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A HIGHER ORDER SCHEME FOR THE CURVE SHORTENING

FLOW OF PLANE CURVES

MARTIN BALAŽOVJECH ∗ AND KAROL MIKULA †

Abstract. We introduce a new higher order scheme for computing the curve shortening flow
represented by the intrinsic partial differential equation for updating the evolving curve position
vector. Our new scheme is of the Crank-Nicolson-type, the key idea is in averaging of the first-order
explicit forward Euler and fully-implicit backward Euler schemes. At any time step, the solution
is found iteratively applying the semi-implicit approach. Interestingly, the new scheme gives exact
solution for uniformly discretized shrinking circle which is not true for other known discrete schemes
approximating the curve shortening flow. Study of experimental order of convergence shows its
fourth order accuracy for nonuniformly discretized shrinking circle and we expect the second order
accuracy in general, which is indicated by the second order experimental order of convergence (EOC)
for evolution of the enclosed area. Together with the new scheme we present forward Euler and
semi-implicit and fully-implicit backward Euler schemes and compare them regarding precision and
computational efficiency. For all the schemes the spatial discretization is based on the flowing finite
volume or mass lumped finite element methods.
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flow, curve shortening flow, finite element method, finite volume method, higher order scheme

AMS subject classifications. 35K65, 65N40, 53C80

1. Introduction. In this paper we introduce a new higher order scheme for
computing the curve shortening flow equation

∂tr = kn,(1.1)

where kn = ∂st = ∂ssr is the curvature vector and r = [x, y] is the position vector,
which is a function of the arc-length parametrization s of a curve and time t. In the
case of closed curves r has to satisfy the periodic boundary conditions. The evolving
curves are used in various applications ranging from physics to image processing
[1, 10, 3, 11], their analysis was given in [7, 8] and numerical schemes of different
type were presented e.g. in [5, 6, 4, 9, 12, 13, 14, 15, 16, 2].

If we use finite element approximation and mass lumping [5] or flowing finite
volume approximation [14] we obtain following semidiscrete scheme

hi+1 + hi

2
∂tri =

ri+1 − ri

hi+1
− ri − ri−1

hi

(1.2)

where ri = [xi, yi]
T , i = 1, ..., n, is a time dependent discrete solution and hi =

|ri − ri−1| is Euclidean distance of spatial grid points. Due to periodic boundary
conditions we will use also the additional values defined by r0 = rn, r1 = rn+1.

One can transform the scheme (1.2) into the set of linear algebraic equations in
several different ways. We can obtain a first-order explicit forward Euler or first-order
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semi-implicit backward Euler schemes, see e.g. [5, 14]. In this paper we introduce new
higher order Crank-Nicolson-type scheme which is a combination of explicit forward
and fully-implicit backward Euler schemes. It is efficient since only few semi-implicit
iterations are necessary in fully-implicit backward Euler part. The semi-implicit linear
systems can be solved efficiently using cyclic tridiagonal solver. We will describe all
above mentioned algorithms and compare their accuracy on numerical examples.

2. Numerical schemes. In the scheme (1.2) we approximate the time derivative

∂tri by the difference
r

m+1
i

−r
m

i

∆t
where the index m = 1, ..., T

∆t
= M, denotes discrete

time stepping with a uniform time step ∆t. In this way we can obtain the difference
equations corresponding to equations (1.2). A type of the scheme depends on the
choice of time approximation for all other terms in (1.2).

2.1. First-order explicit forward Euler scheme. It is given by the equations

hm
i+1 + hm

i

2

rm+1
i − rm

i

∆t
=

rm
i+1 − rm

i

hm
i+1

− rm
i − rm

i−1

hm
i

,(2.1)

for i = 1, . . . , n and periodic boundary conditions. Input values are represented
by coordinates of position vector rm

i = [xm
i , ym

i ] in all nodes at the discrete time
tm = m∆t. First we compute distances of nodes

hm
i =

√

(xm
i − xm

i−1)
2 + (ym

i − ym
i−1)

2.

Then we compute coordinates of the position vector rm+1
i = [xm+1

i , ym+1
i ] in the next

time step tm+1 = (m + 1)∆t using

rm+1
i = rm

i +
2∆t

hm
i+1 + hm

i

(

rm
i+1 − rm

i

hm
i+1

− rm
i − rm

i−1

hm
i

)

.(2.2)

2.2. First-order semi-implicit backward Euler scheme. In this case we use
the equations

hm
i+1 + hm

i

2

rm+1
i − rm

i

∆t
=

rm+1
i+1 − rm+1

i

hm
i+1

−
rm+1

i − rm+1
i−1

hm
i

.(2.3)

Again the input values are represented by coordinates of position vector rm
i , i =

1, . . . , n at time tm, and we compute distances hm
i of nodes. The new coordinates of

the position vector rm+1
i are then determined by solving the cyclic tridiagonal system

− 1

hm
i

rm+1
i−1 +

(

hm
i+1 + hm

i

2∆t
+

1

hm
i+1

+
1

hm
i

)

rm+1
i − 1

hm
i+1

rm+1
i+1

=
hm

i+1 + hm
i

2∆t
rm

i .(2.4)

2.3. First-order fully-implicit backward Euler scheme. It is given by the
equations

hm+1
i+1 + hm+1

i

2

rm+1
i − rm

i

∆t
=

rm+1
i+1 − rm+1

i

hm+1
i+1

−
rm+1

i − rm+1
i−1

hm+1
i

,(2.5)
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i = 1, . . . , n. In this scheme we use distances of nodes hm+1
i at the time level tm+1

and not hm
i . To obtain hm+1

i we solve iteratively the following semi-implicit cyclic
tridiagonal system

− 1

h
m(l)
i

r
m(l+1)
i−1 +

(

h
m(l)
i+1 + h

m(l)
i

2∆t
+

1

h
m(l)
i+1

+
1

h
m(l)
i

)

r
m(l+1)
i − 1

h
m(l)
i+1

r
m(l+1)
i+1

=
h

m(l)
i+1 + h

m(l)
i

2∆t
rm

i ,(2.6)

where

h
m(l)
i =

√

(x
m(l)
i − x

m(l)
i−1 )2 + (y

m(l)
i − y

m(l)
i−1 )2,

for l = 0, 1, 2, . . . . The iteration process is stopped, if a difference in length of two
consecutive curves is less then prescribed tolerance, i.e.

∣

∣Lm(l) − Lm(l+1)
∣

∣ ≤ ǫ. The

length of the curve is computed as the sum of lengths of all elements, i.e. Lm(l) =
∑n

i=1 h
m(l)
i . For sufficiently small ǫ we use the last solution r

m(l+1)
i , i = 1, . . . , n as

the approximation of rm+1
i , the solution of the scheme. Other stopping criteria would

be also possible, but this one is computationally efficient because the lengths h
m(l)
i

are already computed when the criterion is evaluated.

2.4. The higher order scheme. It is a combination of (2.1) and (2.5), namely
we use the equations

hm
i+1 + hm

i + hm+1
i+1 + hm+1

i

2

rm+1
i − rm

i

∆t
=

rm
i+1 − rm

i
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i+1
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i−1

hm
i

+
rm+1

i+1 − rm+1
i

hm+1
i+1

− rm+1
i − rm+1

i−1

hm+1
i

,(2.7)

i = 1, . . . , n. The input values are represented by coordinates of the position vector
rm

i in all nodes. First we compute distances hm
i and then we solve the system

− 1
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i
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i

)
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i +
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i+1

hm
i+1

+
rm

i−1

hm
i

(2.8)

in the same iterative way as for (2.6). The algorithm of the higher order scheme is
depicted in Figure 2.1.

3. Numerical experiments. In this section we first test the schemes on the
evolution of circle with initial uniform distribution of grid points given by

xi = cos(2πi/n), yi = sin(2πi/n) ,

as well as with initial nonuniform distribution of grid points given by

xi = cos(2πi/n + 0.2 sin(4πi/n)), yi = sin(2πi/n + 0.2 sin(4πi/n)) ,
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Fig. 2.1. Algorithm of computation of the higher order scheme

i = 1, . . . , n. We compare accuracy of the schemes with analytical solution where the
time dependent radius |r(t)| of the shrinking circle is given by

|r(t)| =
√

r(0)2 − 2t.(3.1)

To estimate the error eM
n we use numerical L2 norm in the form

∥

∥eM
n

∥

∥ =

√

√

√

√

M
∑

m=1

∆t

n
∑

i=1

(|rm
i | − |r(m∆t)|)2 hm

i + hm
i+1

2
.(3.2)

The experimental order of convergence is then defined by

EOC = log2

∥

∥eM
n

∥

∥

∥

∥e2M
2n

∥

∥

.(3.3)

We computed the errors
∥

∥eM
n

∥

∥ in the time interval [0, T ] with T = 0.1, |r(0)| = 1,
using n = 10, 20, . . . grid points and decreasing correspondingly the time step ∆t.
The results for explicit forward Euler and semi-implicit backward Euler schemes are
reported in Tables 3.1 and 3.2. We can see that both schemes are first order

Table 3.1

Numerical error and EOC for the shrinking circle using explicit forward Euler scheme with
uniform and nonuniform initial distribution of grid points.

Uniform initial distribution Nonuniform initial distribution

n ∆t
‚

‚e
M
n

‚

‚ EOC
‚

‚e
M
n

‚

‚ EOC

10 1.0000e-1 4.381071e-3 4.383950e-3
20 5.0000e-2 1.764560e-3 1.31 1.764033e-3 1.31
40 2.5000e-2 7.671827e-4 1.20 7.670978e-4 1.20
80 1.2500e-2 3.537897e-4 1.12 3.537790e-4 1.12
160 6.2500e-3 4.016483e-2 -6.8 7.064467e-2 -7.64

accurate. For n = 160 and ∆t = 0.00625 the stability of the explicit scheme is
broken. In the Tables 3.3 and 3.4 we show errors and EOC for the fully-implicit
backward Euler and our higher order scheme where we used as stopping criterion
for iterations ǫ = 10−8. While the fully-implicit scheme is first order accurate, the
higher order scheme shows in this example fourth order accuracy when the grid points
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Table 3.2

Numerical error and EOC for the shrinking circle using semi-implicit backward Euler scheme
with uniform and nonuniform initial distribution of grid points.

Uniform initial distribution Nonuniform initial distribution

n ∆t
‚

‚e
M
n

‚

‚ EOC
‚

‚e
M
n

‚

‚ EOC

10 1.0000e-1 1.152790e-2 1.153664e-2
20 5.0000e-2 4.929176e-3 1.23 4.928358e-3 1.23
40 2.5000e-2 2.217582e-3 1.15 2.217372e-3 1.15
80 1.2500e-2 1.041443e-3 1.09 1.041413e-3 1.09
160 6.2500e-3 5.031165e-4 1.05 5.031127e-4 1.05
320 3.1250e-3 2.470558e-4 1.03 2.470553e-4 1.03
640 1.5625e-3 1.223893e-4 1.01 1.223892e-4 1.01

are nonuniformly distributed. For the uniformly discretized circle the errors drop to
machine precision limit (so we do not report EOC in this case) already for very coarse
grids which is consequence of the statement in the following theorem.

Table 3.3

Numerical error and EOC for the shrinking circle using fully-implicit backward Euler scheme
with uniform and nonuniform initial distribution of grid points.

Uniform initial distribution Nonuniform initial distribution

n ∆t
‚

‚e
M
n

‚

‚ EOC
‚

‚e
M
n

‚

‚ EOC

10 1.0000e-1 5.279112e-3 5.283129e-3
20 5.0000e-2 1.928786e-3 1.45 1.928205e-3 1.45
40 2.5000e-2 8.011272e-4 1.27 8.010384e-4 1.27
80 1.2500e-2 3.614162e-4 1.15 3.614053e-4 1.15
160 6.2500e-3 1.711187e-4 1.08 1.711174e-4 1.08
320 3.1250e-3 8.318585e-5 1.04 8.318569e-5 1.04
640 1.5625e-3 4.100247e-5 1.02 4.100245e-5 1.02

Table 3.4

Numerical error and EOC for the shrinking circle using our higher order scheme with uniform
and nonuniform initial distribution of grid points.

Uniform initial distribution Nonuniform initial distribution

n ∆t
‚

‚e
M
n

‚

‚

‚

‚e
M
n

‚

‚ EOC

10 1.0000e-1 1.563145e-11 1.550446e-05
20 5.0000e-2 2.175665e-12 1.060490e-06 3.87
40 2.5000e-2 6.527264e-13 6.192806e-08 4.10
80 1.2500e-2 3.411833e-13 3.630243e-09 4.09
160 6.2500e-3 5.330244e-14 2.178424e-10 4.06
320 3.1250e-3 2.268496e-14 1.332024e-11 4.03
640 1.5625e-3 1.020198e-15 8.228928e-13 4.02

Theorem 3.1. The higher order scheme (2.7) gives the exact solution for any

uniformly discretized initial circle using any length of the time step ∆t ≤ (r0)2/2,
where r0 is the initial radius.

Proof. Let the initial circle be given by r0
i = (x0

i , y
0
i ) = r0(cos ϕi, sinϕi), ϕi = iϕ,

ϕ = 2π/n, i = 1, . . . , n. Let us have any cyclic tridiagonal matrix with diagonal
coefficient equals to a and upper and lower diagonal coefficients equal to b, where a
and b are given constants. By simple calculations

b cosϕi−1 + a cosϕi + b cosϕi+1 = b cos(ϕi − ϕ) + a cosϕi + b cos(ϕi + ϕ) =
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b(cosϕi cosϕ + sin ϕi sinϕ) + a cosϕi + b(cosϕi cosϕ − sin ϕi sinϕ) =

(a + 2b cosϕ) cos ϕi ,

and similarly for terms with sine replacing cosine function above, we get that x and y
coordinates of uniformly discretized circle form the eigenspace of such matrices with
the common eigenvalue (a + 2b cosϕ).

Let us take any time step m and assume uniform distribution of grid points, i.e.

hm
i = hm. Then let us also assume that h

m(l)
i = hm(l), i = 1, . . . , n, i.e. uniform

discretization is given in any l-th iteration. In fact, the assumptions hold for m =
0, l = 0. Then the equation (2.8) has the following form

− 1

hm(l)
r

m(l+1)
i−1 +

(

hm(l) + hm

∆t
+

2

hm(l)

)

r
m(l+1)
i − 1

hm(l)
r

m(l+1)
i+1

=
rm

i−1

hm
+

(

hm(l) + hm

∆t
− 2

hm

)

rm
i +

rm
i+1

hm
.(3.4)

If we set a = hm(l)+hm

∆t
+ 2

hm(l) , b = − 1
hm(l) , d = hm(l)+hm

∆t
− 2

hm , e = 1
hm , we obtain

from (3.4) the cyclic tridiagonal system with constant coefficients (on the left as well
as on the right hand side)

br
m(l+1)
i−1 + ar

m(l+1)
i + br

m(l+1)
i+1 = erm

i−1 + drm
i + erm

i+1 .(3.5)

From the eigenspace properties it is clear that in the new iteration the vector rm(l+1)

represents again a uniformly discretized circle and thus h
m(l+1)
i = hm(l+1). By induc-

tion argument we get that at any time step and any iteration we get as a solution of
the scheme uniformly discretized circle.

Moreover, if rm
i = rm(cosϕi, sin ϕi) and r

m(l+1)
i = rm(l+1)(cosϕi, sinϕi), i =

1, . . . , n, then hm = 2rm sin(ϕ/2), rm(l+1) = λm(l)rm and hm(l+1) = 2rm(l+1) sin(ϕ/2) =
λm(l)hm, where the scaling factor λm(l) is given by the ratio of eigenvalues

λm(l) =
d + 2e cosϕ

a + 2b cosϕ
=

hm(l)+hm

∆t
− 2

hm (1 − cosϕ)
hm(l)+hm

∆t
+ 2

hm(l) (1 − cosϕ)
=

λm(l−1)(λm(l−1) + 1)(hm)2 − 2∆tλm(l−1)(1 − cosϕ)

λm(l−1)(λm(l−1) + 1)(hm)2 + 2∆t(1 − cosϕ)
=

λm(l−1)(λm(l−1) + 1)(rm)2 − λm(l−1)∆t

λm(l−1)(λm(l−1) + 1)(rm)2 + ∆t

where the relation 2 sin2(ϕ/2) = (1 − cosϕ) was used in the last equality. We define
λm(−1) = 1 as a starting point of such iterative process representing our scheme for
uniformly discretized circle at the mth time step. Now we can define the function

g(λ) =
λ(λ + 1)(rm)2 − λ∆t

λ(λ + 1)(rm)2 + ∆t

for which 0 ≤ g(λ) < 1 hold for λ ∈ [0, 1]. Among the positive numbers this mapping
has a fixed point g(λ∗) = λ∗ which is equal to

λ∗ =

√

1 − 2∆t

(rm)2
(3.6)
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and is well defined if

∆t ≤ (rm)2

2
.(3.7)

Let us denote c1 = (rm)2, c2 = ∆t. Then the derivatives of g have the form

g′(λ) =
c1c2(1 + x)2 − c2

2

(c1λ(λ + 1) + c2)2

g′′(λ) =
1

(c1λ(λ + 1) + c2)3
(−2c2

1c2 − 6c2
1c2x − 6c2

1c2x
2 − 2c2

1c2x
3 + 4c1c

2
2 + 6c1c

2
2x).

Provided c2 ≤ c1

2 , which is nothing else than condition (3.7), the function g is increas-
ing and concave on interval [0, 1] and g(0) = 0, g(1) < 1. From there it is clear that
derivative of g must be strictly less than 1 in interval [λ∗, 1] which means that g is a
contraction on that interval. Since we start the fixed point iterations by λ = 1 we get
by the Banach fixed point theorem that our iterative process converges to the fixed
point λ∗. This means that the solution at the new time step is uniformly distributed
circle with radius given by

rm+1 = λ∗rm =
√

(rm)2 − 2∆t.(3.8)

Comparing (3.8) with (3.1) we proved the theorem.
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Fig. 3.1. A dependence of the computed radius (vertical axes) on ∆t (horizontal axes) using one
time step in the numerical schemes starting by the unit circle. Bold black line - the solution by the
higher order scheme coincides with the exact solution for any ∆t. Green (in electronic version) line
with larger dashing - semi-implicit scheme, which is the most slow. Blue (in electronic version) line
with shorter dashing - fully-implicit scheme, which is the most fast. Red (in electronic version) line
with shorter dashing - explicit scheme, which is slower than exact solution and has strong stability
constraint. In the right part we see it as a short (red) line only on the interval of stability. The
dependence curves of the other schemes are also plotted there, to see their behaviour for reasonably
short time steps.

Remark. The statement in Theorem 3.1 does not hold for any of the explicit, semi-
implicit or fully-implicit schemes. In fact, the reader can verify using the same strategy

as above, that we have rm+1 = rm − ∆t
rm for the explicit scheme, rm+1 = (rm)3

(rm)2+∆t
for

the semi-implicit scheme and rm+1 =
rm+

√
(rm)2−4∆t

2 for the fully-implicit scheme.
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Just for an illustration, how the error depends on ∆t in one time step of the schemes,
we plot those curves for the case of initial unit cirle in Fig. 3.1 left. The exact solution
and the numerical solution by the higher order scheme coincide for any length of the
time step and it is plotted by the bold line. The other schemes cannot be exact
for any choice of the time step. They have the same slope initially, so they give
comparable accuracy (same EOC) for reasonably small time steps as documented in
Tables 3.1-3.3. For large time steps they would differ significantly in correct speed of
shrinking. Moreover in this case, the explicit scheme has strong stability constraint,
∆t ≤ (hm)2/2, which is documented in Fig. 3.1 right for n = 100. It may become very
restrictive in general curve shortening, when ∆t must be less or equal to min

i
(hm

i )2/2

to guarantee the stability of explicit scheme. The other two schemes can be used
without losing stability for large time steps but one has to take into account the
error increase as plotted in Fig. 3.1 right. The optimal choice regarding accuracy
and stability is the higher order scheme (2.7) which is discussed also in the next two
experiments.

In the next experiment we test our higher order scheme in the evolution of ellipse
represented by 200 grid points with initial distribution given by

xi = 2 cos(2πi/n + 0.125 sin(4πi/n)), yi = sin(2πi/n + 0.125 sin(4πi/n)),

i = 1, . . . , n. We compare accuracy of the presented scheme with the reference solution
rref computed using explicit forward Euler scheme with very small time step ∆t =
10−7. The error was measured by difference in the maximum norm in the final time
T = 0.1 by

‖e‖ = max
i

∣

∣

∣
ri(T ) − r

ref
i (T )

∣

∣

∣
.(3.9)

Moreover, we measured CPU-times for computations with different parameters in
order to reach a prescribed difference with the reference solution. Table 3.5 shows the
error (distance from the reference solution) and CPU times for the explicit scheme
and Table 3.6 for the higher order scheme. We can see that the higher order scheme
gives the corresponding error using much larger time step and consequently in much
shorter CPU time. E.g., we can see that the error of order 7.5 10−7 was obtained by
the higher order scheme in computation which took 0.078 sec. while for the explicit
scheme it was in more than 10 sec.

Table 3.5

Difference from the reference solution in maximum norm and CPU-times for the shrinking
ellipse using the exlicit forward Euler scheme.

∆t ‖e‖ CPU - time (s)

1.00000e-5 1.932696e - 6 0.25
1.00000e-6 9.663479e - 7 2.625
2.50000e-7 7.580254e - 7 10.453
1.00000e-7 0 26.14

In a similar experiment we present time evolution of the nonconvex curve for
which

xi = cos(z), yi = 0.5 sin(z) + sin(xi) + sin(z)
(

0.2 + sin(z) sin2(3z)
)

,

z = 2πi/n, i = 1, . . . , n, n = 300. We computed again the reference solution, now
due to stability reasons, using the semi-implicit backward Euler scheme with small
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Table 3.6

Difference from the reference solution in maximum norm and CPU-times for the shrinking
ellipse using the higher order scheme.

∆t ‖e‖ CPU - time (s)

1.25000e-2 2.116709e -5 0.012
6.25000e-3 5.525566e -6 0.015
3.12500e-3 2.155265e -6 0.020
1.56250e-3 1.174023e -6 0.031
7.81250e-4 9.653597e - 7 0.047
3.90625e-4 6.034250e - 7 0.078

time step ∆t = 0.000025. Then we compare precision of the higher order scheme and
semi-implicit scheme using for both schemes bigger time step ∆t = 0.0025. In Figure
3.2 we present computational results for both schemes in time moments m∆t, m =
0, 30, 60, 90, 120. In Figure 3.3 we compare both solutions in the terminal time T =
120∆t = 0.3125 where in the zoom (right picture) one can clearly see high precision
of the scheme (2.7).

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

Fig. 3.2. The time evolution of the nonconvex curve computed by semi-implicit scheme (left)
and our higher order scheme (right); the semi-implicit scheme is slower using the same time step.

In the last experiment we test our higher order scheme comparing the numerical
and analytical evolutions of enclosed area in the curve shortening flow. We report
results for the same evolving ellipse and nonconvex curve as used above in the time
interval [0, T ], with T = 0.1, using n = 50, 100, . . . grid points and decreasing corre-
spondingly the time step ∆t. As the error measure we use

∥

∥ǫM
n

∥

∥ =

√

√

√

√

M
∑

m=1

(Am
n − A(m∆t))

2
∆t ,(3.10)

where Am
n = 1

2

∑n

i=1 xm
i (ym

i − ym
i−1) − ym

i (xm
i − xm

i−1) is the area of discrete curve at
the m−th time step and the exact area evolution is given by A(t) = A(0)−2πt where
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Fig. 3.3. Comparison of solutions by the higher order and semi-implicit schemes with the
reference solution at the terminal time T = 0.3125. By the solid line we plot the reference solution,
very close to this one is the solution by the higher order scheme and the semi-implicit scheme gives
the result with much bigger error.

we use A(0) = A0
n, the area of initial polygonal curve. The area evolution errors and

EOC are reported in Table 3.7, we can see that our scheme is second order accurate
with respect to this important quantity. Naturally, all other schemes discussed in this
paper are at most first order accurate.

Table 3.7

The numerical errors in enclosed area and EOC for the evolving ellipse and nonconvex curve
using our higher order scheme.

Ellipse Nonconvex curve

n ∆t

‚

‚ǫ
M
n

‚

‚ EOC
‚

‚ǫ
M
n

‚

‚ EOC

50 3.125000e-003 6.815650e-004 5.819859e-003
100 1.562500e-003 1.693104e-004 2.00918 1.755853e-003 1.72881
200 7.812500e-004 4.215025e-005 2.00606 4.887627e-004 1.84497
400 3.906250e-004 1.051220e-005 2.00348 1.269045e-004 1.94539
800 1.953125e-004 2.624707e-006 2.00184 3.206530e-005 1.98466
1600 9.765625e-005 6.557476e-007 2.00094 8.044106e-006 1.99501
3200 4.882813e-005 1.638824e-007 2.00048 2.016388e-006 1.99616
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