) = (−1.0, 0.5). We can see in Table 5 that, as given by the theory, the numerical solution by 
the IIOE scheme is exact up to a machine precision, while the two stabilized methods are second order.

In the third example we consider the same paraboloid as in the first example but shifted to (0.5, 0), i.e. u0(x1, x2) =
(x1 − 0.5)2 + x2

2 − 0.25 and the same rotational vector field. The problem is solved in the larger time interval (0, 3.14). All 



Author's personal copy

30 K. Mikula et al. / Applied Numerical Mathematics 85 (2014) 16–37

Fig. 2. Case c) Results of the S2IIOE (with quadratic reconstruction) (top left) and S2IIOE (without quadratic reconstruction) (top right) schemes, and the 
implicit up-wind (bottom) scheme. The initial profile is given in blue, the exact solution in green, and the numerical solution in red. We used n = 1280 and 
the relation τ = 2h. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Case c) Here, the same comparison as in Fig. 2 is plotted for larger choice of the time step size, i.e. we used n = 1280 and the relation τ = 8h.
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Table 4
2D centered paraboloid rotated around the origin: report on the L1(I, L1) errors of the IIOE, S1IIOE, and S2IIOE methods for refined space and time step 
sizes.

n τ NTS IIOE L1(I, L1) S1IIOE L1(I, L1) S2IIOE L1(I, L1)

20 0.1 10 5.938 × 10−16 5.938 × 10−16 5.938 × 10−16

40 0.05 20 7.388 × 10−16 7.388 × 10−16 7.388 × 10−16

80 0.025 40 1.079 × 10−15 1.079 × 10−15 1.079 × 10−15

160 0.0125 80 1.367 × 10−15 1.367 × 10−15 1.367 × 10−15

Table 5
2D paraboloid transported by a constant vector field: report on the L1(I, L1) errors of the IIOE, S1IIOE, and S2IIOE methods for refined space and time step 
sizes.

n τ NTS IIOE L1(I, L1) S1IIOE L1(I, L1) S2IIOE L1(I, L1)

20 0.1 10 2.624 × 10−15 1.838 × 10−2 5.544 × 10−3

40 0.05 20 8.170 × 10−15 2.959 × 10−3 1.084 × 10−3

80 0.025 40 1.421 × 10−14 4.987 × 10−4 2.315 × 10−4

160 0.0125 80 2.045 × 10−14 8.291 × 10−5 4.537 × 10−5

Table 6
2D rotating paraboloid centered outside the origin: report on the L1(I, L1) errors of the IIOE, S1IIOE, and S2IIOE methods for refined space and time step 
sizes.

n τ NTS IIOE L1(I, L1) S1IIOE L1(I, L1) S2IIOE L1(I, L1)

20 0.157 20 2.042 × 10−2 3.184 × 10−2 2.340 × 10−2

40 0.0785 40 4.564 × 10−3 6.422 × 10−3 5.501 × 10−3

80 0.03925 80 1.068 × 10−3 1.379 × 10−3 1.225 × 10−3

160 0.019625 160 2.571 × 10−4 3.104 × 10−4 2.897 × 10−4

Table 7
2D rotating smooth hump centered outside the origin: report on the L1(I, L1) errors of the IIOE, S1IIOE, and S2IIOE methods for refined space and time 
step sizes.

n τ NTS IIOE L1(I, L1) S1IIOE L1(I, L1) S2IIOE L1(I, L1)

20 0.157 20 4.563 × 10−1 2.680 × 10−1 2.888 × 10−1

40 0.0785 40 1.628 × 10−1 1.210 × 10−1 1.220 × 10−1

80 0.03925 80 4.426 × 10−2 3.927 × 10−2 3.084 × 10−2

160 0.019625 160 1.112 × 10−2 1.091 × 10−2 1.061 × 10−2

320 0.0098125 320 2.767 × 10−3 2.824 × 10−3 2.772 × 10−3

640 0.00490625 640 6.8982 × 10−4 7.067 × 10−4 6.993 × 10−4

IIOE methods are second order accurate, as one can see in Table 6. Here, no special attention to a CFL condition was given 
when choosing τ and h.

In the next two experiments we test the IIOE methods in the case of standard 2D benchmarks, the rotations of a smooth 
hump and a discontinuous function around the origin, i.e. v(x1, x2) = (−x2, x1). The initial smooth function is given by 
u0(x1, x2) = cos5(π

√
(x1 + 0.5)2 + x2

2) inside a circle with radius 0.5 centered in (−0.5, 0) and by 0 elsewhere. In the case 
of a rotating cylinder we have u0(x1, x2) = 1 inside a circle with radius 0.45 centered in (−0.5, 0) and 0 elsewhere. We 
compute the numerical solutions until for half a rotation (T = 3.14) without any special care to the CFL condition. In case of 
the smooth hump rotation we see second order convergence and very precise conservation of the rotating shape, cf. Table 7
and Fig. 4. In case of the discontinuous solution we see a convergence rate of about 2/3 for the stabilized IIOE schemes and 
also good conservation of the initial shape after half a rotation, cf. Table 8 and Fig. 5. This is much better than for any other 
standard implicit scheme with large time steps.

5.3. 2D advection by non-divergence free velocities including advective level set motion in normal direction with topological changes

In the next example we test the IIOE schemes for transport in the non-divergence free velocity field

v(x) = − x

|x| , x = (x1, x2). (51)

The exact solution is given by u(x, t) = u0(x + tx
|x| ) where u0(x) is an initial profile. We consider the initial function 

u0(x1, x2) = −x2
1 − x2

2 + 1 and solve the problem in the time interval (0, 0.6) on subsequently refined grids. In this case 
there is a point singularity formed in the origin due to subsequent arrival of initial function values from circular neighbor-
hoods. For this example all IIOE methods are second order accurate and give similar results as one can see in Table 9.
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Fig. 4. 2D rotating smooth hump centered outside the origin: the initial condition (left) and the S2IIOE numerical solution after half a rotation (right), 
n = 320, cf. Table 7.

Table 8
2D rotating cylinder centered outside the origin: report on the L1(I, L1) errors of the IIOE, S1IIOE, and S2IIOE methods for successively refined space and 
time step sizes.

n τ NTS IIOE L1(I, L1) S1IIOE L1(I, L1) S2IIOE L1(I, L1)

20 0.157 20 1.532 × 100 8.979 × 10−1 9.004 × 10−1

40 0.0785 40 1.161 × 100 5.758 × 10−1 5.820 × 10−1

80 0.03925 80 8.612 × 10−1 3.698 × 10−1 3.769 × 10−1

160 0.019625 160 6.357 × 10−1 2.374 × 10−1 2.431 × 10−1

320 0.0098125 320 4.668 × 10−1 1.521 × 10−1 1.560 × 10−1

640 0.00490625 640 3.413 × 10−1 9.720 × 10−2 9.998 × 10−2

Fig. 5. 2D rotating cylinder centered outside the origin: the initial condition (left) and the S2IIOE numerical solution after half a rotation (right), n = 320, 
cf. Table 8.

In the last example of this section we look at level set motion in normal direction with topological changes. In detail we 
consider the resolution of the topological changes for the shrinking of an initial quatrefoil (top left in Fig. 6) by a velocity 
field in normal direction with constant speed equal to 1. Thus, the vector field now depends on the solution and is given 
by v = − ∇u

|∇u| , cf. also Section 3.2. In the further plots of Fig. 6 we present the evolution of the zero level line representing 
the quatrefoil evolution (left column) and 2D (middle column) and 3D (right column) plots of the evolution of the level set 
function u computed by the S2IIOE scheme, n = 640, τ = 2h. For further numerical results of IIOE schemes in the level set 
context we refer to [12] and the discussions therein.
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Fig. 6. 2D level set motion in normal direction: shrinking of the quatrefoil with topological changes. The numerical solution is plotted at the discrete times 
0, 0.05, 0.1, 0.15. The zero level line representing the quatrefoil evolution is plotted in the left column, the 2D color coded level set function in the middle 
and a 3D visualization of the level set function in the right column. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
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Table 9
Transport in the non-divergence free velocity field (51) with singular solution in the origin: report on the L1(I, L1) errors of the IIOE, S1IIOE, and S2IIOE
methods for successively refined space and time step sizes.

n τ NTS IIOE L1(I, L1) S1IIOE L1(I, L1) S2IIOE L1(I, L1)

20 0.1 6 6.572 × 10−3 6.572 × 10−3 6.572 × 10−3

40 0.05 12 1.480 × 10−3 1.480 × 10−3 1.480 × 10−3

80 0.025 24 3.504 × 10−4 3.504 × 10−4 3.504 × 10−4

160 0.0125 48 8.521 × 10−5 8.521 × 10−5 8.521 × 10−5

320 0.00625 96 2.101 × 10−5 2.101 × 10−5 2.101 × 10−5

Fig. 7. Prostate segmentation: 2D image (left) and the same image together with a red contour representing segmentation of the prostate by GSUBSURF 
model (52) using the S2IIOE scheme in the advective part.

Fig. 8. Prostate segmentation: a detail of the nontrivial velocity vector field used in segmentation of the prostate.
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Fig. 9. Prostate segmentation: graphs of subsequently evolving segmentation function, tending from the initial profile (top left) to the final shock-like shape 
(bottom right) which is used for extracting the segmentation contour plotted in red in Fig. 7 right.
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5.4. 2D medical image segmentation

In the last numerical experiment we present an application of the S2IIOE scheme in medical image segmentation. Here, 
we segment a 2D image with resolution 150 × 150 pixels, plotted in Fig. 7 left, with the goal to precisely extract the 
prostate. Prostate segmentation is a very difficult task in medical image analysis due to a poor contrast and a high level 
of noise intrinsically linked to the image. We use the so-called generalized subjective surface (GSUBSURF) model which 
represents a robust method for biomedical image segmentation and is a useful generalization of the original approach 
presented in [17]. The GSUBSURF model has the form of the following PDE [3,15,20]

ut − wa∇g · ∇u − wd g
√

ε2 + |∇u|2∇ ·
( ∇u√

ε2 + |∇u|
)

= 0, (52)

where u(t, x) is an evolving segmentation function starting from an initial condition, u(0, x) = u0(x), usually given by a peak 
located approximately in the center of the mass of the segmented object. Then, the segmentation function is evolved by 
the advection (the second term on the left hand side of (52)) regularized by the mean curvature flow (the third term on 
the left hand side of (52)) to a shock-like profile. The central isoline of this profile gives the segmentation result, for the 
segmentation function evolution see Fig. 9 and for the resulting isoline, which gives very precise localization of the prostate 
see Fig. 7, right. The important part of the model is given by the advection with the nontrivial velocity vector field −wa∇g
where the function g = 1

1+K s2 depends on the norm of the gradient s = |∇ I| of the image intensity function I smoothed 
by the mean curvature flow filter [6]. This nontrivial velocity field points towards the edges in the image. Its details in the 
prostate region are plotted in Fig. 8. Opposite to previous implementations of the GSUBSURF model [3,15,20] where the 
advective part was treated by an explicit scheme – which put a severe restriction to the computational time step – we 
use here the S2IIOE scheme with a time step size exceeding more than 10 times the standard CFL condition. Similarly to 
[3,15], for the curvature part we use an unconditionally stable semi-implicit diamond-cell finite volume method. As one can 
see in the right picture of Fig. 7, we obtain precise results using such overall semi-implicit scheme (both in advection and 
curvature). Moreover, this scheme always guarantees solvability of the system and stability of the computation and thus 
represents an important improvement of the GSUBSURF segmentation method. Since we are interested in coming to an 
“equilibrium” segmentation shape, the choice of larger time step sizes is important from the CPU-time point of view. The 
model and computational parameters in this example were h = 0.5 (pixel size), τ = 5h, K = 10 000, ε2 = 10−6, wa = 5h, 
wd = 4h.

6. Conclusions

In this article we discussed inflow-implicit/outflow-explicit (IIOE) finite volume scheme together with its high resolution 
stabilized variants for solving a variable velocity advection equations. We gave some theoretical and numerical background 
with respect to solvability, local mass conservation, accuracy and stability for the discussed methods. As demonstrated in 
several numerical benchmark problems, in particular the S2IIOE scheme with quadratic reconstruction shows experimentally 
very nice resolution and stability properties. It preserves all solvability and accuracy properties of the basic IIOE scheme for 
smooth solutions, while at the same time satisfying in all presented numerical experiments L∞-stability, even in settings 
with discontinuous solutions. Moreover, all presented IIOE schemes keep their accuracy and stability properties for arbitrary 
large time step sizes which makes this family of methods particular attractive for real applications as demonstrated here for 
2D medical image segmentation.
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