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Abstract
We introduce a new approach to wildland fire spread modeling. We evolve a 3-D
surface curve, which represents the fire perimeter on the topography, as a projec-
tion to a horizontal plane. Our mathematical model is based on the empirical laws
of the fire spread influenced by the fuel, wind, terrain slope, and shape of the fire
perimeter with respect to the topography (geodesic and normal curvatures). To obtain
the numerical solution, we discretize the arising intrinsic partial differential equa-
tion by a semi-implicit scheme with respect to the curvature term. For the advection
term discretization, we use the so-called inflow-implicit/outflow-explicit approach
and an implicit upwind technique which guarantee the solvability of the correspond-
ing linear systems by an efficient tridiagonal solver without any time step restriction
and also the robustness with respect to singularities. A fast treatment of topological
changes (splitting and merging of the curves) is described and shown on examples as
well. We show the experimental order of convergence of the numerical scheme, we
demonstrate the influence of the fire spread model parameters on a testing and real
topography, and we reconstruct a simulated grassland fire as well.

Keywords Curve evolution · Surface curve · Topological changes ·
Wildland fire modeling · Geodesic curvature · Normal curvature
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1 Introduction

Wildland fires cause considerable ecological and economical loss to the wildland
environment. In the twentieth century, the wildland fires presented a serious threat
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mainly in Australia, North America, and South Europe. Due to global warming, this
threat has spread in other areas in the new millennium. To avoid future loss caused by
fire, there is an effort to predict fire behavior, e.g., to predict the key places in order
to slow the fire down and to put it down efficiently, safely, and with the smallest
possible loss.

Nowadays, there exist several mathematical fire propagation models and simu-
lation softwares. We can divide them according to the way they simulate the fire
propagation processes to (quasi-) physical, e.g., Wildland Fire Dynamics Simulator,
and (quasi-) empirical, e.g., FARSITE. In general, the simulations based on the phys-
ical models are more time-consuming, compared to those of the empirical models. In
an effort to simplify the physical model of the fire development, the empirical laws
of fire behavior are a suitable choice. A number of wildland fire simulation mod-
els are built in this way (Calchas, Farsite, Prometheus, SiroFire, Vesta, Flire, Ignite,
Firemap, Firestation, Pyrocart) [36].

The Wildland-Urban Interface Fire Dynamics Simulator (WFDS) [20] is an exten-
sion of the Fire Dynamic Simulator [19]. This two- and three-dimensional model is
based on a formulation of the equations of motion for buoyant flows. The combustion
is considered using the stoichiometric relation only for the gas phase, arising from
evaporation and pyrolysis. The low-speed, thermally driven flow with an empha-
sis on smoke and heat transport from fire is obtained as a numerical solution of an
appropriate form of the Navier-Stokes equations. However, the computational time
is a big disadvantage, taking dozens of hours to obtain 100 s of simulation [36].
Perhaps the best known and used software, FARSITE [12], is based on the evolu-
tion of a two-dimensional discretized curve as a boundary between the burnt and
unburned fuel (fire perimeter). The information about fuel, topography, and weather
is necessary to compute the fire propagation. Computations are based on existing
mathematical models like Rothermel’s model for surface fire spread, Van Wagner’s
model for crown fire initiation, Rothermel’s model for crown fire spread, and Nel-
son’s dead fuel moisture model. Since the fuel models are built for the climate in the
USA, application of FARSITE is not straightforward in any other country. In Aus-
tralia and Canada, other softwares, Prometheus and SiroFire, were developed. They
are based on their own climate, adjusted empirical laws, and fire perimeter evolution
algorithms [9]. The Greek simulator Calchas [37] considers terrain slope, vegetation
parameters, and current meteorological conditions. The evolution is based on a vari-
ation of the Dijkstra algorithm and a fuzzy/neural system to estimate the combined
effect of the mentioned factors. As a result, the spatial curve is evolving in the normal
direction. Firestation [18] is a semi-empirical simulator driven by the terrain slope,
fuel describing parameters and wind direction and velocity. Moreover, two models
for wind field simulations are included. A simple and fast one, based on the mass
conservation principle, and a more complex model based on the three-dimensional
Navier-Stokes equations. Similarly to FARSITE, the curve is evolving by the Huy-
gens principle, considering ellipses with variable semi-major and semi-minor axis.
Vesta [1] is a simulator considering the terrain slope, the wind velocity and direc-
tion, and fuel properties (the vegetation type and the slope orientation). It offers two
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different evolution models. The first one requires no parameter on input, since all
values are given. To obtain the model parameters, hundreds of fire situations were
simulated and evaluated on a physics-based simulator FIRETEC. The second one
was developed for testing purposes and basically is driven by the wind velocity and
direction.

In this paper, we develop a new wildland fire propagation model. The model is
based on the surface curve evolution and empirical principles of fire propagation on
Earth topography. In the mathematical literature, there exist a number of studies about
the evolution of planar and surface curves with many applications (see, e.g., [2–8,
11, 13, 14, 23–28, 31, 35]). We distinguish two main approaches to handle the curve
evolution problems, the so-called Lagrangian (direct) approach (see, e.g., [2, 11, 24])
and the so-called Eulerian (level-set) approach (see, e.g., [31, 35]). In the Eulerian
level-set approach, one solves the problem of curve evolution in a 2-D computational
domain which is usually discretized by a uniform grid and the number of discrete
unknowns is proportional to the number of the 2-D grid points. The evolving curve
is then obtained implicitly, as the zero isoline of 2-D + time level set function. In the
Lagrangian approach, one evolves directly the curve discretization points, so it is spa-
tially a 1-D problem and thus computationally much more simple and faster than the
level-set method. However, the Lagrangian approaches need the so-called tangential
grid point redistribution [4, 13, 14, 23–28] and an efficient algorithm for the detec-
tion and treatment of topological changes during the evolution [3, 5–8, 27], which are
automatically handled by the level-set method [31, 35]. When the Lagrangian meth-
ods are tangentially stabilized and are able to treat the topological changes quickly,
they represent really efficient approaches to 2-D or surface curve evolution. In the fire
modeling literature, the simulators based on the Lagrangian approach are denoted as
vector-based (Calchas, Farsite, Prometheus, SiroFire) and the simulators based on the
Eulerian are called raster-based (Vesta, Flire, Ignite, Firemap, Firestation, Pyrocart)
[36].

In our Lagrangian forest fire propagation model, the fire perimeter is represented
by a surface curve, although it is evolved numerically as a projected planar curve. The
surface curve evolution is driven by the empirical mathematical model, which con-
siders variable fuel rate of spread (ROS), wind speed and direction, topography slope,
and the fire perimeter shape with respect to the topography (geodesic and normal
curvatures). Such a complex mathematical model is new in the literature devoted to
wildland fire modeling as well as the curve evolution. This, together with a new and
efficient numerical treatment of the mathematical model, represents the main contri-
butions of our paper, which is organized as follows. We define a fire perimeter as a
surface curve in Section 2. We design the outer normal velocity and derive the exter-
nal driving forces for the surface curve evolution in Section 3. We also employ the
tangential velocity in order to obtain an asymptotically uniform grid point redistribu-
tion. Numerical discretization is presented in Section 4. In Section 5, we discuss the
efficient treatment of topological changes in the fire perimeter, splitting and merg-
ing of the curves. In the last Section 6, the results of our model on representative
examples are presented.
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2 A surface curve

In this paper, we will use the so-called Lagrangian approach for the evolution of a 3-
D surface curve, representing a fire perimeter. For numerical computations, we will
use its projection on a 2-D planar curve, where we follow [24, 26].

Let us have the closed � = {x(u); u ∈ [0, 1] , x(0) = x(1)}, where x(u) =
(x (u) , y (u)) ∈ R

2 is the position vector of the curve � for the parameter u. In the
discretized form, we can imagine it as shown in Fig. 1.

We suppose that the curve will expand due to an external force. In other words,
we suppose the motion of the curve in the outer normal direction. If the curve � is
parametrized in a counterclockwise direction, the unique definition of the unit tangent
T and the outer unit normal N vectors to the plane curve � can be done as follows:
T = xs , N = x⊥

s , and T∧N = −1, where xs = ∂x
∂s

and T∧N denotes the determinant
of the matrix with columns T and N, where s is the arc-length parametrization of
the curve �: ds = gdu, where g = |xu| = ∣

∣ ∂x
∂u

∣
∣ > 0. If T = (xs, ys) , then N =

(ys, −xs).
Such curve could represent the fire perimeter on a horizontal plane [3]. Unfor-

tunately, in most cases, the wildland fires do not occur on a flat terrain. Therefore,
we define the surface M that represents a local Earth topography, given, e.g.,
by a digital terrain model. Let M be a two-dimensional surface in R

3, M =
{

(x, y, ϕ (x, y)) ∈ R
3, (x, y) ∈ �

}

, represented by a graph of the function ϕ : � ⊂
R

2 → R defined on a domain � ⊂ R
2. Let the curve G, parametrized by u ∈ [0, 1],

(x (0) , y (0) , z (0)) = (x (1) , y (1) , z (1)), be the smooth closed surface curve on
M that represents the fire perimeter on the surface M. Let us denote by p the
arc-length parametrization of the curve G: dp = Gdu, where G = |Gu| > 0.

Furthermore, we suppose that the relation between the planar curve � and the surface
curve G is G = {

(x (u) , y (u) , z (u) = ϕ (x (u) , y (u))) ∈ R
3, (x (u) , y (u)) ∈ �

}

,
what means the curve � is the vertical projection of the surface curve G (see Fig. 2).

Fig. 1 Discretization of a planar curve � (left), where n is the number of curve grid points. The closed
curve is parametrized by u ∈ [0, 1] and x(0) = x(1), e. g., the circle with unit length (right)
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Fig. 2 The surface curve G on the surface M and the planar curve � as the vertical projection of G on the
horizontal plane

Now, we can define the formula for the unit tangent T and the unit normal vectors
N in the tangent plane to the surface M. For the unit tangent vector T , we obtain

T = (T, ∇ϕ · T)
√

1 + (∇ϕ · T)2
. (1)

Note that here and in further notations, we denote a 3-D vector by (a, b), where
a ∈ R

2 and b ∈ R. We find N as the cross product of the unit tangent vector T and
the upward-pointing unit normal vector NM to the surface M. Vector NM is given
as the cross product of two vectors from the tangent plane to the surface M, e.g.,
v1 = (1, 0, ϕx) and v2 = (

0, 1, ϕy

)

, which is then normalized and we get

NM =
(−ϕx, −ϕy, 1

)

√

1 + |∇ϕ|2
= (−∇ϕ, 1)

√

1 + |∇ϕ|2
. (2)

Then, the outer unit normal vector N is derived as follows

N =
(

N + (∇ϕ)⊥ (∇ϕ · T) , ∇ϕ · N)

√
(

1 + |∇ϕ|2) (

1 + (∇ϕ · T)2)
, (3)

where (∇ϕ)⊥ = (

ϕy, −ϕx

)

. Since (∇ϕ)⊥ = (∇ϕ · T)N− (∇ϕ · N)T, we finally get

N =
((

1 + (∇ϕ · T)2)N − (∇ϕ · T) (∇ϕ · N)T, ∇ϕ · N)

√
(

1 + |∇ϕ|2) (

1 + (∇ϕ · T)2)
. (4)
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For the surface curve G, we find its curvature vector K as the second derivative of
G with respect to the arc-length parametrization p,

K = Gpp = Tp = g

G
Ts =

(

xss

(

1 + ϕ2
s

) − xsϕsϕss, ϕss

(

1 + ϕ2
s

) − ϕ2
s ϕss

(

1 + ϕ2
s

)2

)

.

(5)
Since ϕss = (

ϕxxxsxs + ϕxyxsys + ϕxxss + ϕyxysxs + ϕyyysys + ϕyyss

)

and
−kN = xss , where k is the curvature of the planar curve, we obtain
ϕss = TT H (ϕ)T − k (∇ϕ · N) , where H (ϕ) is the Hessian (a square matrix with
the second-order partial derivatives) of the terrain function ϕ and we obtain the final
equation for the curvature vector K,

K =
(

−kN
(

1 + (∇ϕ · T)2) − T (∇ϕ · T)TT H (ϕ)T − k (∇ϕ · N)
(

1 + (∇ϕ · T)2)2
,

TT H (ϕ)T − k (∇ϕ · N)
(

1 + (∇ϕ · T)2)2

)

.

(6)

From the Darboux frame, which is an analogue of the Frenet-Serret frame, we
know that K = Kg (−N ) + KnNM, where Kg is the geodesic curvature and Kn is
the normal curvature. The splitting of the curvature K to Kg and Kn (see Fig. 3), is
important for simulation of the surface fire spread. If we know the curvature in the
tangent plane, Kg , we know how the fire perimeter shape influences the local normal
velocity. The second part, Kn, expresses the rugged surface contribution to the local
normal velocity, especially in canyons, in valleys, and on ridges. Since the geodesic
curvature is the projection of K to the inner unit normal vector −N , we get

Kg = k

√

1 + |∇ϕ|2
(

1 + (∇ϕ · T)2)
3
2

− (∇ϕ · N)TT H (ϕ)T
√

1 + |∇ϕ|2 (

1 + (∇ϕ · T)2)
3
2

. (7)

The normal curvature is the component of K in the direction of the unit upward-
pointing normal vector to the surface NM,

Kn = TT H (ϕ)T
(

1 + (∇ϕ · T)2)
√

1 + |∇ϕ|2
. (8)

Fig. 3 Splitting of the curvature K to the geodesic (Kg) and normal (Kn) curvatures is useful in modeling
of the surface fire perimeter evolution. Kg represents the influence of a local fire perimeter shape and Kn

represents the influence of a topography shape
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3 The wildland surface fire spreadmathematical model

In this section, we describe the forces influencing the surface curve evolution. We
characterize the outer normal velocity V of the surface curve G, the external force
F , and its influencing factors, such as fuel, wind, and terrain slope. We also derive
the general form of the planar (projected) curve evolution, where we split the planar
velocity into the normal velocity β and the tangential velocity α. While the normal
velocity changes the curve shape, the tangential velocity does not in the continuous
form. In the discrete form, we use the tangential velocity for the redistribution of
curve grid points that stabilizes the numerical model.

3.1 Normal velocity of the surface curve

In our approach, we evolve the surface curve G representing the fire perimeter and
we need to define the driving forces. The overall fire spread rate is expressed by
the external force F . Besides that, the fire spread is influenced by the shape of the
fire perimeter too. In other words, the curvatures of the surface curve influence the
local normal velocity (see Fig. 4). The geodesic curvature in the tangent plane to the
surface, Kg , smoothes the curve. Moreover, the shape of the topography influences
the normal velocity. The normal curvature Kn of the curve evolving in a valley (or on
a ridge) can increase (or decrease) the normal velocity V . Such an evolution of the
curve G can be described by the following velocity V in the outer normal direction,

V = F
(

δF − δgKg + δnKn

)

, (9)

where F is the external force, δF is the weight of the external force, δg is the weight
of the geodesic curvature, and δn is the weight of the normal curvature influence on
the fire spread. Such formula expresses the dominant role of the external force that
can be accelerated or slowed down by the geodesic and normal curvatures. In the case
of the flat terrain (Kn = 0) and the linear fire perimeter (Kg = 0), the fire spread

Fig. 4 Geodesic (Kg) and normal (Kn) curvatures in a valley and on a ridge. In both cases, Kg is the same,
since the local fire perimeter is the same on a tangent plane and it decreases the local normal velocity.
However, Kn differs. In a valley, Kn > 0; therefore, the normal velocity will increase. On the contrary, on
a ridge, Kn < 0 and the normal velocity will decrease
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depends only on the external force F . Considering a valley or a ridge, Kn �= 0, and it
is used to express the topography influence on the normal velocity. In the valley (see
Fig. 4 left) Kn > 0 and causes the fire spread acceleration due to the accumulation
of the radiation heat. On the other hand, on the ridge (see Fig. 4 right) Kn < 0 and
it slows the fire spread down, since the radiation heat is dissipated. Considering a
non-linear fire perimeter, i.e., the curve has convex and concave parts in the tangent
plane, the geodesic curvature Kg �= 0. In parts with Kg < 0, the fire perimeter is
accelerated due to radiation heat accumulation and in parts with Kg > 0, the radiation
heat dissipation slows down the fire perimeter propagation.

Our design of an external force influencing the fire behavior is based on the
empirical laws of the wildland fire perimeter propagation. Research indicates that
the wildland fire propagation is influenced by the fuel parameters, weather condi-
tions, and surrounding topography slope. Considering such most important factors,
we suggest the following formula for the external force,

F = f fw(w · N ) fs(s · N ), (10)

where f is the fuel influence, fw(w · N ) is the wind influence, and fs(s · N ) is
the terrain slope influence on the rate of spread, with w being the three-dimensional
wind vector, s being the three-dimensional slope vector, and N being the unit normal
vector in the tangent plane to the surface curve.

The fuel influence In the literature [29], ground, surface, and aerial fuels are
distinguished in the modeling of the wildland fires.

In our model, we shall consider a surface fuel. It is usually not homogeneousn and
therefore we assume a heterogeneous fuel flammability on a topographic surface. The
rate of spread (ROS) of the fire perimeter in the normal direction usually depends
on the local fuel properties. Therefore, the spatial variability in ROS is expressed
by a 2-D ROS map, f (x), x ∈ � ⊂ R

2, and f (x) gives the rate of spread in a
point (xi , ϕ (xi )) on the surface. According to the literature [16], we suppose that the
ROS map is given by a weighted combination of the most important factors, such
as species, age, bulk density, fuel moisture, vertical arrangement, fuel loading, and
compactness. Some of these factors can be determined by typological forestry maps,
like the species, age, or bulk density, and their combination creates the ROS map
(see Fig. 5), where the young, dense coniferous forest is considered as a fuel with
the highest spread rate. Moreover, it is possible to adapt the ROS map f (x) to the
existing fire propagation models, e.g., Rothermel’s fire spread model.

The wind influence Wind can dramatically increase (or decrease) the fire spread rate
if the fire spreads in (or against) the wind direction. It may also change the fire
spread direction. The wind increases the fuel preheating and drying, and it supplies
the oxygen to the fire.

Measuring the wind speed and direction on a topography with sufficient spatial
resolution during the fire is not possible. Therefore, we consider that wind has the
same speed and direction on the whole topography given by a two-dimensional vector
w2D . Such vector can be provided, e.g., by a weather forecast service. However, we
evolve curve on a variable surface; hence, we need a 3-D wind vector w. While we
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Fig. 5 The example of the scalar
rate of spread (ROS) map f ,
created as a weighted
combination of selected factors,
such as species, age, and bulk
density

retain the length, |w| = |w2D|, we construct the third coordinate as the directional
derivative of the terrain function ϕ along a vector w2D , i.e., the vector w lies in the
tangent plane, mathematically expressed as

w =
(

w2D, ∇ϕ · w2D
)

∣
∣w2D

∣
∣

√
∣
∣w2D

∣
∣2 + (∇ϕ · w2D

)2
(11)

for w2D �= 0. In the case of no wind, w2D = 0, we set w = 0.
According to the results in [34, 38], the wind influences the rate of spread expo-

nentially, so we consider the scalar product of the wind vector w and the outer normal
vector N as an exponent of the function fw in the form

fw (w · N ) = eλw(w·N ), (12)

where λw is a positive parameter. If those vectors are perpendicular, w · N = 0, the
external force F is not influenced by the wind, because fw = 1. If the vectors are
parallel, with the same orientation, w · N = |w|, fw = eλw |w|, the influence of the
wind is the strongest. In all other cases, the exponent of the function fw is given by
the projection of the wind vector w onto the outer normal vector N (see Fig. 6).

The topography slope influence The slope, similarly to wind, can increase (or
decrease) the fire spread or change the spread direction. The slope increases the radi-
ation and convection heat transfer up the slope. From the digital terrain model (the
topography function ϕ), we can easily obtain a vector function ∇ϕ characterizing the
topography slope. Now, we adjust the 2-D vector function ∇ϕ to the tangent plane
to get a slope vector s the same way as we did for the wind vector w. We obtain the
third coordinate of the vector s as the directional derivative of the terrain function ϕ

along ∇ϕ, i.e.,

s =
(

∇ϕ, |∇ϕ|2
) |∇ϕ|

√

|∇ϕ|2 + (|∇ϕ|2)2
=

(∇ϕ, |∇ϕ|2)
√

1 + |∇ϕ|2
. (13)
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Fig. 6 An example of the projection of the wind vector w (white) to the normal vector N (black). The dot
product (w · N ) can lead to various results. If the wind blows in the outer normal direction |w · N | > 0.
If the wind blows in the opposite direction |w · N | < 0 and if the vectors N and w are perpendicular
|w · N | < 0. The wind vector w is computed from a measured two-dimensional wind vector w2D (yellow)

for ∇ϕ �= 0. In the case of flat terrain, ∇ϕ = 0, we set s = 0.
According to the results in [10, 38], the slope influences the rate of spread

exponentially, depending on the projection of s to N ; therefore, we consider

fs (s · N ) = eλs(s·N ), (14)

where λs is a positive parameter.

3.2 Evolution of the projected planar curve

We suppose that the projected planar curve � of the surface curve G, which models
the fire spread, moves in time by a general planar velocity vector field v. We can
split such general motion of any point x of the curve � into the normal and tangen-
tial directions, so we consider a general form of the planar curve evolution in the
following form

xt = v = βN + αT, (15)

where β is the velocity in the normal direction N and α is the tangential velocity of
the planar curve �. In Section 3, we designed the normal velocity V for the surface
curve G. Now, we want to relate the normal velocity V in the tangent plane to the
projected curve � normal velocity β. Following [24], we subsequently get that

V = Gt ·N = (xt , yt , ϕt (x, y)) ·N = (xt , xt · ∇ϕ) ·N =
√

1 + |∇ϕ|2
1 + (∇ϕ · T)2

β, (16)

from where we obtain

β = V

√

1 + (∇ϕ · T)2

1 + |∇ϕ|2 . (17)
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Employing the equation for the normal velocity of the surface curve (9), the geodesic
curvature (7), and the normal curvature (8), taking into account the Frenet equation
xss = −kN, the equation for the normal velocity of the planar curve (17) can be
written in the form β = (−εk + w). Now, we rewrite the general form of the planar
curve evolution (15) in terms of the intrinsic PDE for the evolution of the position
vector x of the planar curve �, where we split the normal velocity β into the curvature
term ε and the force term w

xt = εxss + αxs + wx⊥
s , (18)

where

ε = Fδg

1 + (∇ϕ · T)2
, (19)

w = F

⎛

⎝δF

√

1+
(

∇ϕ·T
)2

1+|∇ϕ|2 + δg
TT H(ϕ)T(∇ϕ·N)

(

1+(∇ϕ·T)2)(1+|∇ϕ|2)

+δn
TT H(ϕ)T√

1+(∇ϕ·T)2(1+|∇ϕ|2)
)

(20)

and a suitable choice of α is discussed in the following subsection.

3.3 The choice of the tangential velocity

Although it is well known that a tangential motion does not change the shape of the
evolving curve, we know that it is helpful in stabilization of the numerical algorithms
based on Lagrangian approaches [23, 25]. If we want to preserve a distribution of

points, we must conserve the ratio
g

L
, where g represents the local length g = |xu|

and L the global curve length [2, 3, 23–28]. Considering the numerical discretiza-

tion, we obtain g
L

≈
|xi−xi−1|

h

L
= |xi−xi−1|

Lh
= |xi−xi−1|

L
n

, where h = 1
n

, n is the number

of the curve grid points (see Fig. 1). The numerator denotes the distance between
two neighbouring points, and the denominator denotes the average distance between
neighbouring points (since n denotes the total number of curve points and its seg-
ments). One can get the curve with uniformly distributed discrete grid points, if the

ratio |xi−xi−1|
L
n

→ 1 in time for all discrete segments, so in the continuous formula-

tion, we should have g
L

→ 1 with increasing time [25]. For the time evolution of the
curve local length g, we obtain

gt = |xu|t = xu

|xu| · (xu)t = gxs

g
· (xt )u = T · (βN + αT)u = T · g (βN + αT)s

= T · g (βsN + βNs + αsT + αTs) = T · g ((βs − αk)N + (βk + αs)T)

= gkβ + gαs = gkβ + αu. (21)
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By integrating the previous equation, we obtain the formula for the evolution of the
global curve length L

Lt =
1∫

0

gtdu =
1∫

0

gkβdu +
1∫

0

αudu =
1∫

0

gkβdu + α (1) − α (0) . (22)

Due to the periodic boundary condition, we have α (1) = α (0). Then, we rewrite the
formula as follows

Lt =
1∫

0

gkβdu =
∫

�

kβ ds = L 〈kβ〉� , (23)

where 〈kβ〉� = 1
L

∫

�
kβ ds. For the time evolution of the ratio

g

L
, we obtain

( g

L

)

t
= (gkβ + αu) L − gL 〈kβ〉�

L2
= g

L

(

kβ + αs − 〈kβ〉�
)

. (24)

If we choose
( g

L

)

t
= 0, we get αs = 〈kβ〉� − kβ and with this tangential velocity,

the curve preserves the initial distribution of grid points [23]. If we impose
( g

L

)

t
=

ω
(

1 − g

L

)

, where ω is a parameter determining how fast the redistribution becomes

uniform, we get g
L

→ 1 and we obtain the formula for the tangential velocity which
guarantees the asymptotically uniform redistribution of grid points of the planar curve
� [25],

αs = 〈kβ〉� − kβ + ω

(
L

g
− 1

)

. (25)

4 The numerical scheme

In the previous section, we derived the intrinsic PDE for the planar curve � position
vector x evolution,

xt − αxs = εxss + wx⊥
s , (26)

where ε, w, andα are given by (19), (20), and (25), and here we present its numer-
ical discretization. First, we perform the spatial discretization, which is based on
the flowing finite volume method in space [23], and then we discuss the semi-
implicit discretization [3, 23] in time. To guarantee the solvability of arising cyclic
tridiagonal linear systems for any choice of time step, we use the so-called inflow-
implicit/outflow-explicit scheme [3, 21, 22] in the approximation of the advection
term.

Integrating (26) over the finite volume pi = [x
i− 1

2
, x

i+ 1
2
] (see Fig. 7), where x

i− 1
2

represents the middle point between the points xi−1 and xi , i.e.,

x
i− 1

2
= xi−1 + xi

2
, (27)
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Fig. 7 Visualization of the curve discretization, curve grid points (red), and their midpoints. Finite volumes
pi−1,pi , and pi+1 are highlighted by green, brown, and yellow color. Note that pi is not a straight line
given by x

i− 1
2

and x
i+ 1

2
, but a broken line given by x

i− 1
2

, xi and x
i+ 1

2

we get
x
i+ 1

2∫

x
i− 1

2

xt ds − α

x
i+ 1

2∫

x
i− 1

2

xsds = ε

x
i+ 1

2∫

x
i− 1

2

xssds + w

x
i+ 1

2∫

x
i− 1

2

x⊥
s ds, (28)

where the values ε, α, and w are considered constant, with values εi, αi, andwi on
the discrete curve segment pi around the point xi . We define hi = |xi − xi−1|, then
the measure of the segment pi is equal to hi+hi+1

2 , and using the Newton-Leibniz
formula, we get the following approximation of (28), for i = 1, ..., n,

hi + hi+1

2
(xi )t − αi [x]

x
i+ 1

2
x
i− 1

2

= εi [xs]
x
i+ 1

2
x
i− 1

2

+ wi

(

[x]
x
i+ 1

2
x
i− 1

2

)⊥
(29)

hi + hi+1

2
(xi )t − αi

(

x
i+ 1

2
− x

i− 1
2

)

= εi [xs]
x
i+ 1

2
x
i− 1

2
+ wi

(

x
i+ 1

2
− x

i− 1
2

)⊥
.(30)

Approximating the arc-length derivative xs in the first bracket on the right-hand
side by a finite difference, we obtain the semi-discrete flowing finite volume scheme,

hi + hi+1

2
(xi )t − αi

(

x
i+ 1

2
− x

i− 1
2

)

= εi

(
xi+1 − xi

hi+1
− xi − xi−1

hi

)

+ wi

(

x
i+ 1

2
− x

i− 1
2

)⊥
. (31)

Now, we split the advection term (involving the tangential velocity α) as follows,

− αi

(

x
i+ 1

2
− x

i− 1
2

)

= αi

(

xi − x
i+ 1

2

)

− αi

(

xi − x
i− 1

2

)

. (32)

Using (27), we obtain

hi + hi+1

2
(xi )t + αi

2
(xi − xi+1) − αi

2
(xi − xi−1)

= εi

(
xi+1 − xi

hi+1
− xi − xi−1

hi

)

+ wi

(
xi+1 − xi−1

2

)⊥
. (33)
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If αi < 0, i.e., the velocity of advection (−α) in (26) is positive in the segment pi , it
represents the inflow in x

i− 1
2

and the outflow in x
i+ 1

2
. On the other hand, if αi > 0,

it represents the inflow in x
i+ 1

2
and the outflow in x

i− 1
2
. Let us define

bin

i− 1
2

= max (−αi, 0) , bout
i− 1

2
= min (−αi, 0) ,

bin
i+ 1

2
= max (αi, 0) , bout

i+ 1
2

= min (αi, 0) (34)

and rewrite the equation (33) as follows

hi + hi+1

2
(xi )t + 1

2

(

bin
i+ 1

2
+ bout

i+ 1
2

)

(xi − xi+1) + 1

2

(

bin
i− 1

2
+ bout

i− 1
2

)

(xi − xi−1)

= εi

(
xi+1 − xi

hi+1
− xi − xi−1

hi

)

+ wi

(
xi+1 − xi−1

2

)⊥
. (35)

In order to perform the time discretization, let us denote by m the time step index
and by τ the length of the discrete time step. Let us approximate the time derivative

by the finite difference (xi )t = xm+1
i −xm

i

τ
, taking the inflow part of the advection term

and the curvature term implicitly and the outflow part of the advection term and the
force term explicitly. We obtain

hm
i+1 + hm

i

2

xm+1
i − xm

i

τ
+ 1

2
binm

i+ 1
2

(

xm+1
i − xm+1

i+1

)

+ 1

2
binm

i− 1
2

(

xm+1
i − xm+1

i−1

)

− εi

(

xm+1
i+1 − xm+1

i

hm
i+1

− xm+1
i − xm+1

i−1

hm
i

)

(36)

= −1

2
boutm

i+ 1
2

(

xm
i − xm

i+1

) − 1

2
boutm

i− 1
2

(

xm
i − xm

i−1

) + wm
i

(
xm
i+1 − xm

i−1

2

)⊥
,

from where we get the fully discrete scheme in the form of a cyclic tridiagonal system

xm+1
i−1

⎛

⎝− εm
i

hm
i

−
binm

i− 1
2

2

⎞

⎠ + xm+1
i+1

⎛

⎝− εm
i

hm
i+1

−
binm

i+ 1
2

2

⎞

⎠

+xm+1
i

⎛

⎝
hm

i+1 + hm
i

2τ
+ εm

i

hm
i

+ εm
i

hm
i+1

+
binm

i− 1
2

2
+

binm

i+ 1
2

2

⎞

⎠ = xm
i

hm
i+1 + hm

i

2τ
(37)

−
boutm

i+ 1
2

2

(

xm
i − xm

i+1

) −
boutm

i− 1
2

2

(

xm
i − xm

i−1

) + wm
i

(
xm
i+1 − xm

i−1

2

)⊥
,

i = 1, ..., n, where n is the number of the curve grid points.
In complex fire simulations, e.g., when curves are merging or splitting, the evolv-

ing fire perimeter can be locally sharp, even with singularities. Therefore, in such
singular points, we use just the first-order implicit upwind scheme instead of the
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second-order inflow-implicit/outflow-explicit method in the discretization of the
advection term. This first-order upwind scheme is applied when the angle between
two consecutive curve segments (xi−1, xi ) and (xi , xi−1) is less than 120◦, i.e.,
�(xi−1xixi+1) < 120◦. In the upwind scheme, we use only the inflow velocities
bin
i− 1

2
, bin

i+ 1
2
, and points x

i− 1
2
, x

i+ 1
2

in (32) are approximated by the neighbouring val-

ues xi−1 or xi+1, depending on the inflow direction. In this way, we get instead of
(35) that

hi + hi+1

2
(xi )t + bin

i+ 1
2
(xi − xi+1) + bin

i− 1
2
(xi − xi−1)

= εi

(
xi+1 − xi

hi+1
− xi − xi−1

hi

)

+ wi

(
xi+1 − xi−1

2

)⊥
(38)

and

xm+1
i−1

(

− εm
i

hm
i

− binm

i− 1
2

)

+ xm+1
i+1

(

− εm
i

hm
i+1

− binm

i+ 1
2

)

+xm+1
i

(

hm
i+1 + hm

i

2τ
+ εm

i

hm
i

+ εm
i

hm
i+1

+ binm

i− 1
2

+ binm

i+ 1
2

)

= xm
i

hm
i+1 + hm

i

2τ
(39)

+wm
i

(
xm
i+1 − xm

i−1

2

)⊥

instead of (37). This replacement of (37) by (39) occurs rarely, but in case it arises,
the usage of (39) makes the scheme robust with respect to singularities.

The above systems (37) and (39) are both strictly diagonally dominant; thus, it
is always solvable by the efficient cyclic tridiagonal solver (a modification of the
Thomas algorithm) without any restriction on time step length τ [3].

In the numerical schemes (37) and (39), there are two parameters, εm
i and wm

i ,
given by (19)–(20), which are evaluated as follows,

εm
i = Fm

i δg

1 + (∇ϕm
i .Tm

i

)2
, (40)

wm
i = Fm

i

⎛

⎝δF

√

1+
(

∇ϕm
i .Tm

i

)2

1+|∇ϕm
i |2 + δg

Tm
i

T H(ϕm
i )Tm

i ∇ϕm
i .Nm

i(

1+(∇ϕm
i .Tm

i )
2
)(

1+|∇ϕm
i |2

)

+ δn
Tm

i
T H(ϕm

i )Tm
i√

1+(∇ϕm
i .Tm

i )
2
(

1+|∇ϕm
i |2

)

)

,

(41)

where Tm
i = xm

i+1−xm
i−1

hm
i+1+hm

i
, Nm

i = Tm⊥
i , and Fm

i , ∇ϕm
i , and H

(

ϕm
i

)

are discrete

values of the external force, the topography slope, and the square matrix of the
second-order partial derivatives of the topography function ϕ. The value ∇ϕm

i =
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∇ϕ
(

xm
i

)

is obtained as the bilinear interpolation of the discrete gradient given by the
central differences of the topography function ϕ given on the regular square grid. The
discretization of H

(

ϕm
i

)

is obtained similarly.
The external force Fm

i is discretized by

Fm
i = F

(

xm
i

) = f m
i eλs(smi ·Nm

i ) eλw(wm
i ·Nm

i ), (42)

where the values f m
i = f

(

xm
i

)

are obtained by bilinear interpolation of the rate of
spread values given by a pixel map, and

wm
i = w

(

xm
i

) =
(

w2D, ∇ϕm
i · w2D

)
∣
∣w2D

∣
∣

√
∣
∣w2D

∣
∣2 + (∇ϕm

i · w2D
)2

, (43)

smi = s
(

xm
i

) =
(

∇ϕm
i ,

∣
∣∇ϕm

i

∣
∣2

)

√

1 + ∣
∣∇ϕm

i

∣
∣2

. (44)

In order to discretize the tangential velocity αi , we first set αm
0 = 0, which

causes the point x0 will move only in the normal direction. Then, we get αm
i for

i = 1, 2, ..., n − 1 by

αm
i = αm

i−1 + hm
i km

i βm
i − hm

i 〈kβ〉m� + ω

(
Lm

n
− hm

i

)

, (45)

where the curvature km
i , the normal velocity βm

i , for i = 1, 2, ..., n, the mean value
〈kβ〉� , and the total curve length Lm are given by following formulas

km
i = sgn

(

hm
i−1 ∧ hm

i+1

) 1

2hm
i

arccos

(

hm
i+1 · hm

i−1

hm
i+1h

m
i−1

)

, (46)

βm
i = −εm

i−1 + εm
i

2
km
i + wm

i−1 + wm
i

2
, (47)

〈kβ〉� = 1

Lm

n
∑

l=1

hm
l km

l βm
l , (48)

Lm =
n

∑

l=1

hm
l , (49)

where hm
i = xm

i − xm
i−1, hm

i = ∣
∣hm

i

∣
∣.

Setting αm
0 = 0 can cause an unnecessary large value of the tangential velocity

in an effort to redistribute the curve points uniformly. To minimize the tangential

velocity, we find the average tangential velocity αm
avg =

n∑

i=0

αm
i

n
. It is clear that αm

avg
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Fig. 8 An example of merging and splitting of curves on a ROS map. On the left, four red circles repre-
senting the initial fire perimeters and their time evolution are plotted. Curves with the same color represent
the fire perimeter position at the same time. On the right, there is the same situation, but the evolution of
different fire perimeters is plotted in different colors—red, yellow, green, and blue—until their merging.
After the merging, the color changes to a combination, e.g., green and blue curves merge to a cyan curve

is an unnecessary tangential velocity, and therefore we find new minimized values as
αm

i = αm
i − αm

avg for i = 0, 1, ..., n − 1, by which we redefine αm
i .

5 Topological changes treatment

By a topological change, we mean merging of several fire perimeters and/or split-
ting of the evolving curve into several separate curves (Fig. 8). Such splitting can
occur when the curve velocity is locally slowed down significantly (e.g., nonburnable
regions). Detecting and solving the topological changes in the Lagrangian approach
is usually highly time-consuming [12], because the standard approaches have com-
putational complexity O

(

n2
)

, where n is the number of curve points. Such a high
complexity is due to the strategy for the topological changes detection, which con-
sists of computing pairwise distances between all grid points of the curve [12, 32].
The number of operations in such approach is (n − 1)2 = n2 − 2n + 1 steps that
must be performed in every computational time step and it slows down the overall
computing time significantly. In this section, we present our O (n) approach for the
detection and processing of the topological changes in curve evolution which makes
our overall computational method fast and applicable in a complex situation of the
fire perimeter evolution.

In the sequel, we omit the time step index m, since we detect the topological
changes before every time step and we will use following notations:

– NC is the number of curves
– nj is the number of grid points of the j th curve �j

– nmin is the minimal authorized number of grid points of a curve
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Fig. 9 Condition for splitting curves from Algorithm 3 line 18. The curve (red) is evolving on a hetero-
geneous ROS map. The first situation (upper row), when the curve encircles the nonburnable area (black),
indicates splitting into inner and outer curves, since the normal Ns1 (blue) is pointing towards Ns2 (green).
In this case, we split the curve (see also Fig. 8). The second situation (bottom row) illustrates the curve
entering a narrow strip between nonburnable fuel. In this case, the normal Ns1 (cyan) is pointing away
from Ns2 (purple); splitting and deleting the smaller curve would not allow the curve to spread through a
narrow area. In this case, we do not split the curve

– hj is the mean segment length of the curve �j , i.e. hj = Lj/nj , Lj is the length
of curve �j

– hd is the desired segment length during the evolution
– Ldif (i, k) is the local difference between the sum of the desired segment lengths

hd and the sum of the real segment lengths from the kth to the ith segment, i.e.,
Ldif (i, k) = ∑j=i

j=k

(

hj − hd

)

– xj,i is the ith grid point of the j th curve �j

– Deletecurve(j ) is the function, that deletes the curve �j . If NC > j , �j is
replaced by �NC and NC is reduced by 1, otherwise only NC is reduced by 1.

Maintaining the desired segment length hd is required for reliable topological
changes detection. In our method, every curve is asymptotically uniformly dis-
cretized, i.e., all segment lengths of curves are close to their mean value hj . However,
hj can differ between different curves, and it may increase for expanding curves or
decrease for shrinking curves. Such difference in hj is non-desirable, especially in
merging of curves, so we maintain the desired segment length hd for all curves by
adding or removing points by the Algorithm 2 after which the asymptotically uniform
redistribution is quickly obtained by the tangential velocity included in the numerical
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method. The algorithm for adding and removing points is built on the idea of travers-
ing the curve and summing the segment lengths, i.e., summing the distances between
grid points. We check whether the difference between this sum and the correspond-
ing sum of the desired segment length hd is in absolute value larger than the desired
length hd of one segment. If this difference is larger than 0, we add a point to the
longest segment. If this difference is less than 0, we remove the point between the
shortest neighboring segments.

Our overall computing strategy can be described by the Algorithm 1.
Our main idea for the topological changes detection (see also [3]) is to cre-

ate a narrow strip of cells along the curves. Let us have an array p[I ][J ], where
I = 0, ..., py, J = 0, ..., px, covering the whole computational domain �. It is cru-
cial to set the coupling between the cell size and the desired curve segment length
hd , especially when treating the curve splitting. To that goal, we set the cell size to
2hd × 2hd . Ideally, a smooth enough curve, as desired, should not have more than
three points (two whole segments) in one cell, because the cell diagonal length is less
than 3hd .

Algorithm 1 Overall computing strategy

1 foreach Time step do
2 Topological changes detection (splitting) - Algorithm 3
3 Topological changes detection (merging) - Algorithm 4
4 foreach Curve �j do
5 if

∣
∣hd − hj

∣
∣ > εh then

6 Adding and removing grid points - Algorithm 2

7 Numerical computation by the scheme (37), (39)

In our approach, we will split the curve if two non-neighboring curve grid points
belong to the same cell (see Fig. 9 top). We also require that the difference of indices
of such two non-neighboring grid points should be greater than or equal to three. This
means that the curve should leave the cell and come back to the cell following the
curve trajectory between those two points, because four consecutive points cannot
belong to one cell. In Algorithm 3, the splitting is detected by traversing all curve
grid points and marking the cells with the grid point numbers. If a point i belongs
to a cell already marked by the j -th point and i − j > 2, we look for the nearest
pair of points in a local neighborhood of the i-th and the j -th points. If the distance
between the found nearest points is less than the mean segment length hj , we split the
curve (see Fig. 9 again). However, in the situation of the curve entering the narrow
strip between the nonburnable fuel (see Fig. 9 bottom), the curve would undesirably
split. We prevent the splitting in such situations by checking the orientation of the
outer normal vectors in the curve points, where the splitting should proceed. If the
normal vectors are pointing away from each other, we do not split the curve. We deal
with the merging detection similarly to the splitting detection. In Algorithm 4, we
traverse through the points of all curves. In traversing, we mark the cell, to which



M. Ambroz et al.

Algorithm 2 Adding and removing grid points

/* k is the segment number from which we measure
Ldif (i, k) */

1 k ← 0
2 i ← 0
3 Ldif (i, k) ← 0
4 for i ← 1 to nj do
5 Ldif (i, k) ← Ldif (i, k) + hi − hd

6 if
∣
∣Ldif (i, k)

∣
∣ > hd then

7 if Ldif (i, k) > 0 then
/* find longest segment hl, k < l < i */

8 l ←LongestSegment(k, i)
9 N ← floor

(

Ldif (i, k) /hd

)

/* add N point(s) on the longest segment */
10 AddPoints(N, xl)
11 Ldif (i, k) ← Ldif (i, k) − Nhd

12 k ← i

13 else
/* find shortest neighboring segments hs and

hs+1, k < s < i */
14 s ← ShortestNeighoringSegments(k, i)

/* remove the point between the shortest
neighboring segments */

15 RemovePoint(xs)
16 Ldif (i, k) ← Ldif (i, k) + hd

17 k ← i

18 if nj < nmin then
19 DeleteCurve(j )

the curve point belongs, by the curve number. If the current point belongs to the cell
already marked by a point of another curve, we detect merging. Finally, we look for
the nearest pair of points in a local neighborhood of those two detected points and
we perform the merging of the curves in this nearest pair.

In further notations, let us denote by p[xj,i] the cell p[floor
(

yj,i/2hd

)]
[floor

(

xj,i

)

/2hd ], where the point xj,i belongs. To determine the cells p[xj,i],
we traverse all curve grid points instead of checking every cell. The topological
changes are processed with the functions SplitCurve(j, s1, s2) in Algorithm 3 and
MergeCurves(c1, c2, m1, m2) in Algorithm 4. SplitCurve(j, s1, s2) takes the curve
number j and two points indexes s1, s2 as argument and splits the curve �j at points
xj,s1 and xj,s2 into two closed curves. The first point set xj,1, xj,2, ..., xj,s1−1, xj,s2+1,
..., xj,n will replace the original curve by the number j . The second point set xj,s1+1,
xj,s1+2, ..., xj,s2−2, xj,s2−1 will be stored as �NC+1 and the number of curves NC
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Algorithm 3 Topological changes detection (splitting)

1 for j ← 1 to NC do
2 for i ← 1 to nj do

/* mark every cell p[xj,i], where ith grid point
of the curve �j lies by 0 */

3 p[xj,i] ← 0

4 for i ← 1 to nj do
5 if p[xj,i] = 0 then
6 p[xj,i] ← i
7 else

/* at least one grid point already belongs
to the cell p[xj,i] */

8 if i − p[xj,i] > 2 then
/* the grid points xj,i and xj,p[xj,i ] lie in

the same cell and there are more than 2
curve grid points between them */

9 s1 ← i
10 s2 ← p[xj,i]

/* find points xj,k and xj,l with shortest
distance */

11 min ← BIG
12 for k ∈ {s1 − 2; s1 − 1; s1; s1 + 1; s1 + 2} do
13 for l ∈ {s2 − 2; s2 − 1; s2; s2 + 1; s2 + 2} do
14 if

∣
∣xj,k − xj,l

∣
∣ < min then

15 min ← ∣
∣xj,k − xj,l

∣
∣

16 s1 ← k
17 s2 ← l

18 if
∣
∣xj,s1 − xj,s2

∣
∣ < hj then

/* test, whether the normal vector Ns2
at point xj,s2 is towards the normal
vector at point xj,s1, ε is a small
number, see also Fig. 9 */

19 if
∣
∣xj,s1 − xj,s2

∣
∣ >

∣
∣xj,s1 − (

xj,s2 + εNs2

)∣
∣ then

20 SplitCurve(j, s1, s2)
/* repeat the splitting detection

for jth curve �j */
21 j−−
22 break

will be increased by 1. MergeCurves(c1, c2, m1, m2) takes two curve numbers
c1, c2 and two points indices m1, m2 as an argument. The newly merged curve will
consist of nc1 +nc2 −2 points, namely xc1,1, ..., xc1,m1−1, xc2,m2+1, xc2,nc2

, xc2,1, ...,
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Algorithm 4 Topological changes detection (merging)

1 if NC > 1 then
2 for j ← 2 to NC do
3 for i = 1 to nj do

/* mark every cell p[xj,i], where ith grid
point of �j lies by 0 */

4 p[xj,i] ← 0

5 for i ← 1 → n1 do
/* mark every cell p[x1,i], where ith grid point

of �1 lies by 1 */
6 p[x1,i] ← 1

7 for j ← 2 to NC do
8 for i ← 1 to nj do
9 if p[xj,i] = 0 then

10 p[xj,i] ← j
11 else
12 if p[xj,i] < j then

/* point of curve �p[xj,i ] already belongs
to the cell p[xj,i] */

13 c1 ← p[xj,i]
14 c2 ← j
15 m2 ← i
16 p ← −1
17 for k ← 1 to nc1 do
18 if p[xc1,k] = −1 then
19 m1 ← p[xc1,k]
20 min ← BIG

/* find the nearest points xc1,k and xc2,l

*/
21 for k ∈ {m1 − 2; m1 − 1; m1; m1 + 1; m1 + 2} do
22 for l ∈ {m2 − 2; m2 − 1; m2; m2 + 1; m2 + 2} do
23 if

∣
∣xc1,k − xc2,l

∣
∣ < min then

24 min ← ∣
∣xc1,k − xc2,l

∣
∣

25 m1 ← k
26 m2 ← l

27 if
∣
∣xc1,m1 − xc2,m2

∣
∣ <

(

hc1 + hc2

)

/2 then
/* merge �c1 at point xc1,m1 with �c2 at

point xc2,m2 */
28 MergeCurves(c1, c2, m1, m2)
29 Adding and removing grid points algorithm for curve

�c1
30 goto line 1



Numerical modeling of wildland surface fire propagation...

xc2,m2−1, xc1,m1+1, xc1,nc1
, and will be stored as the curve �c1 . The curve �c2 will be

deleted by DeleteCurve(c2). We also note that due to the topological changes detec-
tion, we use the time step τ ≤ 2hd/β which prevents the grid points from skipping a
cell in one time step.

6 Numerical experiments

In this section, we describe various numerical experiments showing the properties
of our mathematical model and the numerical scheme. First, we show the experi-
mental order of convergence of the numerical scheme on a circle evolving by an
external force and the geodesic curvature. Then, we show how the curve evolution is
influenced by the external force (ROS, the wind speed and direction and the topog-
raphy slope), the geodesic and normal curvatures on an artificial topography. Finally,
we show a reconstruction of a real surface fire and complex evolution of the fire
perimeter with topological changes on a real variable topography of central Slovakia
mountain area.

6.1 Experimental order of convergence of the numerical scheme

The experimental order of convergence (EOC) is calculated as EOC = log2
‖En‖
‖E2n‖ ,

where ‖En‖ is the norm of the space-time error for the curve with n grid points,
which is computed by (50) and (54).

To find the EOC, it is necessary to know the exact solution. If the circle on the
inclined plane is shrinking by the unit external force, its radius in time is given
by r (t) = 1 − t . If such circle is evolved by the geodesic curvature, its radius is
given by r (t) = √

1 − 2t . In the case of a circle on a unit sphere evolving by the

geodesic curvature, the radius is given by r (t) =
√

1 − (

1 − r2
0

)

e2t , where r0 is the
radius of the initial circle [4]. Time step τ is chosen proportionally either to hd or
to hd

2.
In the following paragraphs, we compute the EOC of a circle on an inclined plane

and on a sphere. For a circle on an inclined plane, the EOC is computed for both evo-
lutions, driven by a unit external force and by the geodesic curvature. In the second
paragraph, we compute the EOC of the same evolution as we did in the first para-
graph by using a different measure. We project the numerically computed curves to
the horizontal plane and we use the ellipses in the horizontal plane as the exact solu-
tion for the computation of EOC. In the last paragraph, we compute the EOC for a
circle on a unit sphere evolving by the geodesic curvature.

EOC for a circle evolving on an inclined plane Let us consider the curve evolution on
the inclined plane ϕ (x, y) = x [24]. The initial projected curve is given as the ellipse
(x, y) = (a cos (γ ) , b sin (γ )), γ ∈ [0, 2π ], with the semi-major axis length b = 1
and the semi-minor axis length a = cos

(
π
4

)

. Such curve represents a unit circle
(circle with unit radius) on the inclined plane and let it be discretized by a uniform
grid. On the other hand, the initial curve on the horizontal plane is an ellipse with
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non-uniformly distributed points. Therefore, we employ the tangential velocity and
we set the parameter ω = 15.

First, we compare the exact radius r (mτ) and the numerical radius
∣
∣xm

i

∣
∣ of the

shrinking circle (Fig. 10). The discrete L2-norm is given by

‖En‖ =
√
√
√
√

NTS
∑

m=1

τ

n
∑

i=1

(∣
∣xm

i

∣
∣ − |r (mτ)|)2 hm

i + hm
i+1

2
, (50)

where NTS is the number of time steps. Tables 1 and 2 show the EOC of the circle
driven by a unit external force

(

δF = −1, δg = 0
)

and by the geodesic curvature
(

δF = 0, δg = 1
)

considering the coupling τ ≈ hd and τ ≈ hd
2.

Fig. 10 Shrinking circle with a non-uniform point distribution on the inclined plane and its projection to
the horizontal plane with a uniform point distribution
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Table 1 The EOC for the circle evolving on the inclined plane with coupling τ ≈ hd

F = −1, δg = 0 F = 0, δg = 1

n τ NTS ‖En‖ EOC ‖En‖ EOC

10 1.00000e-1 1 3.302470e-3 – 6.284157e-3 –

20 5.00000e-2 2 9.045722e-4 1.868238 2.846399e-3 1.142582

40 2.50000e-2 4 2.912492e-4 1.634982 1.336523e-4 1.090653

80 1.25000e-2 8 1.098624e-4 1.406557 6.443453e-4 1.052579

160 6.25000e-3 16 4.662980e-5 1.236373 3.158991e-4 1.028370

320 3.12500e-3 32 2.132691e-5 1.128577 1.563418e-4 1.014760

640 1.56250e-3 64 1.017795e-5 1.067228 7.776370e-5 1.007534

1280 7.81250e-4 128 4.969091e-6 1.034393 3.877938e-5 1.003807

EOC for an ellipse evolving in the horizontal plane This computation of EOC is based
on the fact that an ellipse on the horizontal plane is just a vertical projection of a circle
on the inclined plane. The exact solution is known to be the ellipse with semi-major
axis b = r (t) and semi-minor axis a = r (t) cos

(
π
4

)

. The distance dm
i of xm

i =
(x, y) and the ellipse can be found by transforming point xm

i to adapted ellipsoidal
coordinates N, d, θ [15]. To do so, we omit the time index m in the following steps
to maintain simplicity. In the first step, we compute the initial value of the angle θ

θ0 = arctan

(

y
(

1 − e2
)

x

)

, (51)

where e2 = a2−b2

a2 . In the next steps, we iteratively compute the improved values of
θ , distance from the ellipse di and the radius of curvature N :

Nk = a√
1 − e2sin2θk−1

, (di)
k = x

cos
(

θk−1
) − Nk, (52)

Table 2 The EOC for the circle evolving on the inclined plane with coupling τ ≈ hd
2

F = −1, δg = 0 F = 0, δg = 1

n τ NTS ‖En‖ EOC ‖En‖ EOC

10 1.00000e-1 1 3.302470e-3 – 6.284157e-3 –

20 2.50000e-2 4 6.284567e-4 2.393660 1.231436e-3 2.351378

40 6.25000e-2 16 1.413407e-4 2.044901 2.887643e-4 2.092378

80 1.56250e-2 64 3.425238e-4 2.012837 7.071423e-4 2.029820

160 3.90625e-3 256 8.487239e-5 2.003887 1.754468e-4 2.010967

320 9.76563e-3 1024 2.116100e-5 2.001303 4.372529e-4 2.004493

640 2.44141e-3 4096 5.285475e-5 2.000491 1.091621e-5 2.001996

1280 6.10352e-4 16384 1.320919e-6 2.000205 2.727283e-5 2.000935
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Table 3 The EOC for the projected ellipse evolution using the coupling τ ≈ hd

δF = −1, δg = 0 δF = 0, δg = 1

n τ NTS ‖En‖ EOC ‖En‖ EOC

10 1.00000e-1 1 2.813507e-3 – 4.816043e-3 –

20 5.00000e-2 2 7.793186e-4 1.852084 2.219950e-3 1.117321

40 2.50000e-2 4 2.509626e-4 1.634741 1.046447e-3 1.085027

80 1.25000e-2 8 9.457092e-5 1.408004 5.050892e-4 1.050889

160 6.25000e-3 16 4.009806e-5 1.237864 2.477384e-4 1.027721

320 3.12500e-3 32 1.832639e-5 1.129610 1.226322e-4 1.014479

640 1.56250e-3 64 8.742325e-6 1.067834 6.100230e-5 1.007403

1280 7.81250e-4 128 4.267217e-6 1.034721 3.042210e-5 1.003744

θk = arctan

⎛

⎝
y

(

1 − e2 Nk

Nk+(di)
k

)

x

⎞

⎠ . (53)

The limit distance dm
i = lim

k→∞ (di)
k is used for computing the L2-norm of the space-

time error:

‖En‖ =
√
√
√
√

NTS
∑

m=1

τ

n
∑

i=1

(

dm
i

)2 hm
i + hm

i+1

2
. (54)

Tables 3 and 4 show the EOC, where the error is computed for the projected
curves and the circle on the inclined plane is driven by a unit external force
(

δF = −1, δg = 0
)

and the geodesic curvature
(

δF = 0, δg = 1
)

, considering the
coupling τ ≈ hd and τ ≈ hd

2.

EOC for a circle evolving on a unit sphere [4] The evolution on a unit sphere is driven
by the geodesic curvature (Fig. 11). The initial projected curve is given as the circle

Table 4 The EOC for the projected ellipse evolution using the coupling τ ≈ hd
2

δF = −1, δg = 0 δF = 0, δg = 1

n τ NTS ‖En‖ EOC ‖En‖ EOC

10 1.00000e-1 1 2.813507e-3 – 4.816043e-3 –

20 2.50000e-2 4 5.476276e-4 2.361102 9.627732e-4 2.322580

40 6.25000e-3 16 1.233453e-4 2.150492 2.266572e-4 2.086684

80 1.56250e-3 64 2.990653e-5 2.044171 5.556107e-5 2.028366

160 3.90625e-4 256 7.412363e-6 2.012455 1.378814e-5 2.010647

320 9.76563e-5 1024 1.848366e-6 2.003683 3.436444e-6 2.004439

640 2.44141e-5 4096 4.617082e-7 2.001197 8.579233e-7 2.001996

1280 6.10352e-6 16384 1.153921e-7 2.000437 2.143409e-7 2.000942
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Fig. 11 A circle evolving by its geodesic curvature with the initial radius 0.8 on the unit sphere

(x, y) = (r0 cos (γ ) , r0 sin (γ )), γ ∈ [0, 2π ], with the initial radius r0 = 0.8. The
L2-norm of the space-time error is computed given by (50). Table 5 shows the EOC,
where the coupling τ ≈ hd

2 was used.
From the numerical experiments, we see that by using the coupling τ ≈ hd

2, the
method is second-order accurate for both the normal motion

(

δF = −1, δg = 0
)

and
the (geodesic) curvature-driven motion

(

δF = 0, δg = 1
)

.

6.2 The influence of themodel parameters on the evolution on an artificial
topography

The following examples illustrate how the external force (ROS, wind, and terrain
slope) and the geodesic and normal curvatures influence the curve expanding on a
surface. The surface is given by ϕ (x, y) = 0.1x2 + y. We obtain the initial discrete
curve as x0

i = (4 cos (γi) , 5 sin (γi)) , where γi = i
2π

, i = 1, . . . , n. The number of
grid points was set to n = 100, the time step was chosen as τ = 10

n2 = 10−3 min
for the number of time steps NTS = 10, 000 and for the tangential velocity, we set
ω = 15. In the examples, we set f = 1, δF = 1 and we vary δg, δn, λs , and λw.

The first example (Fig. 12) compares three curves, green, red, and blue, con-
sidering neither the slope nor the wind influence. The green curve is driven only
by the unit external force, f = 1 and δF = 1, the other parameters are equal to
zero. In this case, the geodesic distance between the curves in the subsequent time

Table 5 The EOC for the circle evolving on the unit sphere with coupling τ ≈ hd
2

δF = −1, δg = 0

n τ NTS ‖En‖ EOC

100 1.00000e-3 5.000e2 1.962130e-3 –

200 2.50000e-4 2.000e3 5.079713e-4 1.949602

400 6.25000e-5 8.000e3 1.282249e-4 1.986070

800 1.56250e-5 3.200e4 3.213590e-5 1.996419

1600 3.90625e-6 1.280e5 8.039000e-6 1.999098

3200 9.76563e-7 5.120e5 2.010070e-6 1.999770
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Fig. 12 A curve driven only by
a unit external force (green),
accompanied by the geodesic
curvature (red) and a unit
external force and the normal
curvature (blue)

steps is constant. The red curve is driven by the external force and the geodesic
curvature, f = 1, δF = 1, δg = 1, δn = 0, λs = 0, λw = 0. The curve
expands although the geodesic curvature slows it down, the most in the middle of
the valley. The blue curve is driven by the external force and the normal curvature,
f = 1, δF = 1, δg = 0, δn = 1, λs = 0, λw = 0. The curve expands as in the first
example. Moreover, the normal curvature causes the local acceleration in the middle
of the valley.

The above experiments do not simulate the fire spread, since the slope influence
is neglected. In the experiment presented in Fig. 13a, we set f = 1, δF = 1, λs =
1, λw = 0, δg = 1, δn = 1, i.e., we consider the fuel influence, the terrain slope,
and the geodesic and normal curvatures. On the other hand, if we employ the wind at
speed 1 mmin−1, λw = 1, we see that the fire spread can be changed significantly.
The fire spread can change the direction, e.g., in the case of the wind blowing down
the valley (Fig. 13b) or perpendicular to the valley (Fig. 13c) or it can accelerate if
the wind blows up the valley (Fig. 13d).

6.3 A real fire reconstruction and themodel parameters optimization

In this section, we present the reconstruction of a real grassland fire. Although the
fire is small (max. fire perimeter is 79.39 m), it is suitable for finding the model
parameters λw, λs , and δg . Since the terrain is nearly an inclined plane, we do not
consider the influence of the normal curvature, δn = 0. This fire was set as a training
for the Fire and Rescue Corps of the Slovak Republic, Ground Forest Fighting Mod-
ule. They also provided us the video from a quadcopter. The quadcopter video was
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Fig. 13 A curve evolution considering the fuel and the slope influence, geodesic and normal curvature,
and various wind directions at a constant wind speed 1 mmin−1

processed at the Department of Geodesy, Slovak University of Technology, using a
photogrammetry software to obtain a vertical projection of the fire spread on a real
terrain to the horizontal plane in a 5-s time interval. Then, the fire perimeters were
segmented manually with the uniform segment length 0.15m in a CAD software.

The inputs to our model were as follows:

– the initial condition was given by the segmented fire perimeter 55 s after the
ignition,
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– the homogeneous rate of spread was 1.18 mmin−1 (measured at place),
– the wind velocity and direction was (North = 0 deg, East = 90 deg), see columns

6 and 7 of the Table 6 (measured at place),
– the terrain slope was given by the digital terrain model.

The desired curve segment length was set to hd = 0.15 m, which corre-
sponds to the manual segmentation spatial step and the time step was chosen as

τ = h2
d

22.5 = 10−3 min, i.e., it is proportional to h2
d .

The mean Hausdorff distance (MHD) [17, 39] was used as the criterion in the
inverse modeling [30], i.e., we look for the optimal model parameters which give
the minimal MHD between the numerically computed and the manually segmented
fire perimeters. First, we look for the optimal parameters of the model, constant over
every 5-s time interval where we have provided the manually segmented curves (see
Table 6), and then we find the optimal model parameters, constant in the whole time
range.

Table 6 The review of the model parameters λw , λs , δg (columns 2–5) and the wind direction estimated
by the inverse modeling, and the measured wind direction and velocity (columns 6–7)

Time Inverse modeling values Measured values MHD

λw λs δg Wind dir. Wind dir. Wind velocity

[s] [−] [−] [−]
[

deg
] [

deg
] [

mmin−1
]

[m]

55–60 0.021 0.25 0.70 356.5 0 180 0.084

60–65 0.011 0.25 0.50 352.0 0 180 0.106

65–70 0.023 0.25 1.90 94.5 0 120 0.194

70–75 0.029 0.10 0.90 37.0 0 120 0.221

75–80 0.025 0.30 1.95 5.0 0 240 0.297

80–85 0.018 0.50 2.00 5.0 0 360 0.351

85–90 0.019 0.15 2.00 351.5 0 360 0.321

90–95 0.014 0.10 1.15 1.0 0 360 0.293

95–100 0.012 0.50 0.60 357.5 0 360 0.345

100-105 0.014 0.45 0.75 0.5 0 360 0.327

105–110 0.017 0.10 1.05 359.5 0 360 0.340

110–115 0.014 0.35 1.05 358.5 0 360 0.334

115–120 0.010 0.10 0.50 300.0 0 180 0.317

120–125 0.022 0.50 1.00 354.0 0 180 0.321

125–130 0.021 0.10 0.55 340.0 0 180 0.351

130–135 0.025 0.10 1.20 342.0 0 180 0.424

Average 0.018 0.26 1.11 – – – 0.289

The last column presents the mean Hausdorff distance (MHD) between the computed and the manually
segmented curves at the end of the time intervals indicated in the first column. The last row presents the
averaged values of some estimated and computed quantities
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The MHD between two point sets A = {

a1, ..., anA

}

and B = {

b1, ..., bnB

}

is
defined by the following formula

MHD (A, B) = max (mhd (A, B) , mhd (B, A)) , (55)

where the so-called mean directed Hausdorff distance mhd (A, B) is given by

mhd (A, B) = 1

nA

nA∑

i=1

min
b̂∈B

∥
∥ai − b̂

∥
∥ , (56)

where nA is the number of points of the point set A, ai is the i-th point from the point
set A, and b̂ is the linear segment between two neighboring points from the point set
B.

For finding the optimal model parameter values, we assume λw ∈ 〈0.005, 0.03〉,
λs ∈ 〈0.1, 0.5〉, and δg ∈ 〈0.5, 2.0〉. In every optimization step, we simply compute
MHD for every combination of parameter values in the abovementioned ranges with
respect to the discrete step 0.001 for λw and 0.05 for λs and δg .

Although the wind direction, used as an input, was measured at place as constantly
north (0 deg), the quadcopter video shows a variable wind direction. Thus, we find
also the wind direction with 0.5 deg step for wind directions from 0 deg to 360 deg.

The overview of the estimated model parameters, wind directions, and computed
MHD is shown in Table 6. However, in our model, we assume constant model
parameters while the fuel and weather conditions remain the same. Therefore, we
subsequently estimate the constant values of the model parameters λs , δg , and λw.
First, we take the average value λs = 0.26 from the first estimation (see Table 6) and
look for the optimal values of the two other parameters λw and δg with respect to
MHD in every 5-s interval. Interestingly, this new optimal model parameter estima-
tion leads to the average MHD = 0.285m, which is slightly less than the averaged
MHD after the first optimization step. Then, we take the average of δg over all time
steps to be 1.084 and consider the same constant λs = 0.26 in order to estimate
just the optimal values of λw. In this last optimization step, we obtained the aver-
aged MHD = 0.281m, and we consider the time averaged λw = 0.0185 as the
last optimal parameter value. We consider constant values λs = 0.26, δg = 1.084,
and λw = 0.0185 as the optimal model parameters resulting from the inverse mod-
elling and the further computations can be done with such parameter values in similar
conditions.

We measure the accuracy of our fire spread reconstruction by computing the
ratio MHD/L in every 5-s time interval, where L is the length of the segmented
curve. This measure is in range 0.2–0.7% in every time moment. We assume that the
slight differences between the segmented and the numerically computed curves (see
Fig. 14) could be caused by the fuel heterogeneity (e.g., variable moisture, which is
not included in our model yet) and more dynamic changes in wind direction than the
measured and computed in 5-s intervals. The fuel heterogeneity can be seen, e.g.,
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Fig. 14 A real fire reconstruction. We compare the manually segmented curve (red) and the curve com-
puted numerically (blue). The initial condition is given by the segmented curve in time 55 s. The contour
lines of the digital terrain model (green) are thicker with increasing elevation

in interval 130–135 s (see Fig. 14i) where the segmented fire perimeter is locally
spreading faster. More dynamic changes in the wind direction are obvious, e.g., in
the interval 80–85 s (see Fig. 14d) where the segmented fire perimeter is wider than
the computed one. Also, the segmentation error is non-negligible due to the low vis-
ibility of fire perimeter through the smoke, especially in the last time intervals (see
Fig. 14h, i).

6.4 Simulation on a real topography

In this subsection, we demonstrate the flexibility of our surface fire spread model
on the real variable topography. The area of Staré Hory in the central Slovakia was
chosen since a repeated fire occurred here in the last two decades. The area of
11 km2 is given by the digital terrain model in 10-m resolution. The wind veloc-
ity is set to 8 mmin−1. These simulations, considering the model parameters in
the range of the estimated values from the inverse modeling in the previous sub-
section, have the parameters set as follows: δF = 1, λs = 0.25, λw = 0.02,
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Fig. 15 A large-scale simulation in the area of Staré Hory in the central Slovakia, considering a homoge-
nous fuel, the wind speed 8m.min−1 and various wind directions. The initial condition is given by 3 circles
in the vertical projection. Their merging is signalized by the color change (e.g., violet is merged blue and
red curve)

δg = 1, δn = 1, ω = 20, hd = 2 m and τ = 0.05 min. The number of time steps is
9600.

First, we present the simulations with a homogeneous ROS, f = 1, and different
wind directions (see Fig. 15). The initial condition is given by three circles (red,
green, and blue) in the vertical projection and their merging is signalized by a color
change.

In the next simulation (see Fig. 16), we consider a southeast wind (135 deg) and a
heterogenous fuel, i.e., a variable ROS given by the ROS map in resolution 0.83 m.
The ROS map, made from the forestry typological map, consists of four colors and
the ROS were assigned from [33]:

– black (roads, rivers, settlements) — non burnable
– dark grey (broad-leaved forest) — low rate of spread 0.46 mmin−1

– light grey (mixed forest) — medium rate of spread 0.76 mmin−1

– white (coniferous forest) - highest rate of spread 1 mmin−1 .

This simulation of 8-h fire spread took 42.96 s of computational time with 9600
time steps, including the detection of topological changes. The number of grid points
varied from 500 points in the first time step to 3668 points in the last time step and
2921.28 points per time step at an average.
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Fig. 16 Large-scale simulation in the area of Staré Hory in central Slovakia, considering heterogenous
fuel and northwest wind (315◦) at speed 8 mmin−1. Initial condition is given by 4 circles in the horizontal
projection

7 Conclusions

In this paper, we introduced a new fast and stable forest fire propagation model based
on the Lagrangian approach. We described the surface curve, representing the fire
perimeter and its projection into a 2-D planar curve. Next, we prescribed the math-
ematical model for the fire perimeter spread over a heterogeneous fuel on a variable
terrain, influenced by the wind direction and velocity. Moreover, we considered the
influence of the surface fire perimeter shape itself through the geodesic and normal
curvatures. The discrete formulation of our model was based on the semi-implicit
approach for the curvature term, and the inflow-implicit/outflow-explicit and upwind
scheme approaches for the advection term, which allowed reasonable computational
time step choice. We used the tangential velocity to asymptotically uniformly redis-
tribute the grid points along the curve. In addition, we maintained the desired segment
length thanks to our strategy for adding and removing points and the used tangential
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velocity. This is useful for our O (n) approach for topological changes treatment of
splitting and merging of curves. Our numerical model turned out to be second-order
accurate, using the coupling τ ≈ hd

2, as was shown in EOC experiments on various
surfaces. The grassland fire experiment was used to estimate the model parameters.
The numerical results revealed the ability of our model to reconstruct the real fire
perimeter with a negligible error (< 1%). Finally, we showed a large-scale simula-
tion with topological changes in a mountainous area, considering a heterogeneous
rate of spread influenced by the wind. Such comprehensive simulation of an 8-h fire
spread took 42.96 s, and thus one can possibly expect the inverse modeling of selected
parameters in real time.
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