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Abstract. We introduce a method how to estimate mathematically and
computationally and how to analyse statistically the growth rate of the num-
ber of cells in development of the zebrafish embryo. Our method is based
on analysis of 3D confocal image sequences and consists of four basic steps.
First, we filter images by the geodesic mean curvature flow (GMCF) method.
Then we use the flux-based level set center detection (FBLSCD) to find the
approximate positions and number of the nuclei centers. In the third step
we correct FBLSCD result by image segmentation algorithm based on the
subjective surface (SUBSURF) method. Finally, we understand the nuclei
numbers extracted by the image processing algoritmic chain as a measure-
ments and apply the statistical methods of the time series analysis to estimate
trend of the cell number growth rate. We apply the developed method to
the sequences of real 3D images acquised in vivo at early stages of zebrafish
embryogenesis.
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1 Introduction

In this paper we develop a strategy, how to extract the cell number growth
rate from the 3D image sequences representing acquisition of the first hours
of zebrafish embryogenesis.
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Since a noise is intrinsically linked to the image acquisition, as a first step,
we use nonlinear diffusion method to filter the images. We provide this oper-
ation by a few steps of the so-called geodesic mean curvature flow (GMCF)
model in its semi-implicit finite volume implementation [5]. Then we apply
the flux-based level set center detection (FBLSCD) method [3] to extract the
approximate positions of centers, and consequently the approximate number,
of nuclei. FBLSCD is an evolutionary numerical method based on flux-based
finite volume discretization [2] of an advection-diffusion formulation of the
morphological operators which is followed by a detection of the local maxima
of the evolving function. The process is stopped when the rate of decrease
of the number of local maxima is bellow some chosen threshold. In order
to prevent false negative events (i.e. that nucleus is there, but its center is
not detected) we choose higher threshold and consequently we can slightly
over-estimate the true nuclei number, e.g., we can detect more centers (false
positive event) in one nucleus. In the third step, we correct the estimates
given by the FBLSCD by the subjective surface (SUBSURF) image segmen-
tation method [9] in its semi-implicit finite volume implementation [7, 1].
Starting from true and superfluous centers in one nucleus we end up with
the same segmentation result which allow us to reduce relialably the nuclei
number in every 3D image of the sequence.

The final step of our approach is an application of the time series anal-
ysis methods to the extracted number of nuclei during the embryogenesis.
Understanding the image acquisition followed by the above chain of image
processing algorithms as a measurement, we may use the statistical approach
to find a trend of the cell number growth rate.

In the next section we discuss the mathematical models and computa-
tional algorithms used in our image processing approach. In the last section
we present and discuss statistical time series analysis results.

2 Image analysis algorithms based on PDEs

and their discretization

Any 3D nuclei image in the zebrafish embryogenesis time sequence is given
by a scalar (graylevel) intensity function u0

N : Ω → R, Ω ⊂ R3. Without loss
of generality we may assume that 0 ≤ u0

n ≤ 1.
Nowadays, it is possible to label the zebrafish embryo cells and to obtain
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well contrasted laser scanning microscopy 3D images throughout embryonic
development of a live animal. However, a noise is intrinsically linked to the
scanning technique and any image analysis algorithms have to deal with it.
First, the image processing methods devoted, e.g., to counting the number of
cells and extraction of the approximate cell centers [3], the methods for the
cell segmentation [10, 3], the cell tracking and the velocity field extraction
[6] need to reduce spurious, noisy structures, they simply cannot work with
highly noisy images. The second reason is that all the mentioned methods
are computationally much faster when applied to properly filtered image
sequences. Thus, the first step of our image processing chain is a filtering.
To that goal we use the so-called geodesic mean curvature flow in the level
set formulation. The model equation for the GMCF filtering reads as follows

ut = |∇u|∇.

(

g(|∇Gσ ∗ u|) ∇u

|∇u|

)

(1)

starting with the initial condition u(0, x) = u0
N(x) and considering the zero

Neumann boundary conditions on the boundary of image domain ∂Ω. In the
model, the mean curvature driven motion of image level sets is influenced
by the edge indicator function g(s) = 1/(1 + Ks2) applied to the evolving
image intensity (presmoothed by the Gaussian kernel with a small variance
σ). Such diffusion term causes accumulation of level sets along the object
boundaries and thus edge preserving filtering. The equation (1) is discretized
by the finite volume scheme in space and semi-implicit approach in time and
we used to provide few time steps to get the filtered result. We denote it
by u0

Nf
and it is equal to solution u of (1) at the filtering stopping time Tf .

A careful quantitative study of the filtering properties of nonlinear diffusion
models is given in [5] showing that GMCF has very good capability to remove
noise and sharpen unspurious image structures.

The second step in our approach is the flux-based level set center detec-
tion. In FBLSCD we utilize a specific feature of the images where the nuclei
are given by (noisy) humps of the image intensity, cf. Fig 1. We can see that
humps representing nuclei are composed by level sets with relatively large
diameter r1, 0 << c1 ≤ r1 ≤ c2, while diameter r2 of level sets represent-
ing spurious structures (still due to a noise) is much smaller, close to zero,
0 < r2 << c1. In general, the level sets are closed surfaces, and, if they
are moving by a constant speed in direction of inner normal vector field the
encompassing volume is decreasing and finally they disappear. The level sets
with a small diameter, representing a spurious structures, disappear (shrink)
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Figure 1: Top row: 2D slice of 3D volume (left), its noisy graylevel intensity as
a graph (middle) and filtered intensity by GMCF (right). Next four images
show details of image intensity before filtering (middle-left), after filtering
(middle-right), and solution u of FBLSCD after 5 (left-bottom) and 26 time
steps (right-bottom) when the process is stopped and local maxima give the
nuclei centers.
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in a fast way, while level sets representing real image objects remain for much
longer time during such evolution (they are observable in long time-scales).

It is also well-known that if the evolution of surfaces depends on the local
mean curvature then a speed of shrinking tends to infinity as diameter of level
set tends to zero, cf. e.g. [4]. We use this fact to even speed up the shrinking
in the above mentioned advective mechanism. Then the evolutionary process
of level sets can be represented by a geometrical equation V = δ +µk, where
the normal velocity V is given by a constant δ plus the mean curvature k
multiplied by a positive constant µ. The level set formulation is then given
by the equation

∂tu = δ
∇u

|∇u| · ∇u + µ|∇u|∇ ·
( ∇u

|∇u|

)

(2)

applied to the initial condition u0
Nf

. Due to the shrinking and smoothing of

solution to (2), we observe a decrease of number of the local maxima which
is fast in the beginning of the process, and, which is stabilized in time. We
stop the evolutionary process when a slope of decreasing is bellow a certain
treshold. The positions and number of the local maxima at the stopping
time Tc is the output of FBLSCD algorithm, cf Fig. 1.

In order to prevent false negative events (i.e. that nucleus is there, but
its center is not detected) we choose higher threshold to stop FBLSCD and
consequently we slightly over-estimate the true nuclei number. E.g., we can
detect more centers in one nucleus (false positive event), but, on the other
side, it prevents a loss of nuclei with low intensity. In spite of choosing a
lower treshold, we prefer to correct the result of the FBLSCD and remove
possible superfluous centers by the subjective surface image segmentation.

In SUBSURF method we assume that sl, l = 1, . . . , S are points in R3

where the approximate nuclei centers were detected. To start the nucleus
segmentation, first, the initial segmentation function u0

sl
is constructed for

every l = 1, . . . , S. It is given by value 1 in a small ball centered in sl and
by value 0 outside the ball. A radius of the ball depends on a distance of
the other closest centers. Then, in order to extract the nucleus shape, we
evolve all the initial segmentation functions by solving the subjective surface
equation [9]

∂tu =
√

ε2 + |∇u|2∇.

(

g(|∇Gσ ∗ u0
Nf

|) ∇u
√

ε2 + |∇u|2

)

, (3)
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Figure 2: Two detected centers in one nucleus together with their almost
identical shapes found after segmentation.

with ε a parameter, accompanied by Dirichlet boundary conditions, on a
subdomain of Ω sufficiently covering the potential nucleus shape. Let us note
that the solutions can be done in parallel for different (families of) nuclei.
By the equation (3), the solution evolves to a ”piecewise constant steady
state” which gives the result of the segmentation process. As the criterion to
recognize the ”steady state” we check whether squared L2 norm of difference
in solution between subsequent time steps is less than a threshold α. To
extract the nucleus shape we take a level surface in the middle of the shock
profile at the stopping time Ts. Fig. 2 depicts an example when starting
from two detected centers we obtain almost identical segmented shapes which
allow us to remove the superfluous center. We show also Fig. 3 with zoom
of 3D volume where several superfluous centers were removed by the image
segmentation. Let us note that we choose this subvolume for illustration,
usually the correction of FBLSCD result is needed only for about five percent
of nuclei in the whole volume.

2.1 Discretization of PDE models

Let T be the stopping time of the algorithms, equals either to Tf , Tc or Ts.
For every method we choose discrete time step τ , then T = Nτ where N is a
total number of steps of the method. The variance σ is also fixed in advance.
Let us note that we realize convolution with the Gaussian by solving linear
heat equation numerically for a short time corresponding to σ. We derive in
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Figure 3: Removing of superfluous nuclei centers. The centers are visualized
as small balls and nuclei by isosurfaces. Left: centers detected by FBLSCD.
Right: centers after SUBSURF segmentation.

a detail the scheme for GMCF method. Such scheme is then simply adjusted
to SUBSURF model and, finally, adding an upwind term we end up with a
discrete FBLSCD algorithm.

To get the schemes, at first we replace the time derivative in the equation
(1) by the backward difference and nonlinear terms are considered at the
previous time step while linear terms are taken at the current time level. In
such way we get the semi-implicit time discretization

1

|∇un−1|
un − un−1

k
−∇.

(

g(|∇un−1
σ |) ∇un

|∇un−1|

)

= 0 (4)

where we use notation un−1
σ = Gσ ∗ un−1, and un represents solution at the

n-th filtering step, starting by u0 = u0
N .

For the spatial discretization we employ the so-called finite volume method.
We identify the finite volume mesh Th with the voxels of 3D image and de-
note each finite volume by Vijk, i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3.
For each Vijk ∈ Th let Nijk denote the neighbors index shift, i.e., the set of all
(p, q, r), such that p, q, r ∈ {−1, 0, 1}, |p| + |q| + |r| = 1. Let m(Vijk) denote
volume of Vijk. The line connecting center of Vijk and center of its neighbor
Vi+p,j+q,k+r, (p, q, r) ∈ Nijk is denoted by σpqr

ijk and its length by hpqr
ijk . Since
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our finite volume grid is regular rectangular we use also shorter notations h1

for hp00
ijk , p ∈ {−1, 1}, h2 for h0q0

ijk , q ∈ {−1, 1} and h3 for h00r
ijk , r ∈ {−1, 1}

representing size of finite volumes in x1, x2, x3 direction, respectively. The
planar sides of finite volume Vijk are denoted by epqr

ijk with area m(epqr
ijk ). Let

xpqr
ijk be point where the line σpqr

ijk crosses the side epqr
ijk . We integrate (4) over

every finite volume Vijk and get
∫

Vijk

1

|∇un−1|
un − un−1

τ
dx =

∫

Vijk

∇.

(

g(|∇un−1
σ |) ∇un

|∇un−1|

)

dx. (5)

Let un
ijk be fully discrete approximate solution, representing value inside the

finite volume Vijk at the n-th time step. We can naturally express the left
hand side of (5) as

∫

Vijk

1

|∇un−1|
un − un−1

τ
dx ≈ m(Vijk)

Q
n−1

ijk

un
ijk − un−1

ijk

τ
(6)

where Q
n−1

ijk is an average modulus of gradient in Vijk, cf. [4]. For the right
hand side of (5) using divergence theorem we get
∫

Vijk

∇.

(

g(|∇un−1
σ |) ∇un

|∇un−1|

)

dx =
∑

|p|+|q|+|r|=1

∫

e
pqr
ijk

g(|∇un−1
σ |)

|∇un−1|
∂un

∂νpqr
ijk

ds . (7)

Here, the derivative in direction of unit normal νpqr
ijk to the side epqr

ijk is approx-
imated by the finite difference of neighboring voxel values divided by the dis-
tance between voxel centers. To approximate modulus of gradients on voxel
sides, we use following definitions for p, q, r ∈ {−1, 0, 1}, |p|+ |q| + |r| = 1,

∇p00un
ijk = (p(un

i+p,j,k − un
ijk)/h1, (u

p10
ijk − up,−1,0

ijk )/h2, (u
p01
ijk − up,0,−1

ijk )/h3) (8)

∇0q0un
ijk = ((u1q0

ijk − u−1,q,0
ijk )/h1, q(u

n
i,j+q,k − un

ijk)/h2, (u
0q1
ijk − u0,q,−1

ijk )/h3) (9)

∇00run
ijk = ((u10r

ijk − u−1,0,r
ijk )/h1, (u

01r
ijk − u0,−1,r

ijk )/h2, r(u
n
i,j,k+r − un

ijk)/h3) (10)

where

upq0
ijk =

1

4
(un

ijk + un
i+p,j,k + un

i,j+q,k + un
i+p,j+q,k) (11)

up0r
ijk =

1

4
(un

ijk + un
i+p,j,k + un

i,j,k+r + un
i+p,j,k+r) (12)

u0qr
ijk =

1

4
(un

ijk + un
i,j+q,k + un

i,j,k+r + un
i,j+q,k+r). (13)
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The formulas (8)-(10) can be understood as an approximation of the gradient
in the point xpqr

ijk , a barycenter of epqr
ijk . Now we define

Qpqr;n−1
ijk =

√

ε2 + |∇pqrun−1
ijk |2, Q

n−1

ijk =

√

ε2 +
1

6

∑

|p|+|q|+|r|=1

|∇pqrun−1
ijk |2

as an ε-regularized absolute value of the gradient on voxel sides, and, the
regularized averaged gradient inside the finite volume, respectively, computed
by the solution known from the previous step n−1. Similarly we compute the
edge indicator, where the function g is applied to the gradient of convolved
solution uσ on voxel sides, namely we define

gpqr;n−1
ijk = g(|∇pqrun−1

σ;ijk|) .

Combining all the above considerations we end up with approximation of the
right hand side of (7) by following term

∑

|p|+|q|+|r|=1

m(epqr
ijk )

gpqr;n−1
ijk

Qpqr;n−1
ijk

un
i+p,j+q,k+r − un

ijk

hpqr
ijk

. (14)

If we put together (6) and (14) and consider zero Neumann boundary con-
ditions, we can write following linear system of equations for unknows un

ijk,
i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3, which has to be solved at every
discrete step n in order to provide one step of GMCF filtering:

∑

|p|+|q|+|r|≤1

Apqr
ijk un

i+p,j+q,k+r = un−1
ijk , (15)

with coefficients defined as follows

Apqr
ijk = −

τ m(epqr
ijk ) gpqr;n−1

ijk Q
n−1

ijk

m(Vijk) Qpqr;n−1
ijk hpqr

ijk

, |p| + |q| + |r| = 1 , xpqr
ijk /∈ ∂Ω (16)

A000
ijk = 1 +

∑

|p|+|q|+|r|=1

−Apqr
ijk , Apqr

ijk = 0 , otherwise.

Similarly, one step of SUBSURF segmentation is given by (15) and co-
efficients (16) with the only differences given by the facts that we have to
incorporate (in a standard way) the zero Dirichlet boundary conditions and
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that the term gpqr;n−1
ijk is not updated at every step but is computed only at

the beginning so it is replaced by gpqr;0
ijk = g(|∇pqru0

Nf ,σ;ijk|.
To introduce the finite volume discretization of (2), we define the velocity

field v = −δ ∇u
|∇u|

, and consider advective part of (2), ∂tu + v · ∇u = 0,

in the equivalent divergent form ∂tu + ∇ · (v u) − u∇ · v = 0. Then we
integrate it in every finite volume Vijk and approximate the integrated fluxes
∫

e
pqr
ijk

v(γ) · νpqr
ijk dγ on boundaries of finite volume by

vpqr
ijk = −δ m(epqr

ijk )
∇pqrun−1

ijk

Qpqr;n−1
ijk

· νpqr
ijk (17)

and distinguish between the outflow and inflow boundaries by defining two
sets of indices Nout

ijk = {(p, q, r) ∈ Nijk , vpqr
ijk > 0} , N in

ijk := {(p, q, r) ∈
Nijk , vpqr

ijk ≤ 0} . Considering a piecewise constant approximation of u in
finite volumes and discrete time intervals, applying the upwind principle and
Green’s formula we get following finite volume scheme for the advective part

m(Vijk) un
ijk = m(Vijk) un−1

ijk − τ
∑

(p,q,r)∈Nout
ijk

un−1
ijk vpqr

ijk − (18)

τ
∑

(p,q,r)∈N in
ijk

un−1
i+p,j+q,k+r vpqr

ijk + τ un−1
ijk

∑

(p,q,r)∈Nijk

vpqr
ijk , (19)

which can be further simplified to

un
ijk = un−1

ijk

(

1 −
τ vin

ijk

m(Vijk)

)

− τ

m(Vijk)

∑

(p,q,r)∈N in
ijk

un−1
i+p,j+q,k+r vpqr

ijk , (20)

with vin
ijk = −

∑

(p,q,r)∈N in
ijk

vpqr
ijk denoting the total inflow flux. If we put together

discretization of the mean curvature flow part (i.e., the system (15) with
g ≡ 1), the above upwind scheme for advective part and the zero Neumann
boundary conditions, we end up with following system, with just slightly
more complicated right hand side as in (15), which is solved as one discrete
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step of FBLSCD method:

∑

|p|+|q|+|r|≤1

Apqr
ijk un

i+p,j+q,k+r = un−1
ijk

(

1 −
τ vin

ijk

m(Vijk)

)

(21)

− τ

m(Vijk)

∑

(p,q,r)∈N in
ijk

un−1
i+p,j+q,k+r vpqr

ijk ,

with matrix coefficients defined as follows

Apqr
ijk = −µ

τ m(epqr
ijk ) Q

n−1

ijk

m(Vijk) Qpqr;n−1
ijk hpqr

ijk

, |p| + |q| + |r| = 1 , xpqr
ijk /∈ ∂Ω (22)

A000
ijk = 1 +

∑

|p|+|q|+|r|=1

−Apqr
ijk , Apqr

ijk = 0 , otherwise.

Since the structure of linear system for all the methods is the same and suit-
able for using iterative solvers, we use the so-called successive over relaxation
(SOR) method, which is a modification of the Gauss-Seidel method to speed
up its convergence.

In all the discretizations we use spatial dimension of the voxel equals
to 0.01, then discrete time step τ for filtering is 0.001 and K = 5, for the
segmentation τ can be larger, we use e.g. 0.01 and we use also much higher
K = 100. In both cases convolution time step sigma is equal 0.0001. For
FBLSCD we have to fulfil CFL condition, so we use time step τ = 0.00125,
since usually we consider small ammout of mean curvature driven diffusion,
µ = 0.001, and unit advection with δ = 1.

3 Time series analysis

In this section we analyse time series zj , j = 1 . . . , M , of the nuclei numbers
obtained by the PDE image processing methods. We use two data sets from
which we have extracted the nuclei numbers. The first one represents 3D +
time aqusition of only partially covered embryo, i.e., the cells are dividing,
but they also migrate in and out of volume. In this data set, there are
several hundreds of cells observed in the volume during the covered time
period represented by 50 time points, cf. Fig. 1 for illustration of image
quality. In the second analysed data set, there are several thousands of cells,
volume of acqusition covers all the embryo and we have again 50 time points.
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In our time series analysis, we try to fit the data by models of polynomial,
exponential and logistic type (as well as by their combinations) which is
reasonable choice for modelling the cell development. The best fit of a trend
function is determined by the lowest value of the sum of squared residuals
as well as by the lowest absolute values of the autocorrelation function. The
goal is to find a trend function which fits data in a best way and for which
residuals are uncorrelated, i.e., for all lags k > 0 the estimate

rk =
M−k
∑

j=1

(zj − z)(zj+k − z) /
M
∑

j=1

(zj − z)2

of the autocorrelation function fulfils the criterion |rk| < 2/
√

M .
For the first time series the best fit of trend was obtained in the class of

functions yt = α (1 + βeγt + δt2) with the concrete form after estimation of
coefficients

yt = 432.064
(

1 − 0.175156e0.0371087t + 0.000568795t2
)

. (23)

As we can see in Fig. 4 left, the trend function is slightly decreasing in the
right neighbourhood of the origin and, after attaining a single minimum, it
subsequently increase and well approximate the data. Computing variance
σ̂2 = 4994.31 of the original time series and variance σ̂2

r = 325.63 of the

residuals we can see that 93.5%
(

σ̂2−σ̂2
r

σ̂2 .100%
)

of data are explained by the

trend function. In the right part of Fig. 4 we plot the autocorrelation function
to see that it fulfils the above stated criterion.

For the second time series we got a logistic statistical model as the best
choice with the trend function from the class yt = α (1 + βe−γt) and with the
best fit equals to

yt = 9347.17
(

1 + 1.25797e−0.0837514t
)

. (24)

The graphs od data, trend and autocorrelation function are depicted in Fig. 5.
Here, the autocorrelation function is at one point slightly outside the required
interval which, however, does not deteriorate the result and is caused by a
numerical error. Computing again the variance σ̂2 = 2.18×106 of the original
time series and variance σ̂2

r = 20788 of the residuals we can see that 99% of
data are explained by the trend function. The shape of the trend function
approaching plateau express the fact that the minimal volume of cells was
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Figure 4: Left: Plot of the first time series and the trend function. Right:
Plot of the autocorrelation function.
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Figure 5: Left: Plot of the second time series and the trend function. Right:
Plot of the autocorrelation function.

achieved uniformly in the scanned volume (and consequently they cannot
divide further) at that period of embryogenesis.
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[5] Krivá, Z., Mikula, K., Peyriéras, N., Rizzi, B., Sarti, A.: Zebrafish
early embryogenesis 3D image filtering by nonlinear partial differential
equations, submitted

[6] Melani, C., Lombardot, B., Campana, M., Rizzi, B., Zanella, C.,
Bourgine, P., Mikula, K., Peyrieras, N., Sarti, A.: Cells tracking in
a live zebrafish embryo, to appear in EMBS 2007 Proceedings.

[7] Mikula, K., Sarti, A., Sgallari, F.: Semi-implicit co-volume level set
method in medical image segmentation, in Handbook of Biomedical
Image Analysis: Segmentation and Registration Models (J.Suri et al.,
Eds.), Springer, New York, 583–626, 2005.

[8] Osher, S., Sethian, J.: Fronts propagating with curvature depen-
dent speed: algorithm based on Hamilton-Jacobi formulation, J. Com-
put. Phys., 79, 12–49, 1988.

[9] Sarti, A., Malladi, R., Sethian, J.A.: Subjective Surfaces: A Method for
Completing Missing Boundaries, Proceedings of the National Academy
of Sciences of the United States of America, Vol. 12, No. 97 (2000)
6258–6263, 2000.

[10] Zanella, C., Rizzi, B., Melani, C., Campana, M., Bourgine, P., Mikula,
K., Peyrieras, N., Sarti, A.: Segmentation of Cells from 3D Confocal
Images of Live Zebrafish Embryo, to appear in EMBS 2007 Proceedings.

14
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