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A B S T R A C T

The automated segmentation and tracking of macrophages during their migration are challenging tasks due
to their dynamically changing shapes and motions. This paper proposes a new algorithm to achieve automatic
cell tracking in time-lapse microscopy macrophage data. First, we design a segmentation method employing
space–time filtering, local Otsu’s thresholding, and the SUBSURF (subjective surface segmentation) method.
Next, the partial trajectories for cells overlapping in the temporal direction are extracted in the segmented
images. Finally, the extracted trajectories are linked by considering their direction of movement. The segmented
images and the obtained trajectories from the proposed method are compared with those of the semi-automatic
segmentation and manual tracking. The proposed tracking achieved 97.4% of accuracy for macrophage data
under challenging situations, feeble fluorescent intensity, irregular shapes, and motion of macrophages. We
expect that the automatically extracted trajectories of macrophages can provide pieces of evidence of how
macrophages migrate depending on their polarization modes in the situation, such as during wound healing.
1. Introduction

Since the 17th century and the first microscopes, biologists have
dedicated enormous efforts to understanding cellular behaviors within
living animals [1]. Embryologists have first described how cellular
movements shape embryonic development, but immunologists soon
realized that by using microscopy, they could have access to the
behavior of specialized, highly mobile cells that play crucial roles in
immunity [2]. With the recent development of video microscopy, the
diversification of confocal microscopy techniques, and the constant
improvement of the sensitivity, resolution, and speed of acquisitions
of microscopes [3,4], biologists are now generating huge sets of data
that need automated processing to extract significant data to describe
the integrated process and understand underlying rules. Thanks to
the contributions of theoreticians and modelers, biologists can now
integrate these imaging data with biochemical and genetic data to
propose integrated models of cellular behaviors and even to offer
integrated models of the development of as complex organisms as
vertebrates [5,6].

Identifying (segmenting) and tracking individual cells is challeng-
ing because cells divide, move, and change their shapes during their
journey in the developing embryo. Many efforts have been dedicated
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to developing software to track cells during embryonic development,
and robust solutions are now available [7]. Some of these solutions
are compatible with the study of other situations where cells are either
moving in an organism (the heart) or in a moving organism (neurons in
foraging worms [8]), but some specific cellular populations, due to their
particular behaviors, are challenging to identify and track during their
journey within a living animal. This is the case of macrophages, one of
the fastest-moving cellular populations with more irregular shapes and
movements.

Macrophages have protective roles in immune defense, homeostasis,
and tissue repair, but they also contribute to the progression of many
pathologies like cancers, inflammatory diseases, and infections [9]. The
key feature of macrophages is their remarkable dynamic plasticity.
They respond to changing environments by constantly adopting specific
phenotypes and functions defined as M1 and M2, which are the two
extremes of a continuum of polarization states [10]. In the early stage
of inflammation, M1 macrophages have been shown to accumulate
at the wound/infection site where they initiate a pro-inflammatory
response showing highly phagocytic and removing any pathogens or
debris [11–14]. During the resolution of inflammation, they switch
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Nomenclature

Overview of symbols used in the proposed segmentation.

𝑡 Variable denoting time in PDE
𝑇𝐹 Upper limit of the filtering scale
𝜃 Variable denoting the real time, the se-

quence of images
𝜃𝐹 Upper limit of the image sequence
(𝑥1, 𝑥2) A point in 𝑅2

𝑢 Unknown real function
𝑐𝑙𝑡(𝑢) Scalar function measuring the temporal

coherence of objects
𝐺𝜎 Gaussian function with variance 𝜎
𝑔 Edge detector function
𝜏𝐹 Step size in space–time filtering
𝑛 Iteration index in filtering and SUBSURF
𝑘 Index of the image sequence
(𝑖, 𝑗) Indices of a pixel position
ℎ Pixel size
𝑊𝑖,𝑗 A local window centered by a pixel (𝑖, 𝑗)
𝑇𝑖,𝑗 A general threshold value in 𝑊𝑖,𝑗
𝑇 ∗
𝑖,𝑗 The optimal threshold in 𝑊𝑖,𝑗

𝜎2𝐵 Variance between classes of the background
and objects

𝐼(𝑖, 𝑗) Image intensity of the pixel (𝑖, 𝑗)
𝛿 Parameter checking if a local window

contains objects
𝑇𝑆 Upper limit of SUBSURF
𝜏𝑆 Step size in SUBSURF

Overview of symbols used in the proposed macrophage
tracking.

𝑇𝐸 Upper limit of scale in Eikonal equation
𝑑𝑖,𝑗 (𝜃) Value of the distance function in a pixel (𝑖, 𝑗)

at 𝜃th time slice
𝑖,𝑗 (𝜃) Indicator if a segmented region belonging

to a pixel (𝑖, 𝑗) already formed a partial
trajectory

𝐶 𝑙(𝜃) The approximate center of the 𝑙th seg-
mented region at 𝜃th time slice

𝑉 𝑏 Tangent of a partial trajectory computed by
backward finite difference approximation

𝑉 𝑓 Tangent of a partial trajectory computed by
forward finite difference approximation

res Estimated cell center
re Endpoint of another partial trajectory
𝛥𝑟 Parameter checking closeness with other

partial trajectories
rj Endpoint of another partial trajectory ob-

tained after connections from Eq. (38)
𝛥𝑟2 Parameter checking closeness with other

partial trajectories obtained after connec-
tions from Eq. (38)

𝛩𝑐 The number of common time slices of two
close trajectories

𝛥𝑟𝜃 Parameter checking if two close trajectories
correspond to the same macrophage

to M2 macrophages which mediate anti-inflammatory response and
participate in tissue remodeling and repair [14–17]. Some studies have
reported that the different functions of M1/M2 macrophages seem to
2

be related to shapes and migration [18–21]. M1 macrophages are more
rounded and flat shapes than M2 macrophages, showed by elongated
shapes [19,21]. In addition to the variable morphology, macrophages
are known to have two migration modes: amoeboid and mesenchymal.
Amoeboid migration has a fast speed in a largely adhesion-independent
manner, mainly observed for M1 macrophages. In contrast, mesenchy-
mal migration is slower and more directional in the presence of strong
adhesion mainly observed for M2 macrophages [18–20]. So far, the
relationship between the macrophage activation and migration modes
involving the change of macrophages’ shapes in vivo is still unclear.
Image segmentation and cell tracking in macrophage data can be the
first steps to analyzing the characteristics of macrophages [22,23].

Related works and contribution to macrophage segmentation

Segmentation of macrophages has been previously studied perform-
ing a filter-based method [24], image-based machine learning [25],
anglegram analysis [26], etc. Also, deep learning-based segmentation
methods have been developed for various types of cells [27–32]. U-
Net [27], Cellpose [31], and Splinedist [32] are designed for seg-
mentation of general shapes of cells in microscopy data and have
shown a high performance. However, it is still challenging to seg-
ment macrophages due to their varying nature, extreme irregularity of
shapes, and variability of image intensity inside macrophages. In [33],
we have proposed a macrophage segmentation method that combines
thresholding methods with the SUBSURF approach requiring no cell nu-
clei center or other reference information. However, a problem occurs
when attempting to segment macrophages in time-lapse data since the
segmentation parameters are not always suitable for macrophages in
all time frames. In this paper, first, we improve the ability to detect
macrophages with low image intensity by applying space–time filtering,
which considers the temporal coherence of time-lapse data [34]. Sec-
ond, Otsu’s method is implemented in local windows to deal with cases
where each macrophage has a substantially different image intensity
range. Similarly, as in [33], the SUBSURF method [35] is applied to
eliminate the remaining noise and to smoothen the boundaries of the
macrophages resulting from space–time filtering and the thresholding
method (Fig. 1).

Related works in cell tracking

Automatic cell tracking in microscopy images has been investigated
and various methods [23,30,36–42] have been proposed. The tracking
algorithm using linear assignment problem (LAP) [36,41] is compu-
tationally efficient and has shown good performance, especially for
Brownian motion. However, it can be less accurate if many cells are
densely distributed or if some cells suddenly move toward the other
nearby cells. The studies [38,40] performed cell tracking during ze-
brafish embryogenesis by finding a centered path in the spatio-temporal
segmented structure. In [39], a workflow was designed, from the image
acquisition to cell tracking, and applied to 3D + time microscopy data
of the zebrafish embryos. Those methods show outstanding perfor-
mance in the case of embryogenesis. The keyhole tracking algorithm
that anticipates the most probable position of a cell at the next time
slice has been proposed and applied to red blood cells, neutrophils, and
macrophages [43–45]. Moreover, deep learning-based motion tracking
in microscopy images has been studied for various types of biologi-
cal objects with different learning approaches [46–55]. For instance,
the method in [48] trains the networks by utilizing semi-supervised
learning to predict cell division. Usiigaci [50] segments individual cells
providing each unique ID to them with a Mask R-CNN model, then the
method links the cells by given IDs. The methods by training image
sequences using LSTM (long short-term memory) networks have shown
their performance for tracing nuclear proteins [51] and bacteria [53].
In [52], the algorithm to solve linear assignment problems in tracking
is trained with a deep reinforcement learning (DRL)-based method.
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Fig. 1. Procedure of macrophage tracking in 2D + time data.

Contribution to macrophage tracking and outline

Although various cell tracking methods have been studied, there
is still a need for more accurate tracking of erratic movements, such
as macrophages. The cell tracking studied in this paper deals with
macrophages which undergo fast and complicated motion. It results in
non-overlapping cells in the time direction, and in many cases, one can
observe a ‘‘random movement’’. This paper proposes a tracking method
that covers the situations of a large number of macrophages and their
complex motion. The first step is to extract the cell trajectories from
their shapes overlapping in time. By this approach, we often obtain
only partial trajectories because not always a segmented macrophage
overlaps with its corresponding cell in the next/previous frame of the
video. Next, we connect endpoints of partial trajectories corresponding
to macrophages that do not overlap in time. For this, the tangent
calculation is used to estimate the direction of macrophages at the
endpoints of the partial trajectories. Fig. 1 illustrates briefly all steps
of the proposed method yielding macrophage tracking.

The mathematical descriptions of the proposed method are illus-
trated in Materials and methods. The performances of the macrophage
segmentation and tracking are shown in Results. In this section, the
proposed segmentation method provides the approximate shapes of
macrophages, indicating that it can reasonably be the first tracking
step. Also, proposed tracking shows that connecting the centers of
macrophages by considering the direction of movement works properly
for tracing fast-moving macrophages. The tracking performance is val-
idated visually and quantitatively, showing how obtained trajectories
are close to the manually extracted trajectories. In Discussion, we
summarize the results of the proposed method and discuss limitations,
future works, and possible applications.

2. Materials and methods

2.1. Image acquisition and preparation

The proposed method is applied to two representative datasets.
In both datasets, a three days old transgenic zebrafish larva
(Tg(mpeg1:Gal4/-UAS:Kaede)) is used and imaged using a spinning
disk confocal microscope. The green fluorescent protein Kaede is in-
directly expressed under the control of macrophage-specific promoter
mpeg1 so that macrophages produce the green fluorescent protein in
their cytoplasm. In the first dataset, migrating macrophages are imaged
3

from 1 hour to 6 hours post-amputation (1−6 hpA) for the caudal fin
fold with a time step of 4 min and a 𝑧 step of 4 μm. In the second dataset,
macrophages are imaged from 30 min post-amputation to 6 hours post-
amputation (0.5−6 hpA) with the imaging time step of 2 min and 𝑧 step
of 1 μm. The pixel size is 0.326 μm and 0.347 μm in the first and second
datasets, respectively. For the numerical experiments, we used the 2D +
time projection images, where the three-dimensional (3D) microscopy
images are projected onto a plane with the maximum intensity of the
3D dataset in every pixel selected. Due to the image acquisition speed
in the second dataset, the exposition time and fluorescence intensity
are reduced, resulting in a low signal-to-noise ratio.

We perform the histogram crop from the acquired images to ignore
the noise effects from very high image intensity in a small pixel area. In
the case of this noise, the number of pixels is very small compared with
the image size. Therefore, in the histogram, a tiny peak positioned at
the highest image intensity corresponds to this type of noise. To ignore
it, this tiny peak will be cropped in the histogram. The steps of the
histogram crop are the following.

1. The first step is the estimation of the noise size relative to the
image size. Let us consider the noise accounts for 𝑝noise percent
of the total number of pixels 𝑁tot. Then, the number of pixels
for the noise 𝑁noise equals to 𝑁tot × 𝑝noise.

2. In the histogram, the number of pixels from the maximum
intensity in descending order is counted because we want to
remove the small noise having the highest image intensity. Let us
denote the counted number of the pixels as 𝑁des(𝐼). For example,
𝑁des(𝐼) for the maximum image intensity 𝐼max equals to the
number of pixels of the image intensity 𝐼max. Likewise, for the
minimum image intensity 𝐼min, the counted number of pixels
from 𝐼max to 𝐼min is 𝑁des(𝐼min) = 𝑁tot.

3. Finally, when 𝑁des(𝐼∗) = 𝑁noise is satisfied, counting is stopped.
The new maximum intensity 𝐼new;max is set by searching for the
maximum intensity smaller than 𝐼∗. The image intensity ranging
from 𝐼∗ to 𝐼max is changed to 𝐼new;max.

In the supplementary material, an example of histograms in the pres-
ence of the spot noise and after the histogram crop is depicted. We
apply the histogram crop only to the second dataset as 𝑝noise = 0.001.

After the histogram crop, the image intensity is scaled to the interval
[0, 1] for applying space–time filtering. Then, the images obtained
from space–time filtering are rescaled to the interval [0, 255] to simply
perform the local Otsu’s method since histograms of images are usually
described by the discrete distribution in a finite interval. To apply the
SUBSURF method, two types of images are used; one is the original
images after the histogram crop with the interval [0, 1], and the other
is the output of the local Otsu’s method.

2.2. Segmentation of macrophages in microscopy videos

2.2.1. Space–time filtering
In the datasets processed by the methods presented in this pa-

per, the macrophages do not always have similar image intensities.
Some can hardly be recognized due to their weak image intensity in
static images, but they can be recognized in videos, as human eyes
consider temporal information to distinguish objects. However, the tra-
ditional segmentation method dealing with static images does not view
temporal information. Therefore, it is difficult to detect and segment
macrophages if the image intensity of macrophages is similar to the
background. The filtering method that can utilize temporal coherence
was introduced in [34], where the regularized Perona–Malik model
and scalar function 𝑐𝑙𝑡, measuring the coherence of objects in time
slices, are combined. The term 𝑐𝑙𝑡 means a ‘‘curvature of Lambertian
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trajectory’’ [56–58] and vanishes for points (of an object) that preserve
the intensity and move on a smooth trajectory in a temporal direction.

In the following, let a sequence of time slices be given on the
interval [0, 𝜃𝐹 ], and 𝜃 will denote a particular time slice. The PDE
epresenting nonlinear diffusion filtering is written as
𝜕𝑢
𝜕𝑡

= 𝑐𝑙𝑡(𝑢)∇ ⋅
(

𝑔(|∇𝐺𝜎 ∗ 𝑢|)∇𝑢
)

, (1)

here 𝑡 denotes the scale, the amount of filtering and 𝑢(𝑡, 𝑥1, 𝑥2, 𝜃) is
he unknown real function which is defined on [0, 𝑇𝐹 ] × 𝛺 × [0, 𝜃𝐹 ],
= (𝑥1, 𝑥2) ∈ 𝛺 ⊂ 𝑅2. In |∇𝐺𝜎 ∗ 𝑢|, the ‘‘∗’’ stands for the convolution
perator.

The initial condition given by

(0, 𝐱, 𝜃) = 𝑢0(𝐱, 𝜃), (2)

epresents the processed 2D + time video. The 𝑐𝑙𝑡(𝑢) function is defined
s in [34,56] by formula

𝑙𝑡(𝑢) = min
𝒘𝟏 ,𝒘𝟐

1
(𝛥𝜃)2

(

|⟨∇𝑢,𝒘𝟏 −𝒘𝟐⟩| + |𝑢(𝐱 −𝒘𝟏, 𝜃 − 𝛥𝜃) − 𝑢(𝐱, 𝜃)|

+ |𝑢(𝐱 +𝒘𝟐, 𝜃 + 𝛥𝜃) − 𝑢(𝐱, 𝜃)|
)

, (3)

where 𝒘1, 𝒘2 are arbitrary vectors in 2D space, and 𝛥𝜃 is the time
increment between discrete time slices. Here, ⟨𝒂, 𝒃⟩ denotes Euclidean
scalar product of 𝒂 and 𝒃. The function 𝑔 is the so-called edge detector
function and is defined by

𝑔(𝑠) = 1
1 +𝐾𝑠2

, 𝐾 > 0, (4)

where 𝐾 is a constant to control the sensitivity of 𝑠 [59]. Finally, 𝐺𝜎 is a
aussian function with variance 𝜎, which is used for pre-smoothing by
onvolution. Let us denote by 𝑢𝑛𝑘 a numerical solution in the 𝑘th frame
f the image sequence in the 𝑛th discrete filtering (scale) step 𝑛𝜏𝐹 with
he step size 𝜏𝐹 , i.e.,

𝑛
𝑘(𝐱) = 𝑢(𝑛𝜏𝐹 , 𝐱, 𝑘𝛥𝜃). (5)

y using the semi-implicit scheme [34], Eq. (1) is discretized as follows

𝑢𝑛+1𝑘 − 𝑢𝑛𝑘
𝜏𝐹

= 𝑐𝑙𝑡(𝑢𝑛𝑘)∇ ⋅
(

𝑔(|∇𝑢𝜎;𝑛𝑘 |)∇𝑢𝑛+1𝑘
)

, (6)

where 𝑔(|∇𝑢𝜎;𝑛𝑘 |) = 𝑔(|∇𝐺𝜎 ∗ 𝑢𝑛𝑘|). From Eq. (3), the discretization of
𝑐𝑙𝑡(𝑢𝑛𝑘) in the point 𝐱 ∈ 𝛺 can be written as

𝑐𝑙𝑡(𝑢𝑛𝑘) = min
𝒘𝟏 ,𝒘𝟐

1
𝛥𝜃2

(

|⟨∇𝑢𝑛𝑘,𝒘𝟏 −𝒘𝟐⟩| + |𝑢𝑛𝑘−1(𝐱 −𝒘𝟏) − 𝑢𝑛𝑘(𝐱)|

+ |𝑢𝑛𝑘+1(𝐱 +𝒘𝟐) − 𝑢𝑛𝑘(𝐱)|
)

. (7)

For space discretization, we use the finite volume method with finite
volume (pixel) side ℎ. Let us consider that a point 𝐱 is a center of a
pixel (𝑖, 𝑗) and let us denote by 𝑖,𝑗 a finite volume corresponding to
pixel (𝑖, 𝑗), 𝑖 = 1,… ,𝑀 , 𝑗 = 1,… , 𝑁 . The quantity 𝑐𝑙𝑡(𝑢𝑛𝑘) is considered
constant in finite volumes. Then, Eq. (6) is integrated with the finite
volume 𝑖,𝑗 , and by using Green’s theorem, we get

∫𝑖,𝑗

𝑢𝑛+1𝑘 − 𝑢𝑛𝑘
𝜏𝐹

𝑑𝐱 = 𝑐𝑙𝑡(𝑢𝑛𝑘)∫𝜕𝑖,𝑗
𝑔(|∇𝑢𝜎;𝑛𝑘 |)∇𝑢𝑛+1𝑘 ⋅ 𝐧𝑖,𝑗𝑑𝑆, (8)

where 𝐧𝑖,𝑗 is a unit outward normal vector to the boundary of 𝑖,𝑗 . The
gradient of 𝑢 on the pixel edges can be approximated by computing
the average values of neighboring pixels. By using the diamond cell
approach [60], we compute the average of neighboring pixel values
in the corners of the pixel (𝑖, 𝑗) as follows (see also Figure S2 in the
supplement materials).

𝑢1,1𝑖,𝑗,𝑘 = 1
4
(𝑢𝑛𝑖,𝑗,𝑘 + 𝑢𝑛𝑖,𝑗+1,𝑘 + 𝑢𝑛𝑖+1,𝑗,𝑘 + 𝑢𝑛𝑖+1,𝑗+1,𝑘),

1,−1 = 1 (𝑢𝑛 + 𝑢𝑛 + 𝑢𝑛 + 𝑢𝑛 ),
4

𝑖,𝑗,𝑘 4 𝑖,𝑗,𝑘 𝑖+1,𝑗,𝑘 𝑖,𝑗−1,𝑘 𝑖+1,𝑗−1,𝑘
𝑢−1,−1𝑖,𝑗,𝑘 = 1
4
(𝑢𝑛𝑖,𝑗,𝑘 + 𝑢𝑛𝑖−1,𝑗,𝑘 + 𝑢𝑛𝑖,𝑗−1,𝑘 + 𝑢𝑛𝑖−1,𝑗−1,𝑘),

𝑢−1,1𝑖,𝑗,𝑘 = 1
4
(𝑢𝑛𝑖,𝑗,𝑘 + 𝑢𝑛𝑖,𝑗+1,𝑘 + 𝑢𝑛𝑖−1,𝑗,𝑘 + 𝑢𝑛𝑖−1,𝑗+1,𝑘).

(9)

The gradient of 𝑢𝑛𝑖,𝑗,𝑘 in 𝑛th filtering step, for a pixel (𝑖, 𝑗) in 𝑘th frame
of the image sequence, is computed at the center of edges of the
pixel [60],

∇1,0𝑢𝑛𝑖,𝑗,𝑘 = 1
ℎ
(𝑢𝑛𝑖+1,𝑗,𝑘 − 𝑢𝑛𝑖,𝑗,𝑘, 𝑢

1,1
𝑖,𝑗,𝑘 − 𝑢1,−1𝑖,𝑗,𝑘 ),

∇0,−1𝑢𝑛𝑖,𝑗,𝑘 = 1
ℎ
(𝑢1,−1𝑖,𝑗,𝑘 − 𝑢−1,−1𝑖,𝑗,𝑘 , 𝑢𝑛𝑖,𝑗−1,𝑘 − 𝑢𝑛𝑖,𝑗,𝑘),

∇−1,0𝑢𝑛𝑖,𝑗,𝑘 = 1
ℎ
(𝑢𝑛𝑖−1,𝑗,𝑘 − 𝑢𝑛𝑖,𝑗,𝑘, 𝑢

−1,1
𝑖,𝑗,𝑘 − 𝑢−1,−1𝑖,𝑗,𝑘 ),

∇0,1𝑢𝑛𝑖,𝑗,𝑘 = 1
ℎ
(𝑢1,1𝑖,𝑗,𝑘 − 𝑢−1,1𝑖,𝑗,𝑘 , 𝑢

𝑛
𝑖,𝑗+1,𝑘 − 𝑢𝑛𝑖,𝑗,𝑘),

(10)

where ℎ denotes the pixel size. With the set of grid neighbors 𝑁𝑖,𝑗 that
onsists of all (𝑙, 𝑚) of 𝑖,𝑗 , such that 𝑙, 𝑚 ∈ {−1, 0, 1}, |𝑙| + |𝑚| = 1, the

final discretized form of Eq. (1) is written as

𝑢𝑛+1𝑖,𝑗,𝑘 = 𝑢𝑛𝑖,𝑗,𝑘 +
𝜏𝐹
ℎ2

𝑐𝑙𝑡(𝑢𝑛𝑖,𝑗,𝑘)
∑

|𝑙|+|𝑚|=1
𝑔(|∇𝑙,𝑚𝑢𝜎;𝑛𝑖,𝑗,𝑘|)(𝑢

𝑛+1
𝑖+𝑙,𝑗+𝑚,𝑘 − 𝑢𝑛+1𝑖,𝑗,𝑘). (11)

or solving Eq. (11), the successive over-relaxation (SOR) method is
sed. The SOR method is an iterative method for solving a linear system
f equations as a variant of the Gauss–Seidel method [61]. In our
imulations, the relaxation factor of the SOR method was set to 1.8
nd the calculation was stopped when ∑𝑀

𝑖=1
∑𝑁

𝑗=1 |𝑢
𝑛+1
𝑖,𝑗,𝑘 − 𝑢𝑛𝑖,𝑗,𝑘| < 0.001

or every 𝑘.

.2.2. Local Otsu thresholding
It has been shown that the traditional Otsu thresholding tech-

ique, which selects a threshold globally (global Otsu’s method), works
ell for some shapes of macrophages in [33]. However, global Otsu’s
ethod does not work for all macrophages if there is a wide range

f macrophage image intensity. When cells have a huge variability of
hapes, sizes, and intensities, local thresholding techniques can be a
owerful segmentation tool [62]. We, therefore, apply Otsu’s method
n local windows to realize the benefits of both Otsu’s method [63]
nd local thresholding techniques [62,64]. In the global Otsu’s method,
he two classes which represent objects and the background are firstly
efined with the help of a general threshold value 𝑇𝑟. Then the optimal
hreshold is obtained by finding a particular threshold value 𝑇 ∗

𝑟 that
aximizes the between-class variance of the two classes. For local
tsu’s method, we calculate the optimal threshold in a certain window
f size 𝑠 × 𝑠 centered in (𝑖, 𝑗) for every pixel. In the local window 𝑊𝑖,𝑗 ,
he gray-level histogram is normalized, and a probability distribution
s regarded as

𝑟 = 𝑛𝑟∕𝑁,
𝐿
∑

𝑟=0
𝑝𝑟 = 1, (12)

where 𝑛𝑟 is the number of pixels of intensity 𝑟 in 𝑊𝑖,𝑗 , 𝑁 = 𝑠2 and 𝐿
is the maximum image intensity. Then, the probabilities of background
and foreground in 𝑊𝑖,𝑗 are given by

𝜔0(𝑇𝑖,𝑗 ) =
𝑇𝑖,𝑗
∑

𝑟=0
𝑝𝑟, 𝜔1(𝑇𝑖,𝑗 ) =

𝐿
∑

𝑟=𝑇𝑖,𝑗+1
𝑝𝑟 = 1 − 𝜔0(𝑇𝑖,𝑗 ), (13)

and means of background and foreground are given by

𝜇0(𝑇𝑖,𝑗 ) =
1

𝜔0(𝑇𝑖,𝑗 )

𝑇𝑖,𝑗
∑

𝑟=0
𝑟𝑝𝑟,

1(𝑇𝑖,𝑗 ) =
1

𝜔1(𝑇𝑖,𝑗 )

𝐿
∑

𝑟=𝑇𝑖,𝑗+1
𝑟𝑝𝑟 =

𝜇tot − 𝜇0(𝑇𝑖,𝑗 )𝜔0(𝑇𝑖,𝑗 )
1 − 𝜔0(𝑇𝑖,𝑗 )

,

(14)

where 𝜇tot =
∑𝐿

𝑟=0 𝑟𝑝𝑟. Finally, the between-class variance, the variance
between classes of foreground and the background, related to the pixel
(𝑖, 𝑗) is defined as [63]

𝜎2 (𝑇 ) = 𝜔 (𝑇 )(𝜇 (𝑇 ) − 𝜇 )2 + 𝜔 (𝑇 )(𝜇 (𝑇 ) − 𝜇 )2 (15)
𝐵 𝑖,𝑗 0 𝑖,𝑗 0 𝑖,𝑗 tot 1 𝑖,𝑗 1 𝑖,𝑗 tot
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which simplifies to

𝜎2𝐵(𝑇𝑖,𝑗 ) =

(

𝜇tot𝜔0(𝑇𝑖,𝑗 ) − 𝜇0(𝑇𝑖,𝑗 )𝜔0(𝑇𝑖,𝑗 )
)2

𝜔0(𝑇𝑖,𝑗 )
(

1 − 𝜔0(𝑇𝑖,𝑗 )
) , (16)

and the optimal threshold 𝑇 ∗
𝑖,𝑗 is given by

𝜎2𝐵(𝑇
∗
𝑖,𝑗 ) = max

0≤𝑇𝑖,𝑗<𝐿
𝜎2𝐵(𝑇𝑖,𝑗 ). (17)

At the boundary of the image, mirroring is applied. In the case where
the local window contains only the background, the histogram com-
pletely loses its bi-modality, with the threshold 𝑇 ∗

𝑖,𝑗 representing some
noise level. To obtain a reasonable threshold, we determine whether the
local window is only located in the background or not by considering
the relative difference between the mean levels of the two classes
representing the object and the background. Let us consider that 𝜇0(𝑇 ∗

𝑖,𝑗 )
and 𝜇1(𝑇 ∗

𝑖,𝑗 ) are the mean levels of the background and the object,
respectively, based on the threshold 𝑇 ∗

𝑖,𝑗 . If |𝜇0(𝑇 ∗
𝑖,𝑗 ) − 𝜇1(𝑇 ∗

𝑖,𝑗 )| < 𝜀, 𝜀
is very small, then the two classes cannot be properly separated, and
it is reasonable to conclude that the local window is located in the
background. In other words, the local window 𝑊𝑖,𝑗 is considered as
including an object when the following condition is fulfilled:
|𝜇0(𝑇 ∗

𝑖,𝑗 ) − 𝜇1(𝑇 ∗
𝑖,𝑗 )|

𝜇0(𝑇 ∗
𝑖,𝑗 )

> 𝛿, (18)

here the relative difference is considered since the background noise
evel is different in each time slice. Here, 𝛿 is a parameter to check
hether the local window 𝑊𝑖,𝑗 contains macrophages or not. If there is
part of macrophages in 𝑊𝑖,𝑗 , the relative difference in Eq. (18) will

ave a larger value than 𝛿. Finally, the binarized images are obtained
y defining

(𝑖, 𝑗) =

{

1, 𝐼(𝑖, 𝑗) > 𝑇 ∗
𝑖,𝑗 and Eq. (18) is fulfilled

0, otherwise
(19)

here 𝐼(𝑖, 𝑗) is the image intensity of the pixel (𝑖, 𝑗) and 𝑇 ∗
𝑖,𝑗 is given

y Eq. (17).

.2.3. SUBSURF method
The SUBSURF method can effectively complete missing parts of

oundaries, join adjacent level lines, and rapidly remove noise [35].
n particular, this method has previously been shown to be useful for
egmenting macrophage data [33]. The SUBSURF method is described
y

𝜕𝑢
𝜕𝑡

= |∇𝑢|∇ ⋅
(

𝑔 ∇𝑢
|∇𝑢|

)

, (20)

where 𝑢 is a evolving level set function, 𝑔 = 𝑔(|∇𝐺𝜎 ∗ 𝐼0|), and 𝑠 = |∇𝐼0𝜎 |
in Eq. (4). Here, 𝐼0 is the original image, and 𝐼0𝜎 is the pre-smoothed
image with a Gaussian filter. The SUBSURF is applied independently to
the 2D images for every time frame. Therefore, we solve the unknown
function 𝑢(𝑡, 𝐱), where (𝑡, 𝐱) ∈ [0, 𝑇𝑆 ] × 𝛺, 𝐱 ∈ 𝛺 ⊂ 𝑅2. The time
discretization of Eq. (20) is given by the semi-implicit scheme

𝑢𝑛+1 − 𝑢𝑛

𝜏𝑆
= |∇𝑢𝑛|𝜖∇ ⋅

(

𝑔 ∇𝑢𝑛+1
|∇𝑢𝑛|𝜖

)

, (21)

here 𝜏𝑆 is the scale step. Here, |∇𝑢𝑛| is regularized using the Evans–

prucks approach [65] as |∇𝑢𝑛|𝜖 =
√

|∇𝑢𝑛|2 + 𝜖2, where 𝜖 is a small
rbitrary constant. The space is discretized by a finite volume square
rid with the pixel size ℎ. For 𝑖,𝑗 , Eq. (20) is integrated and using
reen’s formula we get

∫𝑖,𝑗

1
|∇𝑢𝑛|𝜖

𝑢𝑛+1 − 𝑢𝑛

𝜏𝑆
𝑑𝐱 = ∫𝜕𝑖,𝑗

𝑔 ∇𝑢𝑛+1
|∇𝑢𝑛|𝜖

⋅ 𝐧𝑖,𝑗𝑑𝑆, (22)

here 𝐧𝑖,𝑗 is a unit outward normal vector to the boundary of the
ixel (𝑖, 𝑗). In a similar manner as in Eq. (9), we use the diamond cell
5

pproach [60]. The average of neighboring pixel values in the four
orners of the pixel (𝑖, 𝑗) are written as

𝑢1,1𝑖,𝑗 = 1
4
(𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖,𝑗+1 + 𝑢𝑛𝑖+1,𝑗 + 𝑢𝑛𝑖+1,𝑗+1),

𝑢1,−1𝑖,𝑗 = 1
4
(𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖+1,𝑗 + 𝑢𝑛𝑖,𝑗−1 + 𝑢𝑛𝑖+1,𝑗−1),

𝑢−1,−1𝑖,𝑗 = 1
4
(𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖−1,𝑗 + 𝑢𝑛𝑖,𝑗−1 + 𝑢𝑛𝑖−1,𝑗−1),

𝑢−1,1𝑖,𝑗 = 1
4
(𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖,𝑗+1 + 𝑢𝑛𝑖−1,𝑗 + 𝑢𝑛𝑖−1,𝑗+1).

(23)

The gradient of 𝑢𝑛𝑖,𝑗 , in 𝑛th step for a pixel (𝑖, 𝑗), is approximated by

∇1,0𝑢𝑛𝑖,𝑗 =
1
ℎ
(𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖,𝑗 , 𝑢

1,1
𝑖,𝑗 − 𝑢1,−1𝑖,𝑗 ),

∇0,−1𝑢𝑛𝑖,𝑗 =
1
ℎ
(𝑢1,−1𝑖,𝑗 − 𝑢−1,−1𝑖,𝑗 , 𝑢𝑛𝑖,𝑗−1 − 𝑢𝑛𝑖,𝑗 ),

∇−1,0𝑢𝑛𝑖,𝑗 =
1
ℎ
(𝑢𝑛𝑖−1,𝑗 − 𝑢𝑛𝑖,𝑗 , 𝑢

−1,1
𝑖,𝑗 − 𝑢−1,−1𝑖,𝑗 ),

∇0,1𝑢𝑛𝑖,𝑗 =
1
ℎ
(𝑢1,1𝑖,𝑗 − 𝑢−1,1𝑖,𝑗 , 𝑢𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗 ).

(24)

Now we can define

𝑄𝑙,𝑚;𝑛
𝑖,𝑗 =

√

𝜖2 + |∇𝑙,𝑚𝑢𝑛𝑖,𝑗 |
2

�̄�𝑙,𝑚;𝑛
𝑖,𝑗 =

√

𝜖2 + 1
4

∑

|𝑙|+|𝑚|=1
|∇𝑙,𝑚𝑢𝑛𝑖,𝑗 |

2,
(25)

here 𝑙, 𝑚 ∈ {−1, 0, 1}, |𝑙| + |𝑚| = 1, in the set of grid neighbors 𝑁𝑖,𝑗 .
he final discretized form of Eq. (20) is given by [66]

𝑛+1
𝑖,𝑗 − 𝑢𝑛𝑖,𝑗 =

𝜏𝑆
ℎ2

�̄�𝑙,𝑚;𝑛
𝑖,𝑗

∑

|𝑙|+|𝑚|=1
𝑔𝑙,𝑚,𝜎𝑖,𝑗

𝑢𝑛+1𝑖+𝑙,𝑗+𝑚 − 𝑢𝑛+1𝑖,𝑗

𝑄𝑙,𝑚;𝑛
𝑖,𝑗

, (26)

where ℎ2 is the pixel area and 𝑔𝑙,𝑚,𝜎𝑖,𝑗 = 𝑔(|∇𝑙,𝑚𝐼0𝑖,𝑗;𝜎 |). Eq. (26) is solved
sing the SOR method, and the relaxation factor was set to 1.8. The
alculation was stopped when ∑𝑀

𝑖=1
∑𝑁

𝑗=1 |𝑢
𝑛+1
𝑖,𝑗 − 𝑢𝑛𝑖,𝑗 | < 0.01.

.3. Extraction of macrophage trajectories

.3.1. Detection of the approximate cell center
This section describes the time-relaxed eikonal equation employed

o find the cell centers using segmentation results. As shown in Fig. 8,
he segmentation does not always extract the whole shape of some
acrophages. Therefore, the connected segmented subregions are used

n this method, and we will call the connected segmented subre-
ions segmented regions in short. We approximate the centers of the
egmented region by finding the maxima of the distance function eval-
ated from the boundary of the cells and solved inside the segmented
ells. The computation of the distance function by solving the time-
elaxed eikonal equation is restricted only to the area of segmented
egions. This approach guarantees that the centers obtained by using
he distance function are always inside any shapes of segmented re-
ions. Since the center—the local maxima of the distance function—are
ot identical to the actual cell centers, they will be called ‘‘approx-
mate cell centers’’. In this section, we describe the solution of the
ikonal equation by the Rouy–Tourin scheme. The time-relaxed eikonal
quation is written as
𝜕𝑑
𝜕𝑡

+ |∇𝑑| = 1. (27)

n every time slice 𝜃 ∈ [0, 𝜃𝐹 ], we solve Eq. (27) for the unknown
unction 𝑑(𝑡, 𝐱, 𝜃) where (𝑡, 𝐱) ∈ [0, 𝑇𝐸 ]×𝛺. The equation is discretized by
he explicit scheme using the step size 𝜏𝐷, and the Rouy–Tourin scheme
s used for space discretization [67–69]. We solve Eq. (27) in every 2D
ata slice. Let 𝑑𝑛𝑖,𝑗 (𝜃) denote the approximate solution of Eq. (27) at the
ime slice 𝜃 in a pixel (𝑖, 𝑗) at a discrete step 𝑡𝑛 = 𝑛𝜏𝐷. For every (𝑖, 𝑗), the
ndex set 𝑁𝑖,𝑗 consists of all (𝑙, 𝑚) such that 𝑙, 𝑚 ∈ {−1, 0, 1}, |𝑙|+|𝑚| = 1,

and then 𝐷𝑙,𝑚
𝑖,𝑗 (𝜃) is defined for any (𝑙, 𝑚) as

𝐷𝑙,𝑚(𝜃) =
(

min
(

𝑑𝑛 (𝜃) − 𝑑𝑛𝑖,𝑗 (𝜃), 0
))2

. (28)
𝑖,𝑗 𝑖+𝑙,𝑗+𝑚
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In addition,

𝑀1,0
𝑖,𝑗 (𝜃) = max

(

𝐷−1,0
𝑖,𝑗 (𝜃), 𝐷1,0

𝑖,𝑗 (𝜃)
)

,

𝑀0,1
𝑖,𝑗 (𝜃) = max

(

𝐷0,−1
𝑖,𝑗 (𝜃), 𝐷0,1

𝑖,𝑗 (𝜃)
)

,
(29)

are defined. Finally, the discretization of Eq. (27) at time slice 𝜃 takes
the following form,

𝑑𝑛+1𝑖,𝑗 (𝜃) = 𝑑𝑛𝑖,𝑗 (𝜃) + 𝜏𝐷 −
𝜏𝐷
ℎ

√

𝑀1,0
𝑖,𝑗 (𝜃) +𝑀0,1

𝑖,𝑗 (𝜃), (30)

where 𝜏𝐷 = ℎ∕2 is used for stability reasons. In this paper, this equation
is solved only inside the segmented regions according to the following
process. The first step is to set 𝑑0𝑖,𝑗 (𝜃) = 0 inside the segmented regions
and 𝑑0𝑖,𝑗 (𝜃) = 𝐵𝐼𝐺 outside the segmented regions; here, the value 𝐵𝐼𝐺 is
much greater than 0. Next, the numerical scheme in Eq. (30) is applied
only inside the segmented regions. 𝑑𝑛𝑖,𝑗 (𝜃) is fixed to 0 at the boundary
of segmented regions by considering a pixel (𝑖, 𝑗) is at the boundary
in case that 𝑑𝑛𝑖,𝑗 (𝜃) ≠ 𝐵𝐼𝐺 and there is at least one neighboring pixel
which fulfills 𝑑𝑛𝑖+𝑙,𝑗+𝑚(𝜃) = 𝐵𝐼𝐺. The computation is stopped when the
inequality ∑𝜃𝐹

𝜃=0
∑𝑀

𝑖=1
∑𝑁

𝑗=1 |𝑑
𝑛+1
𝑖,𝑗 (𝜃) − 𝑑𝑛𝑖,𝑗 (𝜃)| < 0.001 is fulfilled, and the

values of 𝑑𝑛+1𝑖,𝑗 (𝜃) at the last time step is used as 𝑑𝑖,𝑗 (𝜃) in the next
section.

2.3.2. Extraction of partial trajectories
In this section, we introduce an algorithm to connect the approx-

imate cell centers in the case of overlapping macrophages using the
backtracking approach. The algorithm yields the trajectories that con-
nect the cells overlapping in the temporal direction—all these trajecto-
ries will be called partial trajectories.

Three sets of values will play a major role in the algorithm: 𝑑𝑖,𝑗 (𝜃),
𝑖,𝑗 (𝜃), and 𝐶 𝑙(𝜃), where (𝑖, 𝑗) denote a pixel position, 𝜃 denotes a time
slice and 𝑙 denotes the cell center number.

First, the distance function value 𝑑𝑖,𝑗 (𝜃) indicates whether a pixel
is inside a segmented region or not. The pixel (𝑖, 𝑗) at time slice 𝜃
is positioned inside the segmented region if 𝑑𝑖,𝑗 (𝜃) ≠ 𝐵𝐼𝐺. Second,
𝑖,𝑗 (𝜃) = 1 indicates the pixel (𝑖, 𝑗) belongs to the segmented region
which is already connected to another cell by a partial trajectory.
Lastly, 𝐶 𝑙(𝜃) represents the selected cell center, 𝑙 = 1,… , 𝑁𝜃 , where
𝑁𝜃 is the total number of segmented regions at the time step 𝜃. With
these definitions, the steps for linking the approximate cell centers are
as follows:

1. For all pixels (𝑖, 𝑗) and all time steps 𝜃, 𝑖,𝑗 (𝜃) is set to 0 and
𝑑𝑖,𝑗 (𝜃) is computed by the method in Eq. (30).

2. Let 𝜃𝐿 be a time slice and let 𝜃𝐿 = 𝜃𝐹 initially. The values of
the distance function (𝑑𝑖,𝑗 (𝜃𝐿) ≠ 𝐵𝐼𝐺) inside every segmented
region in time slice 𝜃𝐿 are inspected and the pixel having the
maximal value of distance function inside the segmented region
is found and designated as approximate cell center, 𝐶 𝑙(𝜃𝐿) =
(

𝐶 𝑙
1(𝜃𝐿), 𝐶

𝑙
2(𝜃𝐿)

)

, 𝑙 = 1,… , 𝑁𝜃 .
3. Let 𝜃 = 𝜃𝐿. In a backtracking manner, we look for overlapping

segmented regions by performing steps (a)–(b): for 𝑙 = 1,… , 𝑁𝜃 ,
𝐶 𝑙(𝜃) is projected onto the spatial plane of the previous time
slice 𝜃 − 1. Let denote the projected point as 𝑃 (𝐶 𝑙(𝜃)), where
𝑃 (𝐶 𝑙(𝜃)) =

(

𝐶 𝑙
1(𝜃), 𝐶

𝑙
2(𝜃), 𝜃 − 1

)

.

(a) The case when an approximate cell center is projected
inside some segmented region:
If 𝑑𝑖,𝑗 (𝜃 − 1) ≠ 𝐵𝐼𝐺 for (𝑖, 𝑗) =

(

𝐶 𝑙
1(𝜃), 𝐶

𝑙
2(𝜃)

)

, the ap-
proximate cell center at 𝜃 − 1 is found by searching for
the maximum value of the distance function inside the
segmented region at time 𝜃 − 1, and the approximate cell
center is denoted by 𝐶 𝑙(𝜃 − 1) =

(

𝐶 𝑙
1(𝜃 − 1), 𝐶 𝑙

2(𝜃 − 1)
)

.
Also, 𝑖,𝑗 (𝜃 − 1) is changed to 1 for all pixels (𝑖, 𝑗) inside
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the corresponding segmented region. After finding the
approximate cell center 𝐶 𝑙(𝜃 − 1), it is connected with
𝐶 𝑙(𝜃), forming a section of the partial trajectory (see
Fig. 2).

(b) The case when the projected cell center is not inside of
any segmented region at time 𝜃 − 1:
If 𝑑𝑖,𝑗 (𝜃−1) = 𝐵𝐼𝐺 for (𝑖, 𝑗) =

(

𝐶 𝑙
1(𝜃), 𝐶

𝑙
2(𝜃)

)

, let 𝑆𝑙(𝜃) be a
set of all pixels (𝑖, 𝑗) belonging to the 𝑙th segmented region
at time 𝜃. Then 𝑑𝑖,𝑗 (𝜃 − 1) is inspected for all pixels (𝑖, 𝑗)
in 𝑆𝑙(𝜃). The inspection is stopped if 𝑑𝑖,𝑗 (𝜃 −1) ≠ 𝐵𝐼𝐺 for
some (𝑖, 𝑗) = (𝑝∗, 𝑞∗) and denoting such point 𝑆𝑙

𝑝∗ ,𝑞∗ (𝜃), or
if all pixels in 𝑆𝑙(𝜃) are inspected without finding such a
point.

i. Suppose a point 𝑆𝑙
𝑝∗ ,𝑞∗ (𝜃) exists. In that case, the

approximate cell center 𝐶 𝑙(𝜃−1) =
(

𝐶 𝑙
1(𝜃−1), 𝐶

𝑙
2(𝜃−

1)
)

is found like in the step 3(𝑎) but starting from
𝑃 (𝑆𝑙

𝑝∗ ,𝑞∗ (𝜃)), and 𝑖,𝑗 (𝜃 − 1) is set to 1 for all pixels
inside the segmented region at 𝜃 − 1 to which
𝑃 (𝑆𝑙

𝑝∗ ,𝑞∗ (𝜃)) belongs to. After finding the approxi-
mate cell center, 𝐶 𝑙(𝜃 − 1) is connected with 𝐶 𝑙(𝜃),
forming a section of the partial trajectory.

ii. Suppose a point 𝑆𝑙
𝑝∗ ,𝑞∗ (𝜃) does not exist. In that

case, the approximate cell center is not designated
because there is no overlap of the segmented re-
gion 𝑙 at 𝜃 with any segmented region at 𝜃 −
1.

4. Step 3 is repeated by decreasing 𝜃 by one until 𝜃 = 1.
5. 𝜃𝐿 is decreased by one and 𝑑𝑖,𝑗 (𝜃𝐿) and 𝑖,𝑗 (𝜃𝐿) are checked for

all (𝑖, 𝑗).
If there is a pixel that fulfills 𝑑𝑖,𝑗 (𝜃𝐿) ≠ 𝐵𝐼𝐺 and 𝑖,𝑗 (𝜃𝐿) = 0, we
consider that the pixel is inside a segmented region at 𝜃𝐿 non-
overlapping with segmented regions at 𝜃𝐿 + 1. The approximate
cell center of the region is found like step 2. Then, the steps 3
and 4 are repeated.

Fig. 2 depicts the case when the projected cell center is located inside
some segmented cell (blue dot), and the approximated cell center at
𝜃 − 1 has been found as a maximum value of distance function inside
the cell at 𝜃 − 1 (red dot in the bottom-right panel). In the situation
when the projected center is outside of any segmented cell, a suitable
pixel on the boundary of the cell at 𝜃 − 1 is found, and step 3(b) is
performed (Fig. 3). Let us note that in steps 3(a) and 3(b), if there
are several maxima of the distance function in the inspected segmented
region, then the cell center is chosen as the first one found. In step 3, the
trajectories can remain disconnected if there is no overlap of cells and
the condition 3(b)ii is fulfilled. In Fig. 4, such partial trajectories are
depicted inside the 3D spatial–temporal structure formed by stacking
segmented regions in the temporal direction. This result shows that the
algorithm works correctly for the overlapped cells, and the extracted
partial trajectories appear as expected.

2.3.3. Connection of partial trajectories
This section describes how the entire trajectories are reconstructed

by connecting the partial trajectories. We assume that the reason for
macrophages’ non-overlap in time is that their movement is relatively
fast. It is highly probable that fast-moving macrophages are not imaged
continuously in the time since the time step for imaging is fixed.
Therefore, we approximate the non-overlapping macrophages in time
by keeping their direction of movement. In other words, we expect that
the tangents at the endpoints of the partial trajectory are similar to
those of corresponding macrophages at the next/previous time slice.

The tangent approximation by the backward finite difference is used
to estimate the position of a point in the next time step of a partial
trajectory. Similarly, the forward difference for the tangent calculation
is used to estimate the point at the previous time step of the partial
trajectory. In the tangent calculation, third-order accuracy is maximally
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Fig. 2. Schematic picture of step 3(a) of the proposed algorithm. The cells in the top-left panel are amplified along the time axis for better visualization. The blue dot denotes
the projected coordinate.
Fig. 3. Schematic picture of steps 3(b) of the proposed algorithm. The cells in the top-left panel are amplified along the time axis for better visualization. The yellow dot denotes
the inspected coordinate where 𝑑𝑖𝑗 (𝜃 − 1) ≠ 𝐵𝐼𝐺. Step 3(b)i is shown in the bottom panels.
Fig. 4. Partial trajectories of several macrophages. The time axis is amplified for better visualization.
considered, and thus there are three forms of tangent approximation
depending on the number of points in the partial trajectory. The
tangents computed with the third order accuracy using the backward
and forward finite difference approximations are given by [70]

𝑉 𝑏(𝐫𝜃) =
1
𝛥𝜃

( 11
6
𝐫𝜃 − 3𝐫𝜃−1 +

3
2
𝐫𝜃−2 −

1
3
𝐫𝜃−3

)

,

𝑉 𝑓 (𝐫 ) = 1 (

−11 𝐫 + 3𝐫 − 3 𝐫 + 1 𝐫
)

,
(31)
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𝜃 𝛥𝜃 6 𝜃 𝜃+1 2 𝜃+2 3 𝜃+3
where 𝛥𝜃 means the size of the time slice difference, and 𝐫𝜃 = (𝑥𝜃 , 𝑦𝜃)
is the point of the partial trajectory in the time slice 𝜃. In a similar
way, second and first order accuracy approximations for backward and
forward finite differences are given by

𝑉 𝑏(𝐫𝜃) =
1
𝛥𝜃

( 3
2
𝐫𝜃 − 2𝐫𝜃−1 +

1
2
𝐫𝜃−2

)

,

𝑉 𝑓 (𝐫 ) = 1 (

−3 𝐫 + 2𝐫 − 1 𝐫
)

,
(32)
𝜃 𝛥𝜃 2 𝜃 𝜃+1 2 𝜃+2
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and

𝑉 𝑏(𝐫𝜃) =
1
𝛥𝜃

(

𝐫𝜃 − 𝐫𝜃−1
)

,

𝑉 𝑓 (𝐫𝜃) =
1
𝛥𝜃

(

−𝐫𝜃 + 𝐫𝜃+1
)

.
(33)

Let us consider a partial trajectory with a time step range [𝑎𝛥𝜃, 𝑏𝛥𝜃], 𝑎, 𝑏
integers, and denote the positions of the cell center at 𝑎𝛥𝜃 and 𝑏𝛥𝜃 by
𝑎 and 𝐫𝑏, respectively. Then, the position of the cell center at (𝑎−1)𝛥𝜃
an be estimated from the tangent at time step 𝑎𝛥𝜃. For example, if the
artial trajectory contains more than three points, the tangent obtained
y using the forward difference at 𝑎𝛥𝜃 is given by

𝑓 (𝐫𝑎) =
1
𝛥𝜃

(

−11
6
𝐫𝑎 + 3𝐫𝑎+1 −

3
2
𝐫𝑎+2 +

1
3
𝐫𝑎+3

)

(34)

nd the tangent at (𝑎 − 1)𝛥𝜃 would be

𝑓 (𝐫𝑎−1) =
1
𝛥𝜃

(

−11
6
𝐫𝑎−1 + 3𝐫𝑎 −

3
2
𝐫𝑎+1 +

1
3
𝐫𝑎+2

)

. (35)

ssuming 𝑉 𝑓 (𝐫𝑎−1) = 𝑉 𝑓 (𝐫𝑎), i.e., the uniform directional motion of
on-overlapping macrophages, we see that 𝐫𝑎−1 is the only unknown
n the equation and can be easily obtained. Similarly, the tangent at
ime step 𝑏𝛥𝜃 yields the estimated cell center at time step (𝑏 + 1)𝛥𝜃
sing the backward finite difference. Therefore, the estimated points
n trajectories in the time slice without overlap of cells are given by

𝑎−1 = − 6
11

𝑉 𝑓 (𝐫𝑎) ⋅ 𝛥𝜃 +
18
11

𝐫𝑎 −
9
11

𝐫𝑎+1 +
2
11

𝐫𝑎+2, 𝑏 − 𝑎 > 2,

𝐫𝑎−1 = −2
3
𝑉 𝑓 (𝐫𝑎) ⋅ 𝛥𝜃 +

4
3
𝐫𝑎 −

1
3
𝐫𝑎+1, 𝑏 − 𝑎 = 2,

𝑎−1 = −𝑉 𝑓 (𝐫𝑎) ⋅ 𝛥𝜃 + 𝐫𝑎, 𝑏 − 𝑎 = 1,

(36)

nd

𝑏+1 =
6
11

𝑉 𝑏(𝐫𝑏) ⋅ 𝛥𝜃 +
18
11

𝐫𝑏 −
9
11

𝐫𝑏−1 +
2
11

𝐫𝑏−2 , 𝑏 − 𝑎 > 2,

𝑏+1 =
2
3
𝑉 𝑏(𝐫𝑏) ⋅ 𝛥𝜃 +

4
3
𝐫𝑏 −

1
3
𝐫𝑏−1 , 𝑏 − 𝑎 = 2,

𝑏+1 = 𝑉 𝑏(𝐫𝑏) ⋅ 𝛥𝜃 + 𝐫𝑏 , 𝑏 − 𝑎 = 1.

(37)

The connection of partial trajectories is carried out when the estimated
cell center 𝐫es given by 𝐫𝑎−1 or 𝐫𝑏+1 in Eqs. (36) or (37), is positioned
near the endpoint 𝐫e of some existing partial trajectory ending at time
slice (𝑎−1)𝛥𝜃 or starting at (𝑏+1)𝛥𝜃. It means we check the condition

|𝐫es − 𝐫e| ≤ 𝛥𝑟 (38)

where 𝛥𝑟 is a parameter, and if it is fulfilled, then the partial trajectories
are connected. Fig. 5a shows two partial trajectories denoted by 𝛼 and
𝛽. The red dot in the figure represents the estimated cell center 𝐫es;𝛼
computed from the 𝛼 trajectory with the backward finite difference
approximation. The 𝛼 and 𝛽 trajectories are connected if the beginning
point of the 𝛽 trajectory and the estimated cell center from the 𝛼
trajectory are located within the neighborhood 𝛥𝑟; Fig. 5b shows the
connected trajectory in such case. The condition (38) is written for the
case when the difference of time slices between endpoints of partial
trajectories equals 1. However, the partial trajectories are connected
similarly when the difference of time slices equals 2 if two estimated
points obtained from two partial trajectories (one in a forward manner
and one in a backward way) are located in the same time slice and
within the 𝛥𝑟 neighborhood. The connection of partial trajectories using
the above approach is shown in Fig. 6.

Furthermore, the tangent calculation is also used to connect the
partial trajectories if the points at the beginning or ending parts of
trajectories are located close to each other in several time slices. It
can happen if the segmentation of a single macrophage contains several
fractions in a few time slices. Fig. 5c shows two such partial trajectories
𝛾 and 𝜆. As shown in the blue circle, there are three common time slices
where 𝛾 and 𝜆 have trajectory points close to each other. To connect
those kinds of partial trajectories, we again calculate the estimated
point of the partial trajectory using the tangent approximation and
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check if there is a point 𝐫j of another trajectory in a close neighborhood
of the estimated point. If yes, then also a difference between the time
slice of 𝐫j and the time slice of the endpoint 𝐫e of its trajectory is
checked. In other words, we check the number of common time slices
𝛩𝑐 where two close trajectories appear simultaneously. For instance, in
the case of Fig. 5c, 𝛩𝑐 = 3. Finally, two trajectories are connected if
the following two conditions are fulfilled: |𝐫es − 𝐫j| ≤ 𝛥𝑟2 and 𝛩𝑐 ≤ 𝛥𝑟𝜃 .
The line in Fig. 5d shows the connected trajectory.

For the choice of parameters 𝛥𝑟 and 𝛥𝑟2, we suggest considering
the approximate size of macrophages. The estimated center of the cell
𝐫es locates near 𝐫e if non-overlapping macrophages keep the direction
of movement. Then, the distance between 𝐫e and 𝐫es is less than or
equal to the radius of macrophages since 𝐫e stands for the approximate
center of the macrophage. Thus, 𝛥𝑟 can be chosen proportionally to
the radius of macrophages. On the other hand, 𝛥𝑟2 can be chosen
proportionally to the diameter of macrophages. In this step, we mainly
link disconnected trajectories caused by fractions in segmentation. The
two centers of the segmentation fractions can be located end to end
in the same macrophage. The choice of 𝛥𝑟𝜃 depends on how many
times fractions appear in consecutive time slices. In most situations,
fractions caused by the segmentation show one big part and some small
parts. The trajectories belonging to the small parts may disconnect soon
because they are hard to overlap with macrophages in the previous time
slice. Therefore, 𝛥𝑟𝜃 is not necessarily to be large, for instance, the value
of 𝛥𝑟𝜃 from 5 to 8 can mostly cover the situation in Fig. 5c.

3. Results

3.1. Visual and quantitative assessment of segmentation

We applied the described segmentation method to the second
dataset, where macrophages have huge variability of the image inten-
sity. For the first dataset, we applied the method from [33], using the
combination of global thresholding and the SUBSURF method since the
macrophages are easily distinguishable from the background due to the
relatively weak background noise.

The parameters 𝜏𝐹 , 𝐾, 𝜎 in space–time filtering, 𝑠, 𝛿 in the local
Otsu’s method, and 𝜏𝑆 , 𝐾, 𝜎 in the SUBSURF method are chosen by
the parameter optimization (Appendix A). In Fig. 7a, the images at
the time moment 𝜃 = 0 are shown. The top-left panel shows the
original images, and their brightness and contrast are automatically
adjusted by using Fiji [71] as shown in the top-right panel. In the
second to the third row, the global and the local Otsu’s methods are
applied to the original image with different values of parameter 𝛿.
The right panel in the third row shows the result of the local Otsu’s
method with the filtered images obtained from space–time filtering.
The red and yellow arrows in Fig. 7a show that the global Otsu’s
method cannot extract those macrophages, but the local Otsu’s method
can detect and segment them. The ones denoted by the red arrows
can be recognizable using both values of 𝛿. The local Otsu’s method
without space–time filtering detects the background noise in case of
smaller 𝛿 because it captures local information more sensitively. To
avoid the noise from being detected, it can be an option to increase 𝛿;
however, macrophages with feeble image intensity cannot be detected.
The macrophages denoted by the yellow arrows in Fig. 7a show they
are not recognizable when 𝛿 = 0.9. Therefore, filtering is needed
before applying the local Otsu’s method when images are noisy, and
every macrophage with a high variability of image intensity should
be detected. Finally, the background noise disappears when the local
Otsu’s method with 𝛿 = 0.5 is applied to the filtered images obtained
by space–time filtering. It indicates that space–time filtering makes
macrophages distinguishable from the background. Here, the size of
the local window is 50 ∗ 50 and the parameters in Eq. (11) for these
computations were chosen as 𝜏𝐹 = 0.25, 𝐾 = 100, 𝜎 = 0.1, and ℎ = 0.1.

To see more details, Fig. 7b shows two macrophages from the ones
indicated by red and yellow arrows in Fig. 7a. In the second row,
the adjusted images are shown to see the shape of the macrophages.
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Fig. 5. a: Two different partial trajectories 𝛼 and 𝛽. b: the connected trajectory containing 𝛼 and 𝛽. The blue circles show the last point of the partial trajectory 𝛼 and the
beginning point of 𝛽. c: Two different trajectories 𝛾 and 𝜆. d: The connected trajectory containing 𝛾 and 𝜆. The blue circle shows the points of the two trajectories in the common
time slices.
Fig. 6. Connected trajectories from the partial trajectories in Fig. 4.
The third row of Fig. 7b shows that the local Otsu’s method pre-
ceded by the space–time filtering allows the detection of approximate
macrophage shapes also in these cases. However, some black pixels are
apparent inside the macrophage shapes since the image intensity of the
macrophages is not uniform. In addition, the local window causes an
artifact in the form of white pixels around the macrophage. This hap-
pens when the local window contains a small part of the macrophage,
so 𝛿 has a rather high value. To account for these issues, we use the
SUBSURF method, which eliminates the artifacts and smoothes the
boundary and interior of the macrophage shapes. The initial level-set
function of the SUBSURF method is set to the binary images after the
step of local Otsu thresholding. Although the SUBSURF cannot connect
the partial fragments of all macrophages, the problems described above
are sufficiently solved, see the last row of Fig. 7b. The parameters for
the SUBSURF method in Eq. (26) for these computations were chosen
as 𝜏𝑆 = 0.25, 𝜖2 = 10−8, 𝐾 = 10, 𝜎 = 1, and ℎ = 1. The suggested
steps for macrophage segmentation work reliably for differently shaped
macrophages, no matter how complicated their boundaries are. How-
ever, parts of weak image intensity inside macrophages are observed,
especially when macrophages stretch their bodies. It yields fractions
of segmented regions for a macrophage since the local Otsu’s method
works locally, and SUBSURF fails to connect the fractions often.
9

The performance of the presented segmentation method is eval-
uated quantitatively by using the mean Hausdorff distance of au-
tomatic and semi-automatic segmentation results. The mean Haus-
dorff distance is used to measure how two curves match each other.
For two curves given by sets of points, 𝐴 = {𝑎1,… , 𝑎𝑁} and 𝐵 =
{𝑏1,… , 𝑏𝑀}, the mean Hausdorff distance 𝑑H is defined [72] as 𝑑H =
(𝛿𝐻 (𝐴,𝐵) + 𝛿𝐻 (𝐵,𝐴))∕2, where 𝛿𝐻 (𝐴,𝐵) is defined as 𝛿𝐻 (𝐴,𝐵) =
1
𝑀

∑𝑀
𝑖=1 min𝑎𝑗∈𝐴(𝑑𝑒(𝑎𝑗 , 𝑏𝑖)). Here, 𝑑𝑒(𝑎𝑗 , 𝑏𝑖) is the Euclidean distance

between 𝑎𝑗 and 𝑏𝑖. The boundaries of the segmented regions from
the automatic and semi-automatic methods are extracted for this.
The semi-automatic segmentation method, based on the Lagrangian
approach [73], is done by an expert to create the ‘‘gold standard’’ for
comparison, see also [33]. For the quantitative comparison, we choose
two macrophages (the first and fifth macrophages in Fig. 8). They
move and change their shapes, covering high variability of segmented
shapes over the number of time slices in 120 and 107, respectively. The
perimeter, area, and circularity (4𝜋 ∗ area/perimeter2) are calculated
for both automatic and semi-automatic segmentation, as shown in
Figs. 10d–f and 11d–f. In Fig. 10a, the mean Hausdorff distance 𝑑H
(measured in pixel units) of the curves representing results of automatic
and semi-automatic segmentations is presented over time. Also, the
quality of the segmentation is measured by using the IoU (Jaccard)
index [74] and the Sørensen–Dice coefficient [75,76]. For each of
the two macrophages, the mean Hausdorff distance, IoU index, and
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Fig. 7. Original and segmented images at 𝜃 = 0. a: The top-left panel shows the original, and the top-right panel shows after the brightness and contrast of the original images
are automatically adjusted. The rest of the panels show the results of applying the global Otsu’s method, the local Otsu’s method with two different 𝛿, and the local Otsu’s method
preceded by the space–time filtering. b: Two different macrophages and their processing by the proposed segmentation method. The first row shows the original images where the
macrophages are hardly recognizable. In the second row, the brightness and contrast of the original images are automatically adjusted. The third row shows already recognizable
macrophages in the images obtained by the local Otsu’s method with 𝛿 = 0.5 preceded by the space–time filtering. The last row gives the results after the last segmentation step,
the application of the SUBSURF method.
Fig. 8. Five different macrophages from the original (top) and the segmented images (bottom). The fourth and fifth columns show the segmentation yields a few segmented regions
for a single macrophage.
Sørensen–Dice coefficient are averaged over time as shown in Table 1.
We see that the average of the mean Hausdorff distances for two
macrophages is small compared to the size of macrophages. The IoU in-
dex and Sørensen–Dice coefficient obtained from the proposed method
indicate the results show reasonable performance. From Figs. 10 and
11, we also see that the area of segmented macrophages obtained
from the automatic segmentation is slightly smaller than the area
obtained by the semi-automatic segmentation. The reason is that the
automatic segmentation method does not always detect all parts of
10
the macrophage (fourth and fifth column in Fig. 8) or may give its
a more narrow shape. On the other hand, the presented segmentation
method is able to detect every macrophage, although sometimes only
partially, which is beneficial for accurate tracking of all macrophages
in time-lapse data.

The performance of the proposed segmentation method is compared
to three different deep learning methods, U-Net [27,29], Cellpose [31],
and Splinedist [32]. Those three methods have been designed to seg-
ment general or flexible shapes in microscopic images. In their research,
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Fig. 9. The original, the gold standard images, and segmented images in two different time moments, 𝜃 = 44 (first–second row) and 𝜃 = 155 (third–fourth row). The segmentation
method used is indicated in the top-left corners of each panel.

Fig. 10. The quantitative comparison for the macrophage denoted by ‘‘i’’ in Fig. 9. a: The mean Hausdorff distance from the gold standard, b: IoU (Jaccard) index, c: Sørensen–Dice
coefficient, d: Perimeters of segmentations, e: Areas of segmentations, and their f: circularities. Time sequence in the horizontal axis indicates the order of time frames, and its
interval is 4 min.



Computers in Biology and Medicine 153 (2023) 106499S.A. Park et al.
Fig. 11. The quantitative comparison for the macrophage denoted by ‘‘ii’’ in Fig. 9. a: The mean Hausdorff distance from the gold standard, b: IoU (Jaccard) index, c: Sørensen–Dice
coefficient, d: Perimeters of segmentations, e: Areas of segmentations, and their f: circularities. Time sequence in the horizontal axis indicates the order of time frames, and its
interval is 2 min.
they have shown the high performance for different types of biological
objects such as biological tissue, microglial cells [29], elongated den-
drites [31], and non-star-convex shapes of cell nuclei [32]. We choose
the training dataset at www.cellpose.org, which contains not only
various biological images but also general objects such as fruits, beans,
etc., to train networks for varying shapes of macrophages with minimal
manual effort. We may expect a better performance of the mentioned
machine learning methods if they are trained on macrophage data.
However, it would need a lot of datasets for training networks to cover
the high variability of shapes and image intensity of macrophages. In
addition, due to the complex shapes of macrophages, the preparation of
training images demands substantial manual effort even though we use
the semi-automatic segmentation approach. Therefore, segmentation
using training networks calibrated for macrophages is out of the scope
for the present paper. The toolbox called zerocostdl4mic [77] is used
to train the networks of deep learning methods, and then the trained
networks are applied to the second dataset of this paper. Fig. 9 shows
the original and segmented images in two different time slices. Except
for Splinedist, U-Net and Cellpose segment and detect macrophages
quite successfully. However, the segmented bodies obtained from U-
Net and Cellpose are wider and less accurate than observed in the
original images. The advantage of the wider shapes is that the seg-
mented macrophages can cover the entire shape, as shown in the green
rectangles in Fig. 9. However, it can be a problem when two different
macrophages are close to each other. For instance, the two different
macrophages inside the red rectangles at 𝜃 = 44 in Fig. 9 are segmented
properly by our segmentation method, while the results from those two
deep learning methods show a connected macrophage. The quantitative
comparisons are carried out to see details of the difference between
the proposed method, U-Net, and Cellpose. In Fig. 9, the macrophage,
which has somewhat rounded shapes, is selected and denoted as ‘‘i’’
with the pink arrow. In contrast, the macrophage marked ‘‘ii’’ has
very irregular shapes over time. The quantitative plots for the ‘‘i’’ and
‘‘ii’’ macrophages are shown in Figs. 10 and 11 respectively. For the
‘‘i’’ macrophage, the mean Hausdorff distance from the gold standard
averaged in time for U-Net, and Cellpose equals 5.29 and 12.05, respec-
tively. For the macrophage ‘‘ii’’, it is 5.74 and 8.32, respectively. In both
12
Table 1
The average over time of the mean Hausdorff distance 𝑑H, the average over time
of IoU (Jaccard) index IoU, and the average over time of Sørensen–Dice coefficient
DSC obtained by using three segmentation methods.

‘‘i’’ ‘‘ii’’

𝑑H IoU DSC 𝑑H IoU DSC

Proposed 1.65 0.77 0.86 1.19 0.80 0.89
U-Net 5.29 0.62 0.76 5.74 0.57 0.72
Cellpose 12.05 0.40 0.57 8.32 0.48 0.64

cases, it is higher than for the proposed method. As expected by Fig. 9,
the area of U-Net and Cellpose tend to be higher than the gold standard
area and the area obtained by our method. In particular, it is more
apparent when the shapes of the macrophage are complicated (Fig. 11)
since U-Net and Cellpose give wider and smoother shapes which yield
the high circularity as shown in Figs. 10 and 11. The U-Net method
performs better than Cellpose in general; however, it sometimes fails to
segment macrophages where Cellpose and our approach can segment
them, see blue circles in Fig. 9.

3.2. Visual and quantitative assessment of tracking

In this section, we present trajectories of moving macrophages
extracted by using our tracking algorithm. We applied the proposed
method to two 2D + time datasets described in Introduction. The
tracking process for both datasets is applied in the same way: first,
macrophages are segmented in every time slice; second, the partial
trajectories of cells overlapping in the temporal direction are extracted;
last, the partial trajectories are connected using the tangent calculation.

In the first dataset, the macrophages are sparsely distributed in
the spatial domain and do not touch each other. Therefore, it is rel-
atively easy to evaluate the tracking performance visually. The partial
trajectories are connected using 𝛥𝑟 = 30 pixels in (38).

Fig. 12 shows trajectories obtained by our tracking algorithm visu-
alized at the final time slice in 4 chosen subdomains of the 2D image. In
Figs. 12–15, square dots denote the position of approximate cell centers

http://www.cellpose.org
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Fig. 12. Trajectories of macrophage movements at the final time slice 𝜃𝐹 = 74. The spatial domain is 3755 ∗ 683 pixels, and the entire domain is divided into four subdomains.
Different colors represent each macrophage and its trajectory.
Fig. 13. Trajectories in subdomain 3 from Fig. 12 visualized in five different time slices.
in the visualized time slice, and lines show the macrophage trajectories
from its appearance up to the visualized time slice. The macrophages
move more actively as they locate on the right side since the site of
the wound is on the rightmost. In Regions 1 and 2, the macrophages
migrate in the way of ‘‘random movement’’, whereas most macrophages
show directional motion in Regions 3 and 4. Figs. 13 and 14 are chosen
to see the trajectories of macrophages in detail. In Fig. 13, there are
three detected approximate cell centers at 𝜃 = 0 and the left-most
one disappears after 4 time slices. The macrophage denoted by light
purple (also denoted by ‘‘i’’) changes to the one marked in sky blue
13
(‘‘ii’’) as shown in the second panel. These two partial trajectories (‘‘i’’
and ‘‘ii’’) are not connected since they move very fast, i.e., the distance
between the estimated points from the two partial trajectories is too far.
The macrophage denoted by yellow (‘‘iii’’) moves actively compared to
other macrophages in Region 3 as shown in the second and third panel.
In the last panel of Fig. 13, two macrophages (‘‘iv’’ and ‘‘v’’) appear after
𝜃 = 57 and keep showing until 𝜃 = 74. The trajectories in Region 4 are
visualized in Fig. 14 from the beginning to the final time slice (𝜃 = 74)
and show partially ‘‘random movement’’, but they migrate dominantly
toward the site of the wound. It shows that the tracking algorithm can
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Fig. 14. Trajectories in subdomain 4 from Fig. 12 visualized in five different time slices.
cover both situations of random movement and directional movement.
One macrophage denoted by the pink line (‘‘vi’’) appears after 𝜃 = 57
in the upper right and moves opposite direction from the wound a bit,
but it comes back to the right side.

The overall number of partial trajectories was 165, and it decreased
to 32 after connection using tangent approximation. To quantify the
accuracy of tracking, the mean Hausdorff distance between trajecto-
ries obtained from our automatic tracking algorithm and the manual
tracking performed by Fiji software [71] was computed. Three different
macrophages of the first dataset, having clear signal over the whole
time sequence, were selected for comparison and results are presented
in Fig. 16 left column. The mean Hausdorff distances of the automatic
and manual trajectories presented in panels 1a–1c of Fig. 16 were
1.17, 1.55, and 1.19 pixels, respectively. Also, the average distance
between the points at each time slice of two trajectories obtained from
the manual and the proposed method are computed (Table 2). These
distances are very small compared to the overall length of trajectories,
indicating the high accuracy of the automatic tracking algorithm for
the first dataset.

The second dataset is much more noisy, and the macrophage move-
ment is more complicated. In case the image intensity of macrophages
is very weak or has high variability, the segmentation yields several
14
fractions of a single macrophage, see Fig. 8. The segmented fractions
cause the existence of more than one partial trajectory in the same
macrophage in the several common time slices, as illustrated in Fig. 5c.
For this dataset, the condition in Eq. (38) with 𝛥𝑟 = 60 was first used
to connect the partial trajectories and then parameters 𝛥𝑟2 = 120 and
𝛥𝑟𝜃 = 5 were used to avoid closed trajectories due to macrophage
segmentation split. We note that 𝛥𝑟2 can be chosen less sensitively than
𝛥𝑟 since many trajectories are already connected.

The final trajectories of the second dataset in the whole spatial
domain are visualized in Fig. 15. There are 9 detected macrophages
at the beginning, and 12 macrophages are shown at the last time
slice as new macrophages appear and disappear over time. The site
of the wound is positioned on the right side, and many macrophages
migrate toward the wound. Especially, the macrophage denoted by
violet (‘‘i’’) at the top of the pictures from 𝜃 = 115 to 𝜃 = 156 shows
very fast movement, which implies the macrophage yields many partial
trajectories, and our method enables us to connect them.

In the second row of the figure, the two trajectories (purple, ‘‘ii’’
and brown, ‘‘iii’’) inside the blue rectangle are located in the same
cell. However, they are shown differently because the segmentation
cannot extract the entire shapes of macrophages, and their number of
the common time slices 𝛩 is greater than 6.
𝑐
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Fig. 15. Final trajectories in eight subsequent time slices. The final time slice of the second dataset is 𝜃𝐹 = 156. Here, the size of the whole spatial domain is 1758 ∗ 1306 pixels.
The number of trajectories before and after the first connection
by using condition in Eq. (38) (see also Fig. 5a–b) was 930 and 234,
respectively. After the second connection of closed common trajectories
(see Fig. 5c–d), the number of extracted trajectories decreased again
significantly to 69. In addition, the average length of extracted trajec-
tories after the second connection increased from 69.53 to 363.29 in
pixel units.

The mean Hausdorff distance computed for three selected trajecto-
ries of the second dataset, see panels 2a–2c of Fig. 16, was 3.13, 4,35,
and 2.40 in units of pixels, which is very low in comparison to the
average length of trajectories. It shows the high accuracy of tracking for
this dataset again. The comparison of the average distance computed by
averaging the Euclidean distance between points at each time frame of
manual and the proposed tracking is presented in Table 2. This distance
15
is bigger than the mean Hausdorff distance but still small compared to
the average size of macrophages.

Further check of automatic tracking accuracy we performed by
counting the number of correct and wrong links in every time slice
by visual inspection. If a trajectory is linked correctly to the same
macrophage in the next time slice, we count it as a correct link. How-
ever, we consider the wrong link for a trajectory when it is linked to
a different macrophage or it disappears in the next time slice although
segmented regions exist for the corresponding macrophage. We define
the time slice tracking accuracy as the ratio between the number of
correct links and the total number of links detected visually in one
time slice in a forward manner, and we define the mean accuracy of
tracking as the average of the tracking accuracy over all time slices. As
a result, the mean accuracy of tracking in the first dataset was 0.975
and in the second dataset, it was 0.974. Both results demonstrate that
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Fig. 16. Extracted trajectories of three different macrophages from manual and automatic tracking methods in the first 1a–1c and second dataset 2a–2c. The number of points of
1a–1c is 75 and the numbers of points of 2a–2c are 109, 57, and 157, respectively. The blue lines show manual tracking in Fiji [71], and the red lines show our proposed tracking
method.
the suggested tracking method is able to achieve high accuracy bigger
or equal to 97.4% for generic datasets obtained by confocal microscopy.
The final results of cell tracking are also provided as two videos in
the supplementary materials. The video named 1st_dataset.mov shows
the trajectories in Region 4 in the first dataset. For the second dataset,
2nd_dataset.mov shows the obtained trajectories in the whole spatial
domain.

The trajectories obtained by the proposed tracking method are
compared to the results of TrackMate [41] and LIM Tracker [42], which
can be easily implemented in Fiji. For the cell detection in TrackMate,
we used the LoG detector with the parameter values for ‘‘Estimated
object diameter’’ = 110 and ‘‘Quality threshold’’ = 0.004. Then, the
LAP tracker was applied for ‘‘linking with MAX distance’’ equals to 200
pixels and ‘‘Gap closing’’ = 100 pixels with ‘‘Max frame gap’’ = 2. The
other tracking algorithms, the Kalman tracker and Nearest-neighbor
tracker, in the Fiji plugin were also applied. However, the LAP tracker
gave the least number of disconnected trajectories so we will discuss
only the LAP tracker results. The mean accuracy of the LAP tracker in
Fiji was evaluated in the same manner as measuring in the proposed
method. It yielded 0.971, indicating the majority of the trajectories
obtained from the LAP tracker correctly represented the movement of
macrophages, similar to the proposed method. However, we point out
the cases where this method failed to link macrophages correctly, but
the proposed method was successful. The majority of the trajectories
obtained from the LAP tracker correctly represented the movement of
macrophages, similar to the proposed method. However, we point out
the cases where this method failed to link macrophages correctly, but
the proposed method was successful. In Fig. 17, the visualizations of
trajectories obtained by our tracking method at different time slices are
shown in the left column (denoted by a–c), and the results obtained
by LAP tracker are shown in the right column (denoted by a-TM–c-
TM). Fig. 17a shows two different trajectories where one macrophage
moves actively (blue curve) and the other moves very slowly (pink
curve). These two macrophages are located close to each other in
the previous time slice. Therefore LAP links them due to their close
distance, as shown in the panel a-TM. On the other hand, the proposed
tracking method links the points correctly since there are overlapping
segmented shapes for each trajectory. The panels denoted by b and b-
TM in Fig. 17 show the case when the LAP tracker fails to link the two
disconnected trajectories (see purple and blue curves in panel b-TM).
The distance between the endpoints of those two trajectories in b-TM
is considerable because the macrophage moves fast at the time slice in
which the disconnection occurs. In the proposed method, the trajectory
is successfully connected since the algorithm considers the direction
of movement when it links partial trajectories. To check if those two
trajectories can be connected by the LAP method, we slightly increased
16
Table 2
The two different types of the distance between trajectories obtained from manual
and proposed tracking. 𝑑H and 𝑑avg denote the mean Hausdorff distance between two
curves and the average of the Euclidean distance between two points at each time
slice. 𝐿manual is the total length of trajectories by manual tracking, and 𝐿auto is the
total length obtained from proposed tracking.

# of points 𝑑H [px] 𝑑avg [px] 𝐿manual [px] 𝐿auto [px]

1a 75 1.17 4.00 653.21 842.97
1b 75 1.55 7.45 993.90 848.92
1c 75 1.19 6.20 765.59 570.82
2a 109 3.13 17.33 2425.88 3026.21
2b 57 4.35 19.78 1887.99 1920.75
2c 157 2.40 15.71 2039.42 1720.62

the linking parameter ‘‘linking with MAX distance’’ to 202. The increase
of the parameter does not help to connect the trajectories; moreover, it
causes another wrong connection at time slice 𝜃 = 90 as shown in the
panel of c-TM.

In addition, the comparison between the proposed tracking method
and the LIM tracker [42] implemented in Fiji is shown in Fig. 18. We
used the automatic cell detection provided by the software setting the
parameters to ‘‘Threshold’’ = 14000, ‘‘Cell size’’ = 50, and ‘‘ROI size’’
= 110. Then, for the automatic cell tracking, the parameters ‘‘Link ROI
range’’, ‘‘Link split track’’, and ‘‘Fill frame gap’’ were set to 200, 70, and
2, respectively. The panels denoted by a and a-LIM show the results
obtained by our method and the LIM Tracker at the final time slice,
respectively. The trajectory inside the orange rectangle is very similar
to the result of our tracking method, unlike the one obtained from the
LAP tracker, cf. Fig. 17b. However, many trajectories are disconnected
since the cell size in this software can be set maximally only to 50 pixels
which are not sufficient for our datasets. Therefore, the trajectories
obtained from the LIM tracker gave a lower mean accuracy, 0.893.
The panels of b and b-LIM show trajectories at 𝜃 = 147 obtained by
our method and the LIM tracker, respectively. Similarly to the case of
c-TM in Fig. 17, there are several wrong connections shown inside the
yellow rectangles in b-LIM panel.

4. Discussion

In this paper, we presented a new approach to cell tracking based on
image segmentation. The proposed segmentation and tracking method
was performed in 2D + time microscopy data.

Segmentation is carried out in three steps: space–time filtering, the
local Otsu’s thresholding, and the SUBSURF approach. The dataset
we dealt with has different intensities of the background noise and
macrophages by time slices. Since the image intensity of some
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Fig. 17. The trajectories obtained from the proposed method (left column) and the LAP method in TrackMate in Fiji [41] (right column). The panels of a,b,c and a-TM,b-TM,c-TM
show trajectories extracted at different time moments, 𝜃 = 69, 𝜃 = 156, and 𝜃 = 90, respectively.
Fig. 18. The trajectories obtained from the proposed method (left column) and the LIM tracker [42] (right column). The panels of a, b and a-LIM, b-LIM show different time
moments at 𝜃 = 156, 𝜃 = 147, respectively.
macrophages is very close to the background noise, the first task was
to make distinguishable the signals between the background noise
and macrophages through space–time filtering. Then, the second task
was capturing the proper shapes of macrophages having huge vari-
ability of image intensity. To do this, we applied the thresholding
technique locally by using the local Otsu’s method. Lastly, the SUBSURF
method eliminates the artifacts that occur after applying the local
Otsu’s method. As a result, we showed that the proposed segmenta-
tion enables us to segment all macrophages. Moreover, the proposed
segmentation was compared to machine learning-based segmentation,
17
U-Net, and Cellpose and different local threshold methods (see Sup-
plementary materials). The comparison was presented using the mean
Hausdorff distance, IoU index, and Sørensen–Dice coefficient between
the results of different segmentation methods and the gold standard
for two macrophages. The three measurements showed the proposed
method gives a reasonable performance, especially for complex shapes
of the macrophage.

Based on the segmented images, we performed tracking with the
proposed method in two different datasets. The macrophages often do
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not overlap continuously in the temporal direction, therefore we traced
them in two stages.

The partial trajectories were extracted first by checking segmented
regions of macrophages are overlapped in the temporal direction. Then,
the direction of the movement, by computing the tangent of the partial
trajectories, was approximated. We assumed the macrophages tend
to keep their direction of movement at the time point when their
segmented bodies are disconnected in the temporal direction. Hence,
we connected partial trajectories when they have a similar direction of
movement and they are close to each other.

The performance of tracking was analyzed by comparing trajectories
obtained from manual and automatic tracking in three ways; compu-
tation of the mean Hausdorff distance, the average distance at each
time slice, and the mean accuracy. The mean Hausdorff distance and
the average of the Euclidean distance showed small differences from
the trajectories of manual tracking compared to the total length of
trajectories and size of macrophages. The mean accuracy was defined
by the average ratio between the correct and total links at each time
slice. It showed high accuracy of 97.5% in the first dataset and 97.4% in
the second dataset from the proposed tracking. We also compared with
other tracking methods, TrackMate and LIM tracker, and presented the
cases when the proposed method gave more accurate results.

Limitations

There are still open questions about the proposed method. First,
the proposed segmentation method sometimes fails to extract an entire
body of a macrophage. It mainly occurs when macrophages stretch
their body a lot, causing weak intensity inside the macrophages. In
this situation, the local window centered by the part of the weak
intensity determines that it does not contain macrophages. SUBSURF
does not connect these segmented fractions corresponding to the same
macrophage since the fractions are quite far apart.

Second, the performance of tracking is dropped with poor results
of the segmentation. It is quite apparent that segmentation determines
the robustness of segmentation-based tracking. In our case, the seg-
mentation problem was mainly due to segmented fractions for a single
macrophage. To solve it, we considered the number of time slices
appearing simultaneously for two close trajectories and linked them
as illustrated in Fig. 5. However, there is a case when the two partial
trajectories fail to be connected, as presented in the blue square in
Fig. 15 because of the large number of common time slices. This
situation can happen if several fractions are more than two, yielding
many partial trajectories. Therefore, the proposed tracking still relies
on the segmentation quality even though we tried to deal with the
segmentation problem.

5. Conclusion

We proposed automated methods for the segmentation and tracking
of macrophages with highly complex shapes and migration patterns.
We described the proposed methodology, presented the results, and
discussed the performances and limitations. The method could be im-
proved by considering the points described in the section Limitations.
Also, we suggest the possible applications of the proposed method.

Future works and possible applications

In order to segment the entire shapes of macrophages, the global
information of individual macrophages should also be considered to-
gether with considering local information from the proposed method.
The space–time segmentation by adding the time component in the
segmentation [78] could improve the performance. For tracking, the
best is to segment macrophages as accurately as possible, but it is also
necessary to think of how to obtain more information from the partial
trajectories to overcome the low quality of the segmentation.
18
Fig. A.1. First row: two different objects colored by yellow and red. Second row: the
region of intersection and union are shown in white and gray, respectively.

By segmenting and tracking automatically, we expect that the pro-
posed method can provide quantitative data and evidence to figure out
how relevant the polarization modes of macrophages are to shapes and
patterns of migrations [79]. Also, we expect that the proposed tracking
model can be applied to macrophages in other animal models and
neutrophils in fluorescent images. However, it would need parameter
optimization for different datasets.
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Appendix A. Parameter optimization in image segmentation

Among the parameters required for the image segmentation, we
chose the eight playing a major role in the segmentation, namely 𝜏𝐹 ,
𝐾, 𝜎 in space–time filtering, 𝑠, 𝛿 in the local Otsu’s, and 𝜏𝑆 , 𝐾, 𝜎 in
the SUBSURF methods. Each parameter has the four chosen values (see
Fig. A.4) and it leads to the number of 65536 combinations in total.
The four types of images were selected to measure the performance of
segmentation in various circumstances. The three macrophages were
selected as having different properties, such as rounded shape, complex
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Fig. A.2. The segmented images of three different macrophages 𝛷1, 𝛷2, 𝛷3 and the background 𝛷4 by using two combinations of parameters. The mean accuracy of the combination
in the top and bottom row is 0.81 and 0.35, respectively.
Fig. A.3. The mean accuracy is sorted from highest to lowest when the score is greater than 0.15 in three or more consecutive time frames.
Fig. A.4. The frequency of each parameter within a range of the orange rectangle in Fig. A.3. The most frequently appearing parameters are denoted by the yellow bars, and
they are chosen as optimal.
shape, and weak image intensity. Also, a part of the background that
does not appear any macrophage over time was cropped to check addi-
tionally whether the background noise is segmented as an object or not.
The accuracy of the automatic segmentation was computed by compar-
ing it with the images obtained by the semi-automatic segmentation
(gold standard) [73].

The accuracy of segmentation was evaluated by measuring the Inter-
section over Union (IoU), also known as the Jaccard index [74], defined
as Area of intersection/Area of union between the objects given by the
gold standard and the proposed segmentation method. For instance,
19
Fig. A.1 shows two objects plotted in yellow and red in the first row.
The intersection and union of the two objects are shown in white and
gray pixels in the second row of the figure. Therefore, IoU for the two
rectangles can be calculated by number of white pixels/number of white
and gray pixels, and it gives 0.5 in this illustrative example.

Likewise, IoU was computed for four different types of segmented
images. Let us denote by 𝛷𝑘, 𝑘 = 1, 2, 3, 4, the four types of mentioned
images, and let 𝑖 be the index of the time frame. Then, IoU for 𝑘th type
of image at 𝑖th time frame can be written as

𝐼𝑜𝑈 (𝛷 , 𝑖) = 𝐴(𝐼, 𝑖)∕𝐴(𝑈, 𝑖), (A.1)
𝑘
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where 𝐴(𝐼, 𝑖) and 𝐴(𝑈, 𝑖) represent the number of pixels (area) of the
ntersection and the union, respectively. Next, we define the score of
he segmentation for the four types of images by averaging IoU over
ime. The score for three macrophages is given by

(𝛷𝑘) =
1
𝑀𝑘

𝑀𝑘
∑

𝑖=1
𝐼𝑜𝑈 (𝛷𝑘, 𝑖), 𝑘 = 1, 2, 3. (A.2)

For the images of the background, we define the score differently
ince the gold standard gives ‘‘empty’’ images without any object. In the
ackground images, 𝐴(𝐼, 𝑖) is defined by the number of pixels inside the
egmented regions, and 𝐴(𝑈, 𝑖) is given by the number of pixels in the

whole image domain. Since the score should be decreased when the
background noise is segmented as an object, we define it by

𝑆(𝛷𝑘) =
1
𝑀𝑘

𝑀𝑘
∑

𝑖=1
(1 − 𝐼𝑜𝑈 (𝛷𝑘, 𝑖)), 𝑘 = 4. (A.3)

Here, the number of time steps for each of four images are 𝑀1 = 120,
2 = 99, 𝑀3 = 61, and 𝑀4 = 53. Finally, we measure the mean

ccuracy 𝑀 by averaging the scores for the four types of images in
very combination of parameters such that

=
4
∑

𝑘=1
𝑆(𝛷𝑘)∕4. (A.4)

Fig. A.2 shows overlapped images obtained by the gold standard and
he proposed method with two different combinations of parameters,
ne optimal and one with very low accuracy. The parameters are
escribed as follows. For space–time filtering; left column: 𝜏𝐹 = 0.25,
= 100, 𝜎 = 0.1, right column: 𝜏𝐹 = 1, 𝐾 = 1000, 𝜎 = 0.1. For

he local Otsu’s method; left column: 𝑠 = 50, 𝛿 = 0.5, right column:
= 30, 𝛿 = 0.3. For the SUBSURF method; left column: 𝜏𝑆 = 0.25,
= 10, 𝜎 = 1, right column: 𝜏𝑆 = 0.25, 𝐾 = 2000, 𝜎 = 1. In the

igure, 𝐴(𝐼, 𝑖) and 𝐴(𝑈, 𝑖) are shown by white and gray pixels. The mean
ccuracy 𝑀 in the top row of Fig. A.2 is about 0.81. It shows that the
egmented macrophages from the proposed method are similar to those
f the gold standard, and almost no background noise is segmented
round the macrophages. In the panel of 𝛷4, the size of segmented
ackground noise is only 6 pixels. Whereas segmented results in the
ottom row, where the mean accuracy is only about 0.35, show that
he background noise is segmented in all panels meaning that this
ombination of parameters with the low mean accuracy is not able to
egment macrophages solely.

We first excluded the combinations for which 𝐼𝑜𝑈 (𝛷𝑘, 𝑖) is lower
han a certain threshold in three or more consecutive time frames to
elect the optimal parameters. There can be a situation where 𝑆(𝛷𝑘)

is high enough, but the value of 𝐼𝑜𝑈 (𝛷𝑘, 𝑖) is extremely low in a few
time frames, meaning the area of segmented macrophages is very small
in those time frame. We should avoid this situation since segmentation
results will be used for tracking. As a result, the number of candidates
finding the optimal parameters decreases to 42970. Fig. A.3 shows the
mean accuracy in descending order. A large number of combinations
yield high accuracy, implying that the proposed segmentation method
is quite robust. Next, we find the parameters that appear most fre-
quently within a specific range of sufficiently high accuracy. The most
appearing parameters were counted for 20 000 combinations (see the
orange rectangle in Fig. A.3). The frequency of eight parameters is
presented in Fig. A.4, and the parameters which show the highest
frequency are denoted by the yellow bars. We selected the values
indicated by the yellow bars in Fig. A.4 as the optimal parameters.
The segmentation presented in the paper was performed with these
parameters. For space–time filtering, 𝜏𝐹 = 0.25, 𝐾 = 100, 𝜎 = 0.1. For
the local Otsu’s method, 𝑠 = 50, 𝛿 = 0.5, and 𝜏𝑆 = 0.25, 𝐾 = 10, 𝜎 = 1
for the SUBSURF method.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compbiomed.2022.106499.
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