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Abstract

We present nonlinear diffusion equations, numerical schemes to solve them and
their application for filtering 3D images obtained from laser scanning microscopy
(LSM) of living zebrafish embryos, with a goal to identify the optimal filtering
method and its parameters. In the large scale applications dealing with analysis of
3D+time embryogenesis images, an important objective is a correct detection of
the number and position of cell nuclei yielding the spatio-temporal cell lineage tree
of embryogenesis. The filtering is the first and necessary step of the image analysis
chain and must lead to correct results, removing the noise, sharpening the nuclei
edges and correcting the acquisition errors related to spuriously connected subre-
gions. In this paper we study such properties for the regularized Perona-Malik model
and for the generalized mean curvature flow equations in the level-set formulation.
A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion
and Beltrami flow, is also included. All numerical schemes are based on the same dis-
cretization principles, i.e. finite volume method in space and semi-implicit scheme in
time, for solving nonlinear partial differential equations. These numerical schemes
are unconditionally stable, fast and naturally parallelizable. The filtering results
are evaluated and compared first using the Mean Hausdorff distance between a gold
standard and different isosurfaces of original and filtered data. Then, the number of
isosurface connected components in a region of interest (ROI) detected in original
and after the filtering is compared with the corresponding correct number of nuclei
in the gold standard. Such analysis proves the robustness and reliability of the edge
preserving nonlinear diffusion filtering for this type of data and lead to finding the
optimal filtering parameters for the studied models and numerical schemes. Further
comparisons consist in ability of splitting the very close objects which are artifi-
cially connected due to acquisition error intrinsically linked to physics of LSM. In
all studied aspects it turned out that the nonlinear diffusion filter which is called
geodesic mean curvature flow (GMCF) has the best performance.
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1 Introduction

Understanding biological processes leading to organism formation through cel-
lular division, interaction and differentiation is a fundamental issue for bio-
medical research. Such a goal requires investigating cell behaviors in vivo. This
is a very challenging multidisciplinary approach requiring specific methodolo-
gies and tools in different domains including embryo engineering, microscopy
imaging and image processing. Recent advances in imaging strategies open the
way to in toto 4D imaging of live animals with a resolution at the cellular level
and enough contrast to allow segmentation of individual cells and subcellular
structures. The zebrafish (Danio Rerio) is a vertebrate that has been largely
validated as a powerful model for investigations related to human and might
soon become a major model organism for pre-clinical drug testing by pharma-
ceutical industries. Through the ubiquitous expression of fluorescent proteins
in the zebrafish embryo, it is possible to label all the cells and perform the
time-lapse LSM (laser scanning microscopy) imaging throughout the embry-
onic development, (Megason & Fraser, 2003). However, the images produced
are intrinsically noisy and any further reconstruction requires noise removal
by image filtering algorithms.

Designing appropriate filtering methods for removing spurious structures si-
multaneously preserving the image information is indeed a requirement for
further reliable extraction of cell centers (Frolkovič et al., 2007; Drbĺıková et
al., 2007), segmentation of membranes and nuclei (Zanella et al., 2007, 2009;
Frolkovič et al., 2007; Drbĺıková et al., 2007), velocity field extraction and
cell tracking (Melani al., 2007), cf. also (Khairy et al., 2008; Dufour et al.,
2005; Lin et al., 2005). Solution of such tasks may lead to the cell lineage tree
extraction which is an important and challenging problem in developmental
biology and for which our approach gives promising results. In addition to the
efficiency and precision, the above mentioned methods are computationally
much faster when applied to properly filtered image sequences. Thus, image
filtering is a necessary first step in the image processing chain. Furthermore,
filters have to be designed and their parameters chosen according to the data
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characteristics. Principle constraint of the LSM technique is to acquire images
with high temporal resolution in order to follow the motion of every single cell
in a continuous way. As a drawback, the spatial resolution of the image se-
quence dramatically decreases with increasing speed of scanning, particularly
in a deepness. Due to the physics of the acquisition process, the resolution
in the direction normal to the focal planes is always lower than in the focal
planes. Therefore some neighboring close points might not be resolved and
sometimes the objects as cell nuclei appear connected in the acquired im-
ages, while in reality they are certainly surrounded by cell membranes and
thus disconnected. An appropriate preprocessing should then also facilitate
the recognition of real structures by splitting regions appearing connected but
belonging to different objects. Such a goal can be reached by simultaneous
smoothing and sharpening, as performed by the generalized mean curvature
flow or Perona-Malik type equations.

Fig. 1. Zebrafish embryo at the sphere (left) and shield (right) stage. The imaged
volume is represented by the volume rendering. Scalar bar: 100µm

We applied methods of nonlinear diffusion filtering to 3D zebrafish embryoge-
nesis images and evaluated their performance with respect to further reliable
subcellular structure segmentation. We built fast, accurate and uncondition-
ally stable numerical schemes based on common discretization principles (finite
volume method in space and semi-implicit method in time) for several nonlin-
ear diffusion models, including the Perona-Malik equation, and the classical,
slowed and geodesic mean curvature flow equations. The partial differential
equation (PDE) models are discussed in section 2 and numerical methods are
presented and discussed in section 3.

The semi-implicit approach together with finite volume space discretization
naturally guarantees unconditional stability and thus robustness of the meth-
ods. This property is particularly important for dealing with problems of mean
curvature flow type. In this paper we improve known finite volume schemes for
solving 3D nonlinear diffusion (Corsaro et al., 2006) by speeding up the com-
putations and keeping, or even improving, the precision and the second order
accuracy. For large scale biological and medical applications that we have in
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mind, such aspects are very important. We need precise, robust and mathe-
matically and numerically reliable methods in any part of the image processing
chain to be able to correctly interpret the biological data. For the semi-implicit
finite volume schemes which we use for computations, the numerical analysis
showing stability and consistency of discrete schemes for mean curvature flow
models (Handlovičová et al., 2003; Handlovičová & Mikula, 2008) and conver-
gence to continuous solutions and error estimates for the Perona-Malik type
equations (Mikula & Ramarosy, 2001; Handlovičová & Krivá, 2005; Drbĺıková
& Mikula, 2007a) was already done. That is a reason why we prefer (and
present in this paper) such methods against e.g. semi-implicit additive oper-
ator splitting (AOS) methods (Weickert, 1999, 1998; Bruhn et al., 2004) for
which no numerical analysis in case of nonlinear problems has been presented,
although they represent fast and popular algorithms (the convergence of the
AOS schemes to solution of the corresponding PDE is known only for the
linear heat equation (Fischer & Modersitzki, 2002)). Moreover, since we need
only a few successive-over-relaxation (SOR) iterations in the iterative linear
algebra solver to get the solution at the new filtering step, the computational
cost is comparable with additive operator splitting approach and we gain from
theoretical analysis of the schemes. Our methods are also very simply paral-
lelizable, by changing the SOR linear solver to the parallel Red-Black SOR
method (Mikula & Sarti, 2007). The computational cost can then be signifi-
cantly further reduced by straightforward parallel implementation.

In section 4, we carefully analyze the behavior of the methods when process-
ing our 3D data sets. We first apply the methods using the same setting of
parameters to learn their main properties and differences. This is achieved by
quantitatively evaluating the filtering results using the mean Hausdorff dis-
tance of isosurfaces to a gold standard and checking the number of connected
regions detected after the filtering. The optimal parameters are then chosen
according to the best combination between the minimal mean Hausdorff dis-
tances observed for a large range of isosurfaces and the number of connected
components detected in a region of interest. As preliminarily shown in Rizzi
et. al (2007), this criterion is strongly related not only to the noise removal
but also to the ability of edge preserving and enhancement. Another important
criterion for embryogenesis image filtering is the ability to split artificially con-
nected nuclei due to the physical constraints of LSM. We perform such analysis
for the studied models and proposed schemes. The section is concluded by a
comparison with two others well known nonlinear diffusion filtering models,
the nonlinear tensor diffusion and the Beltrami flow.

The nonlinear diffusion filtering proves to be efficient and robust including
a slight variation of chosen parameters. For the Perona-Malik, slowed and
geodesic mean curvature flow models, the filtering significantly reduces the
mean Hausdorff distance for a large range of isosurfaces. Such filtering always
allows the extraction of the correct number of connected components of the

4



isosurface corresponding to the number of nuclei in the data subvolume. It
turns out that the geodesic mean curvature flow has the best ability of splitting
the artificially connected subregions. Taking into account all these aspects,
the geodesic mean curvature flow (GMCF) becomes our preferable model for
filtering 3D LSM images of early stages of embryogenesis.

2 Nonlinear diffusion filters

The nonlinear diffusion filters designed in this paper are based on numerical
solution of nonlinear partial differential equations (PDEs) of a (degenerate)
parabolic type (Alvarez et al., 1993). Such filters have been largely used for
preprocessing the images prior further analysis (Sethian, 1999; Sapiro, 2001;
Osher & Fedkiw, 2003). From the mathematical point of view, the processed
input 3D image can be modeled by a real function u0(x), u0 : Ω → R, where
Ω ⊂ R

d, d = 3 represents a spatial rectangular domain. Application of a PDE
to a given image is also understood as its embedding in the so-called scale
space. The Gaussian smoothing represents the linear scale space. In the case
of nonlinear PDEs we speak about the nonlinear scale space. The axioms and
fundamental properties of such embeddings have been summarized and stud-
ied by Alvarez et al. (1993). The image multiscale analysis associates to a given
image u0(x) a family u(t, x) of smoothed-simplified images depending on an
abstract parameter t ∈ [0, T ], the scale. As has been proved in Alvarez et al.
(1993), if such a family fulfills certain basic assumptions – pyramidal structure,
regularity and local comparison principle – then u(t, x), u : [0, T ] × Ω → R,
can be represented as the unique viscosity solution (in the sense of Cran-
dall et al. (1992)) of a general second order (degenerate) parabolic partial
differential equation. This theoretical result has also an important practical
counterpart. The equations of (degenerate) parabolic type have a smoothing
property, so they are a natural tool for filtering (simplifying the image) by
removing spurious structures, e.g. noise. Moreover, the simplification should
be “image oriented”, e.g. it should recognize edges and not blur them, or it
should be related to other geometrical characteristics like curvatures of image
isosurfaces, bringing strong nonlinearity into the parabolic PDE. These prop-
erties make these methods interesting not only for important applications but
also from the mathematical and numerical point of view. And, there are still
many open questions how to push the-state-of-the-art models to the highest
computational efficiency, mathematical reliability and applicability to various
types of 3D+time image data sets.
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2.1 Perona-Malik nonlinear anisotropic diffusion

The pioneering work of Perona & Malik (1987) modifying the linear heat
equation to nonlinear diffusion preserving edge positions prompted a great
deal of interest in the application and analysis of nonlinear diffusion equations
for processing 2D and 3D images. The nonlinear PDE proposed by Catté et
al. (1992) called Perona-Malik (PM) filter is widely used

ut −∇.(g(|∇Gσ ∗ u|)∇u) = 0. (1)

From here and thereafter, u(t, x) is an unknown function representing smoothed
(filtered) image intensity defined in QT ≡ [0, T ] × Ω. The equations are ac-
companied by zero Neumann boundary conditions and the initial condition

∂u/∂ν = 0 on I × ∂Ω, (2)

u(0, x) = u0(x) in Ω, (3)

where ν is the unit normal vector to the boundary of Ω. We assume that

g : R
+
0 → R

+ is a non increasing function, (4)

g(0) = 1, and we admit g(s) → 0 for s → ∞,

Gσ ∈ C∞(Rd) is a smoothing kernel (e.g. the Gauss function), (5)

u0 ∈ L∞(Ω), i.e., is a bounded function (6)

and convolution is defined by

∇Gσ ∗ u =
∫

Rd

∇Gσ(x − ξ)ũ(ξ) dξ, (7)

where ũ is an extension of u to R
d, e.g. a reflective periodic extension of the

image (Catté et al., 1992).

The equation (1) represents a modification of the original Perona-Malik model
(Perona & Malik, 1987; Nitzberg & Shiota, 1992; Kichenassamy, 1997)

ut −∇.(g(|∇u|)∇u) = 0, (8)

called also anisotropic diffusion in the computer vision community. Perona
and Malik introduced (8) in the context of edge enhancement. From a math-
ematical point of view, for practical choices of g (e.g. g(s) = 1/(1 + Ks2),
g(s) = exp (−Ks2), K > 0), the original Perona-Malik equation can behave
locally like the backward heat equation. It is, in general, an ill-posed prob-
lem suffering from non-uniqueness and its solvability is a difficult problem
(Kichenassamy, 1997). One way to overcome this theoretical disadvantage has
been proposed by Catté et al. (1992). They introduced the convolution with
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the Gaussian kernel Gσ into the decision process for the value of the diffu-
sion coefficient. Since convolution with the Gaussian is equivalent to linear
diffusion, their model combines ideas of linear and nonlinear scale space equa-
tions. Such a slight modification made it possible to prove the existence and
uniqueness of solutions for the modified equation, and to keep the practical
advantages of the original formulation. Moreover, usage of the Gaussian gra-
dient ∇Gσ ∗ u combines the theoretical and implementation aspects of the
model. The convolution (with prescribed σ) represents a unique way to com-
pute gradients of a piecewise constant image. It also bounds (depending on
σ) the gradient of the solution as the input of the function g in the continu-
ous model – which corresponds to the situation in numerical implementations
where gradients evaluated on a discrete grid are finite. Also, the local edge
enhancement is more understandable in the presence of noise when using Gσ

regularization.

2.2 The curvature-driven nonlinear diffusion filtering equations

In rather general situations, edges correspond to specific level lines (in 2D
images) and level surfaces (in 3D images) of the image intensity function (Cao,
2004). Then the smoothing corresponds to their properly designed evolution.
The motion of isosurfaces in the normal direction depending on curvature,
namely the so-called mean curvature flow (MCF) equation in the level set
formulation

ut = |∇u|∇. (∇u/|∇u|) , (9)

is a natural choice for such geometrical filtering, and it is known as curvature
filter in computer vision community. Unlike the Lagrangian approaches to
curve and surface evolution, the level set formulation brings the smoothing of
all level sets at once. The contrast invariance of (9) has a large significance in
the axiomatic theory of the image processing and computer vision (Alvarez et
al., 1993).

A useful generalization of (9) in the context of image filtering was suggested
by Alvarez et al. (1992)

ut = g(|∇Gσ ∗ u|)|∇u|∇. (∇u/|∇u|) . (10)

Equation (10) can be used either for uniform intrinsic isosurface smoothing
(provided g ≡ 1), or for edge-preserving smoothing similarly as the equa-
tion (1). The Perona-Malik function g(s) depending on |∇Gσ ∗ u| is used to
strongly slow down the mean curvature driven motion of isosurfaces which
represent edges, and regions outside edges are smoothed by the uniform mean
curvature flow. We call this model the slowed mean curvature flow (SMCF)
filter.

7



The level set equation (9) can be generalized also in the following sense (Chen
et al., 2000)

ut = |∇u|∇. (g(|∇Gσ ∗ u|)∇u/|∇u|) (11)

which we call the geodesic mean curvature flow (GMCF) filter. If g ≡ g(|∇Gσ∗
u|) is replaced by g(|∇Gσ ∗ u0|), the equation is used in image segmentation
as originally proposed by Caselles et al (1997a,b) and Kichenassamy et al.
(1996). It has been also used for filtering 3D confocal images in Sarti et al.
(2000). Although the equations (10) and (11) look similar, their structure is
different. In contrast to (10), in (11) the weighting term g(|∇Gσ ∗u|) is inside
a divergence operator which brings new important advective phenomenon into
the model. One can see (11) rewritten into the advection-diffusion form

ut = g|∇u|∇. (∇u/|∇u|) + ∇g.∇u. (12)

The advective term given by the vector field −∇g drives all level sets to the
image edges and brings their enhancement. It is combined with smoothing
outside the edge regions. One can also see an analogy with the Perona-Malik
model that can be written as

ut = g∆u + ∇g.∇u (13)

with the Laplacian linear diffusion term in (13) replaced by the mean curvature
flow of level sets in (12). The model (10) can be seen as just a diffusive part
of the model (12), without the advection of level sets.

All level set equations mentioned above, (9), (10), (11), are regularized by the
Evans-Spruck ε-regularization (Evans & Spruck, 1992)

|∇u| ≈ |∇u|ε =
√

ε2 + |∇u|2. (14)

E.g. the ε-regularization of (11) is given by

ut =
√

ε2 + |∇u|2∇.
(

g(|∇Gσ ∗ u|)∇u/
√

ε2 + |∇u|2
)

. (15)

In all cases the parameter ε, 0 < ε ≤ 1 shifts the models from the (slowed,
geodesic) mean curvature flow of graph (ε = 1) to the mean curvature flow
of level sets (ε = 0). All curvature level set equations are accompanied by
the boundary and initial conditions (2)–(3) and the assumptions (4)–(6) are
fulfilled.
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3 Discrete filtering methods based on discretization of nonlinear

PDEs

Since 3D images are given on a discrete grid (voxel structure) and we are
interested in subsequent time steps leading to optimal filtering result, we dis-
cretized the partial differential equations in space and time to get a scheme
implemented on a (parallel) computer. In order to fulfill unconditional stabil-
ity constraint which naturally prevents the solution from spurious oscillations,
we used semi-implicit time discretizations (Kačur & Mikula, 1995), and, em-
ploying the divergence structure of the equations, we used the finite volume
method for spatial discretization, see e.g (Mikula & Ramarosy, 2001; Krivá
& Mikula, 2002; Handlovičová et al., 2003, 2002; Mikula et al., 2005) for 2D
image filtering and segmentation by the Perona-Malik and mean curvature
flow type equations. 3D semi-implicit finite volume methods for the Perona-
Malik-type problems were presented in (Sarti et al., 1999; Krivá & Mikula,
2001; Sarti et al., 2002). The first 3D computational method for the mean cur-
vature flow type problems in level set formulation based on the finite volume
discretization was developed in Corsaro et al. (2006). The scheme can be de-
rived using the so-called diamond cell strategy applied to 3D problems where
the approximation of solution gradient, which is needed in mean curvature or
Perona-Malik type problems, is consistently defined on every voxel side, see
e.g. Coudiere et al. (1999); Drbĺıková & Mikula (2007a,b), by the construc-
tion of a covolume in the form of a diamond. The scheme from Corsaro et al.
(2006) is obtained by further splitting such 3D diamond cell to four tetrahedra
and then linear representation of solution is used to approximate gradients on
the voxel side. In this paper, we introduce a new 3D finite volume scheme
given by a proper reduction of stencil of the full diamond cell method, cf. also
Mikula & Remeš́ıková (2009). This new scheme is more precise and faster (be-
cause it uses smaller stencil for evaluation of nonlinear diffusion coefficients
in every filtering step) than the one presented in Corsaro et al. (2006) and it
has the same unconditional stability property as the previous one. By those
observations, it seems optimal for our 3D nonlinear filtering problems.

3.1 Semi-implicit time discretizations

Choosing N ∈ N we obtain the length of the uniform discrete time step
τ = T/N . We replace the time derivative in the equations by the backward
difference and nonlinear terms in equations are considered at the previous time
step while linear terms are taken at the current time step. In such way we get
the semi-implicit time discretizations.
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3.1.1 Semi-implicit scheme for the regularized Perona-Malik equation (1):

Let N ∈ N, τ = T/N and σ > 0 be fixed numbers, and let u0 be given by (3).
For every n = 1, . . . , N , we look for a function un which satisfies the equation

(un − un−1)/τ −∇.(g(|∇un−1
σ |)∇un) = 0 (16)

where we use notation

un−1
σ = Gσ ∗ un−1 (17)

In discretization of the equation (9) we employ its variational structure. First
we move the term which is in front of the divergence to the time derivative,
and then we write semi-implicit discretization as follows.

3.1.2 Semi-implicit scheme for the mean curvature flow equation (9):

Let N ∈ N, τ = T/N and σ > 0 be fixed numbers, and let u0 be given by (3).
For every n = 1, . . . , N , we look for a function un which satisfies the equation

1/|∇un−1| (un − un−1)/τ −∇.
(

∇un/|∇un−1|
)

= 0. (18)

Similarly we get the semi-implicit schemes for the next two models.

3.1.3 Semi-implicit scheme for the slowed mean curvature flow equation (10):

Let N ∈ N, τ = T/N and σ > 0 be fixed numbers, and let u0 be given by (3).
For every n = 1, . . . , N , we look for a function un which satisfies the equation

1/(g(|∇un−1
σ |)|∇un−1|) (un − un−1)/τ −∇.

(

∇un/|∇un−1|
)

= 0. (19)

3.1.4 Semi-implicit scheme for the geodesic mean curvature flow equation
(11):

Let N ∈ N, τ = T/N and σ > 0 be fixed numbers, and let u0 be given by (3).
For every n = 1, . . . , N , we look for a function un which satisfies the equation

1/|∇un−1| (un − un−1)/τ −∇.
(

g(|∇un−1
σ |)∇un/|∇un−1|

)

= 0. (20)
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Fig. 2. Voxel (box by black lines), point x100
ijk (blue) on the ”east” side where the

gradient is approximated, voxel centers (red points) and points which are used for
approximation of gradient in tangential direction (violet).

3.2 Finite volume space discretizations

In order to provide spatial discretizations we employ the so-called finite volume
method. We identify the finite volume mesh Th with the voxels of 3D image
and denote each finite volume by Vijk, i = 1, . . . , N1, j = 1, . . . , N2, k =
1, . . . , N3. For each Vijk ∈ Th let Nijk denote the set of all neighboring (west,
east, south, north, bottom and top) volumes Vi+p,j+q,k+r, p, q, r ∈ {−1, 0, 1},
|p| + |q| + |r| = 1. Let m(Vijk) denote volume of Vijk. The edge connecting
center of Vijk and center of its neighbor Vi+p,j+q,k+r ∈ Nijk is denoted by σpqr

ijk

and its length by hpqr
ijk . Since our finite volume grid is regular rectangular we

will use also shorter notations h1 for hp00
ijk , p ∈ {−1, 1}, h2 for h0q0

ijk , q ∈ {−1, 1}
and h3 for h00r

ijk , r ∈ {−1, 1} representing sizes of finite volumes in x1, x2, x3

direction, respectively. The planar sides of finite volume Vijk are denoted by
epqr

ijk with area m(epqr
ijk ). The edge σpqr

ijk crosses the side epqr
ijk in the point xpqr

ijk ,
see Figure 2.

We present the idea of finite volume discretization for equation (11) which
is the most complex concerning differential terms. As it is standard in finite
volume methods (LeVeque, 2002; Eymard et al., 2000) we integrate (20) over
every finite volume Vijk. We get

∫

Vijk

1/|∇un−1| (un − un−1)/τdx =
∫

Vijk

∇.
(

g(|∇un−1
σ |)∇un/|∇un−1|

)

dx. (21)
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Using divergence theorem for the right hand side of (21) we get

∫

Vijk

∇.
(

g(|∇un−1
σ |) ∇un/|∇un−1|

)

dx =
∫

∂Vijk

g(|∇un−1
σ |)/|∇un−1 |∂un/∂νds

=
∑

|p|+|q|+|r|=1

∫

e
pqr

ijk

g(|∇un−1
σ |)/|∇un−1| ∂un/∂νds

where ν denotes the outer unit normal to the finite volume. We have got the
integral formulation of (20)

∫

Vijk

1/|∇un−1|(un − un−1)/τdx =

∑

|p|+|q|+|r|=1

∫

e
pqr

ijk

g(|∇un−1
σ |)/|∇un−1|∂un/∂νds. (22)

Taking into account a natural connection between image processing appli-
cations and finite volume methods, namely that fully discrete approximate
solution un

ijk inside finite volume at time level n represents an average value
of image intensity inside the voxel Vijk we can naturally express the left hand
side as

∫

Vijk

1/|∇un−1|(un − un−1)/τdx ≈ m(Vijk)/Q
n−1
ijk (un

ijk − un−1
ijk )/τ (23)

where Q
n−1
ijk is an average modulus of gradient in Vijk. This average will be

computed using values of the gradients on sides epqr
ijk of the finite volume, which

must be approximated on the right hand of (22) as well. On the right hand side
of (22), the normal derivative is naturally expressed by the finite difference
of neighboring voxel values divided by the distance between voxel centers.
To approximate the modulus of gradients on voxel sides, we use following
definitions for p, q, r ∈ {−1, 0, 1}, |p|+ |q| + |r| = 1,

∇p00un
ijk =(p(un

i+p,j,k − un
ijk)/h1, (u

p10
ijk − up,−1,0

ijk )/h2, (u
p01
ijk − up,0,−1

ijk )/h3),(24)

∇0q0un
ijk =((u1q0

ijk − u−1,q,0
ijk )/h1, q(u

n
i,j+q,k − un

ijk)/h2, (u
0q1
ijk − u0,q,−1

ijk )/h3),(25)

∇00run
ijk =((u10r

ijk − u−1,0,r
ijk )/h1, (u

01r
ijk − u0,−1,r

ijk )/h2, r(u
n
i,j,k+r − un

ijk)/h3),(26)

where

upq0
ijk = 1/4(un

ijk + un
i+p,j,k + un

i,j+q,k + un
i+p,j+q,k), (27)

up0r
ijk = 1/4(un

ijk + un
i+p,j,k + un

i,j,k+r + un
i+p,j,k+r), (28)

u0qr
ijk = 1/4(un

ijk + un
i,j+q,k + un

i,j,k+r + un
i,j+q,k+r) (29)
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represent the approximate values of u in the centers of voxel edges (violet
points in Figure 2) taken as an average of neighboring voxel values (red points
in Figure 2) in corresponding cutting planes (blue planes in Figure 2). It should
be noted that to avoid any confusion, in the above formulas and below we use
commas in superscripts and subscripts only when some of the p, q, r is negative
in superscript, or if there is a summation of indices in subscripts.

The formulas (24)-(26) can be understood as an approximation of the gradient
in the point xpqr

ijk (blue point in Figure 2) which is a barycenter of epqr
ijk .

Now we define

Qpqr;n−1
ijk =

√

ε2 + |∇pqrun−1
ijk |2, Q

n−1
ijk =

√

ε2 + 1/6
∑

|p|+|q|+|r|=1

|∇pqrun−1
ijk |2

as a regularized absolute value of the gradient on voxel sides, and, the regular-
ized averaged gradient inside the finite volume, respectively, computed by the
solution known from the previous time step n − 1. Similarly we compute the
Perona-Malik terms, where the function g is applied to the gradient of con-
volved solution uσ on voxel sides (or inside the voxel in case of SMCF filter),
namely we define

gpqr;n−1
ijk = g(|∇pqrun−1

σ;ijk|) , gn−1
ijk = g



1/6
∑

|p|+|q|+|r|=1

|∇pqrun−1
σ;ijk|



 .

Let us note that the convolution is realized solving numerically the linear dif-
fusion equation with the initial condition given by un−1 using one implicit time
step corresponding to the variance σ. Combining all the above considerations
we end up with the following approximation

∑

|p|+|q|+|r|=1

∫

e
pqr

ijk

g(|∇un−1
σ |)/|∇un−1|∂un/∂νds

≈
∑

|p|+|q|+|r|=1

m(epqr
ijk )gpqr;n−1

ijk /Qpqr;n−1
ijk (un

i+p,j+q,k+r − un
ijk)/h

pqr
ijk (30)

If we put together the right hand sides of (23) and (30) and consider zero
Neumann boundary conditions, we can write the following linear system of
equations which has to be solved at every discrete time step n, n = 1, . . . , N ,
where N is a total number of filtering steps:

∑

|p|+|q|+|r|≤1

Apqr
ijk un

i+p,j+q,k+r = un−1
ijk ,

i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3. (31)
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Then the discrete GMCF filter is given by solving the system (31) for
n = 1, . . . , N with coefficients defined as follows

Apqr
ijk = −(τ m(epqr

ijk ) gpqr;n−1
ijk Q

n−1
ijk )/(m(Vijk) Qpqr;n−1

ijk hpqr
ijk ),

|p| + |q| + |r| = 1 , xpqr
ijk /∈ ∂Ω

A000
ijk = 1 +

∑

|p|+|q|+|r|=1

−Apqr
ijk , Apqr

ijk = 0 , otherwise.
(32)

Similarly, the discrete MCF filter is given by (31) with coefficients

Apqr
ijk = −(τ m(epqr

ijk ) Q
n−1
ijk )/(m(Vijk) Qpqr;n−1

ijk hpqr
ijk ),

|p| + |q| + |r| = 1 , xpqr
ijk /∈ ∂Ω

A000
ijk = 1 +

∑

|p|+|q|+|r|=1

−Apqr
ijk , Apqr

ijk = 0 , otherwise.
(33)

The discrete SMCF filter is given by (31) with coefficients

Apqr
ijk = −(τ m(epqr

ijk ) gn−1
ijk Q

n−1
ijk )/(m(Vijk) Qpqr;n−1

ijk hpqr
ijk ),

|p| + |q| + |r| = 1 , xpqr
ijk /∈ ∂Ω

A000
ijk = 1 +

∑

|p|+|q|+|r|=1

−Apqr
ijk , Apqr

ijk = 0 , otherwise
(34)

and the discrete PM filter is given by (31) with coefficients

Apqr
ijk = −(τ m(epqr

ijk ) gpqr;n−1
ijk )/(m(Vijk) hpqr

ijk ),

|p| + |q| + |r| = 1 , xpqr
ijk /∈ ∂Ω

A000
ijk = 1 +

∑

|p|+|q|+|r|=1

−Apqr
ijk , Apqr

ijk = 0 , otherwise.
(35)

Since the structure of the linear system for all methods is the same and it is
suitable for using iterative solvers, we use the so-called successive over relax-
ation (SOR) method, which is a modification of the Gauss-Seidel method to
speed up its convergence, and can be written as follows

Y =











un−1
ijk −

∑

|p|+|q|+|r|=1

p,q,r∈{−1,0}

Apqr
ijk u

n (l)
i+p,j+q,k+r −

∑

|p|+|q|+|r|=1

p,q,r∈{0,1}

Apqr
ijku

n (l−1)
i+p,j+q,k+r











/A000
ijk

u
n (l)
ijk = u

n (l−1)
ijk + ω(Y − u

n (l−1)
ijk )

i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3, l = 1, 2, ..., u
n (0)
ijk = un−1

ijk ,

with (l) representing the iteration number and with a relaxation parameter
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ω ∈ (0, 2). In practice we use ω around 1.5 and stop the iterations when
relative residual drops bellow a prescribed tolerance.

For all the models and semi-implicit finite volume schemes we can state fol-
lowing existence and unconditional stability results.

Theorem. In every step n = 1, . . . , N , there exists unique solution for all
the schemes (32)-(35) for any choice of time step τ > 0 and regularization
parameter ε > 0. The unique solution can be found using Gauss-Seidel (SOR)
iterative method. Moreover, for any τ > 0, ε > 0 the following L∞ stability
estimate (minimum-maximum principle) holds

min
ijk

u0
ijk ≤ min

ijk
un

ijk ≤ max
ijk

un
ijk ≤ max

ijk
u0

ijk, 1 ≤ n ≤ N. (36)

Proof. All the matrices of the linear systems are strictly diagonally dominant
and, thus, invertible, so we can assert that the solution always exists and
is unique. In such case, it is also guaranteed that the Gauss-Seidel (SOR)
iterative method converges to this solution. The linear system (31) can be
written in the form

un
ijk +

∑

|p|+|q|+|r|=1

Apqr
ijk (un

i+p,j+q,k+r − un
ijk) = un−1

ijk (37)

and let max
ijk

un
ijk be achieved in the volume Vijk. Due to nonpositivity of all

terms Apqr
ijk and nonpositivity of the difference terms inside the summation in

(37) we have that the entire sum on the left hand side is nonnegative and
thus un

ijk ≤ un−1
ijk which is clearly less or equal to maximum at the previous

time level. Similarly we can get the relation for minimum and, recursively, we
have that all solution values computed by the schemes are inside the range
[min

ijk
u0

ijk, max
ijk

u0
ijk].

In order to complete the discussion on properties of our schemes we made a
computational comparison with the known exact solution of the mean curva-
ture flow problem (9) which is given by the function , cf. (Oberman, 2004),

u(x, y, z, t) = (x2 + y2 + z2 − 1)/4 + t. (38)

In this test, we considered the Dirichlet boundary conditions given by the exact
solution. We solved the problem in the spatial domain Ω = [−1.25, 1.25]3 and
in the time interval T = 0.16. We have taken subsequent grid refinement with
M = n3 finite volumes, n = 20, 40, 80, 160, and the voxel size is h = 2.5/n. As
usually done in testing numerical solutions of parabolic problems, the time step
τ is chosen proportionally to h2. The parameter ε = 10−6, and we measure
the errors in L∞((0, T ), L2(Ω))-norm, cf. (Deckelnick & Dziuk, 2000). The
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Table 1
Errors in L∞((0, T ), L2(Ω))-norm, EOC comparing numerical and exact solutions
(38) and CPU time for one time step.

h τ method from Corsaro et al. method (33) EOC CPU

0.125 0.016 5.23e-3 1.08e-3 0.012

0.0625 0.004 1.29e-3 2.66e-4 2.02 0.109

0.03125 0.001 3.23e-4 6.65e-5 2.00 0.8

0.015625 0.00025 8.05e-5 1.64e-5 2.02 6.7

parameter ω = 1.5 in the SOR solver. A powerful method for checking the
convergence of the method to the solution of the continuous problem is the
study of the so called experimental order of convergence (EOC). It is standard
to provide such a study in order to show reliability of the numerical method
in engineering simulations. The basic idea is the following. Let us assume that
the error of the scheme in some norm is proportional to some power of the
grid size, i.e. Error(h) = Chα, with a constant C. Then halving the grid size
we have Error(h/2) = C(h/2)α from where we can simply extract

α = log2(Error(h)/Error(h/2)). (39)

Such α gives EOC of the method and can be determined by comparing nu-
merical solutions and exact solution on subsequently refined grids.

In Table 1 we report in the 3rd column the errors given by the state-of-the-art
co-volume method from Corsaro et al. (2006) applied to (9) , in the 4th column
our new method presented in this paper, in the 5th column EOC of our new
method and in the 6th column the CPU needed for solving one time step of the
method. The resolution of the grid given by h and time step τ are given in the
1st and 2nd columns of the Table. The most important observation is that the
method is experimentally second order accurate, i.e. α = 2. Our new method
gives approximately 5 times smaller error than the method from Corsaro et
al. (2006). Concerning computational efficiency, solving nonlinear diffusion
problems, a relatively large portion of CPU time at every time step is related to
the evaluation of diffusion coefficients on voxel sides. On the fine grid with n =
160, cf. Table 1, this step takes 1.49s for our new method while it last 3.53s for
the method from Corsaro et al. (2006). Since the solution of the linear system
takes approximately same time for both methods, this difference represents a
speed-up of the new method. We also get a nice scaling, approximately by 8,
of the CPU time in one time step. Since the number of unknowns is increasing
by this factor 8 in every refinement step, the computational complexity of the
method is growing linearly. Since for filtering we always use just a few discrete
time steps, our method is of order O(M) where M is the number of voxels.
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4 Discussion on computational results

Fig. 3. The original noisy data in volume rendering representation. The subvolume
selected to construct the gold standard is shown in the small white bounding box.
This subvolume consists of 71x100x28 voxels. On the top-right is the image his-
togram, the gray bar below the histogram shows the range of values between 25 and
30. For an isosurface representation of various ROI in this data set we refer also to
Figures 11-12.

In this section we show and discuss the results obtained applying the methods
described above to 3D+time images of Danio Rerio embryo nuclei. The data
has been acquired using a Confocal Microscope Leica SP2 AOBS (Megason
& Fraser, 2003). The whole sequence consists in 49 time steps, with one 3D
image completed every 5 minutes and has size 512x512x30 voxels. The dimen-
sion of each voxel is 0.58x0.58x1.05 µ3. The data was acquired for four hours
(25oC under the microscope), starting at 3,5 hours post fertilization (develop-
ment at 28oC) (Kimmel et al., 1995). In the entire period of development, the
whole embryo looks like a sphere with a diameter of 740 µ. The images have a
physical dimension of 300 x 300 x 31 µ3 and cover only the top part of the em-
bryo, as shown in Figure 1. The data should be preprocessed with appropriate
filtering procedures for further image analysis in order to reconstruct the cell
lineage tree through the extraction of the approximate cell center positions
(Drbĺıková et al., 2007; Frolkovič et al., 2007; Melani al., 2007), cell segmenta-
tion (Drbĺıková et al., 2007; Frolkovič et al., 2007; Zanella et al., 2007, 2009),
velocity field extraction and cell tracking (Melani al., 2007). The filtering step
should remove the noise and smooth small variations in image intensity while
maintaining a good definition of image features and keeping useful features
such as edges. The performances of our filtering methods are evaluated by
visual inspection and quantitative analysis as well as by their computational
cost. The quantitative analysis consists in calculating the mean Hausdorff
distance between a gold standard, obtained by manual segmentation, and iso-
surfaces of original and filtered data chosen around the nuclei boundaries. As
previously introduced in Rizzi et. al (2007), this method allows to evaluate the
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ability of smoothing and sharpening of the filtering models. We also compare
the number of nuclei found in the manually segmented region of interest with
the connected components of the isosurface detected in the same ROI before
and after the filtering. Our analysis continues by quantifying the ability of
tested methods to divide the very close nuclei, artificially connected because
of the acquisition error intrinsically linked to physics of the image acquisition
system. In this section, we first introduce the gold standard and the mean
Hausdorff distance. We then discuss the behavior of all the methods, first us-
ing the same values of parameters adopting the multiscale analysis point of
view. The mean Hausdorff distance information, combined with the analysis
of connected components, is then used to choose optimal values of parameters
for the methods. The related results are afterwards discussed and compared
and even improved by a splitting analysis. The section ends with a comparison
with the nonlinear tensor diffusion and the Beltrami flow methods.

4.1 The mean Hausdorff distance and the gold standard

Let A = {a1, . . . , ap} and B = {b1, . . . , bq} denote two finite point sets, the
mean Hausdorff distance is defined as (Zhang et al., 2005)

MHD(A, B) = max (mhd(A, B), mhd(B, A))

where

mhd(A, B) = 1/p
p

∑

i=1

min
b∈B

‖ai − b‖

is called mean directed Hausdorff distance and ‖ · ‖ is some underlying norm
(usually Euclidean) on the points of sets A, B. The mhd(B, A) is defined sim-
ilarly. The mean Hausdorff distance is widely used to measure the mismatch
between two point sets, see e.g. (Huttenlocher et al., 1993; Zhang et al., 2005),
usually to perform an image matching. In our case the sets A and B are given
by discrete points that form the surface of the gold standard and an isosurface
either in original or in filtered volume.

To quantitatively compare the models, paying particular attention to the abil-
ity of the methods to preserve (or even enhance) the edges of objects in 3D
images, we selected a region of interest in the first unfiltered frame of the time
sequence and we manually segmented a gold standard, as shown in Figures
3 and 4. We then calculated the mean Hausdorff distance between the man-
ually segmented nuclei surfaces in the gold standard and the corresponding
nuclei isosurfaces in the original and filtered data, respectively. Observing the
image histogram and using visual inspection we estimated the levels of inten-
sity between 25 and 30 as the closest to the ”real” boundaries of nuclei. In
order to evaluate the behavior of the denoising methods in this interval of
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gray levels, we selected isosurface levels around these values, from 15 to 45
with step 5. For every such isosurface either in original or in filtered data,
we selected a nucleus surface in the gold standard, found the corresponding
nucleus surface, and calculated their mean Hausdorff distance. At the end we
averaged the mean Hausdorff distances over all nuclei in the subvolume. To
check the matching between the gold standard and raw or filtered data we vi-
sualized their overlapping within their bounding boxes, see Figure 5. In order
to take into account not only the mean Hausdorff distance which is evaluated
just for one connected component of isosurface level set (the largest one), we
also counted the total number of regions (connected components of isosurface)

(a) (b)

Fig. 4. Comparison between the selected ROI of original data and its manual seg-
mentation, chosen as gols standard. (a) Isosurface 25 in the ROI of original data
depicted in blue. A red bounding box surrounds every object (nuclei and noise) in-
side the region. (b) Gold standard, represented in white. Every nucleus is surrounded
by a white bounding box

Fig. 5. Comparison between the selected ROI of original data and the gold stan-
dard. The plot of 11 nuclei of the gold standard (white) overlaps the corresponding
component of isosurface 25 in the original data set (blue), for which we compute
the mean Hausdorff distances. Each nucleus, both in original data and in the gold
standard, is sourrounded by its bounding box (red and white, respectively). Small
regions due to noise are not included in the computation of the mean Hausdorff
distance and are not represented.
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found in the subvolume and compared this number with the number of nuclei
in the gold standard. This enabled us to evaluate the ability of our methods
of removing the spurious, noisy structures from the image.

4.2 Comparison of the filtering models using the same settings of parameters

To see the basic differences between the models applied to our data set, we let
the algorithms run for the same time with the same setting of parameters. We
use the function g(s) = 1/(1 + Ks2), K = 1, hpqr

ijk = h = 0.01, τ = 0.0001 (i.e.
we use relation τ ≈ h2 which is natural for numerical solution to parabolic
equations), σ = 0.0001 (i.e. the amount of presmoothing due to convolution
is proportional to time step) and we check the solutions after 5, 10 and 15
time steps. Let us note that m(epqr

ijk ) = h2 and m(V pqr
ijk ) = h3 in the scheme

coefficients.
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Fig. 6. A 2D cut of original data and the cut of isosurface of value
28 of original and filtered data using same setting of filtering parameters
(K = 1, σ = 0.0001, τ = 0.0001) after 5 (a), 10 (b) and 15 (c) time steps.
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Fig. 7. Graphs of the original and filtered image intensities in a neighborhood of
one of the nuclei from Figure 6 after 5 (a), 10 (b) and 15 (c) time steps.

Figure 6 shows three nuclei chosen to compare the behavior of the models. A
cut of original data is superimposed on the cut of isosurface 28 of the original
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Fig. 8. Graphs of the mean Hausdorff distances for the original and filtered data
using the same settings of parameters (K = 1, σ = 0.0001, τ = 0.0001) after 5, 10
and 15 time steps (from top to bottom).

and data filtered by different methods. Two of the nuclei have a relatively
regular shape, while the outline of the third, bottom-right one, is jagged.
Figure 7 represents the graphs of the image intensity in a line neighborhood
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of nucleus that are useful to evaluate ability of the methods to smooth the
small variations in the image intensity and preserve or even enhance the edge
information.

Table 2
The mean Hausdorff distances and their standard deviation for the original data.

Values are in µm.

Isosurface mean Hausdorff distance

15 0.506 ± 0.085

20 0.394 ± 0.063

25 0.352 ± 0.025

30 0.350 ± 0.035

35 0.377 ± 0.062

40 0.422 ± 0.088

45 0.476 ± 0.112

We also present in Table 4 the number of detected regions, and in Tables 2
and 3 and Figure 8 the values and graphs of the mean Hausdorff distances
to the gold standard for every selected isosurface value. In Tables 2 and 3 we
give also a standard deviation of the mean Hausdorff distance averaged over
11 nuclei in the gold standard. From Table 2 we can easily conclude that our
choice of isosurface value 28 as the closest to the ”real” boundaries of nuclei
was reasonable. In the original data, the isosurfaces with values between 25
and 30 give the smallest (and approximately the same) mean Hausdorff dis-
tance to the gold standard. This fact is expressed in the almost flat graph of
the mean Hausdorff distance, see Figure 8, in this interval. It is worth noting
that the interval of the flatness for original data is very narrow (in contrast to
the graphs using PM, SMCF and GMCF filtering results) which means that
correct representation of nuclei in noisy data is very sensitive to the choice
of correct isosurface level. Now, let us discuss in detail the behavior of the
filtering methods. Obviously, the mean curvature flow needs a smaller time
step than the other methods. In Figure 6, its contour line 28, plotted in green,
is entirely inside the nuclei with regular shape already after 5 time steps, and
it is completely absent in the third bottom-right one. After 15 time steps this
isoline disappears in all three nuclei. Figure 7 illustrates reduction of image in-
tensity by this model, and Tables 3 and 4 show that after 10 or 15 time steps
the Hausdorff distances are really large and many isosurfaces which should
represent nuclei are completely lost. This was also the reason not to include
the graph for MCF in Figure 8. The results of the Perona-Malik model and
the slowed mean curvature flow look very similar. Their level lines are often
overlapped and both are able to remove the spurious regions very well. Their
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Table 3
The mean Hausdorff distances and their standard deviation in µm for the data
filtered using the same settings of parameters after 5,10 and 15 time steps (K =
1, σ = 0.0001, τ = 0.0001).

The mean Hausdorff distances after 5 time steps

Isosurface MCF SMCF PM GMCF

15 0.357 ± 0.058 0.432 ± 0.091 0.398 ± 0.085 0.387 ±0.088

20 0.461 ± 0.120 0.344 ± 0.060 0.322 ± 0.060 0.324 ±0.053

25 0.594 ± 0.170 0.311 ± 0.028 0.295 ± 0.028 0.307 ±0.026

30 0.738 ± 0.203 0.308 ± 0.034 0.296 ± 0.030 0.310 ±0.040

35 0.887 ± 0.229 0.331 ± 0.064 0.322 ± 0.063 0.335 ±0.069

40 1.043 ± 0.253 0.371 ± 0.087 0.360 ± 0.084 0.378 ±0.092

45 1.207 ± 0.277 0.424 ± 0.106 0.410 ± 0.099 0.431 ±0.108

The mean Hausdorff distances after 10 time steps

Isosurface MCF SMCF PM GMCF

15 0.841 ± 0.258 0.417 ± 0.106 0.390 ± 0.096 0.336 ± 0.091

20 1.084 ± 0.323 0.320 ± 0.069 0.308 ± 0.068 0.296 ± 0.052

25 1.323 ± 0.374 0.286 ± 0.030 0.280 ± 0.028 0.287 ± 0.031

30 1.567 ± 0.423 0.288 ± 0.038 0.286 ± 0.031 0.302 ± 0.054

35 1.822 ± 0.478 0.316 ± 0.065 0.311 ± 0.064 0.334 ± 0.077

40 2.097 ± 0.547 0.357 ± 0.085 0.352 ± 0.084 0.374 ± 0.090

45 2.407 ± 0.618 0.410 ± 0.096 0.403 ± 0.095 0.426 ± 0.100

The mean Hausdorff distances after 15 time steps

Isosurface MCF SMCF PM GMCF

15 1.622 ± 0.558 0.411 ± 0.117 0.386 ± 0.102 0.308 ± 0.087

20 2.034 ± 0.679 0.309 ± 0.078 0.305 ± 0.073 0.282 ± 0.049

25 2.490 ± 0.848 0.273 ± 0.039 0.278 ± 0.029 0.283 ± 0.039

30 3.204 ± 1.208 0.276 ± 0.043 0.284 ± 0.034 0.308 ± 0.060

35 - 0.308 ± 0.067 0.313 ± 0.065 0.344 ± 0.078

40 - 0.358 ± 0.078 0.359 ± 0.084 0.392 ± 0.087

45 - 0.418 ± 0.090 0.414 ± 0.098 0.449 ± 0.096
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Table 4
The number of regions for different isosurfaces found in the original and filtered
data using the same settings of parameters (K = 1, σ = 0.0001, τ = 0.0001).

Regions found after 5 time steps

Isosurface original MCF SMCF PM GMCF

15 1690 14 21 12 17

20 756 11 16 11 17

25 342 11 17 13 14

30 171 11 16 13 15

35 129 11 19 16 18

40 100 11 17 16 16

45 97 11 23 18 21

Regions found after 10 time steps

Isosurface original MCF SMCF PM GMCF

15 1690 11 11 11 11

20 756 11 11 11 11

25 342 11 11 11 11

30 171 11 11 11 12

35 129 11 11 12 11

40 100 11 11 12 11

45 97 12 14 12 13

Regions found after 15 time steps

Isosurface original MCF SMCF PM GMCF

15 1690 11 11 11 11

20 756 11 11 11 11

25 342 12 11 11 11

30 171 13 11 11 11

35 129 7 11 11 11

40 100 5 11 11 11

45 97 5 11 11 12
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graphs of mean Hausdorff distances are almost parallel to the graph of orig-
inal data, meaning that both methods are able to smooth the small image
intensity variations preserving at the same time a good definition of edges.
Nevertheless, the Perona-Malik model shows a slightly stronger capability of
smoothing and sharpening. Observing carefully Figure 6, we can see that for
the convex parts of image contours, the blue line (PM result) is inside the
magenta one (SMCF result), while for the concave parts, the behavior is op-
posite. The slight edge sharpening can be deduced observing the graphs and
the values of the mean Hausdorff distances. After 5 time steps, the shapes of
the graphs looks very similar, although the SMCF graph is completely above
the PM result. Increasing the time, the graph of the SMCF approaches that of
PM, but their behavior is different. After 15 time steps the PM graph is less
convex and slightly more flat for lower isosurfaces, meaning that the Perona-
Malik method tends to accumulate more the image gray levels in that range of
image intensity. This kind of behavior is dominant in the geodesic mean cur-
vature flow model, that completely flattens the region of a low intensity, thus
enhancing the edge positions around nuclei. In Figure 7, the red line repre-
senting GMCF is totally flat outside the nucleus, and among all the methods,
it has the lowest values near the nucleus boundaries. The level lines reproduce
very tightly the shape of nuclei, see Figure 6, but they are always the most in-
ternal. The graph of the mean Hausdorff distance is completely different from
the others. It is almost flat up to the isosurface value 25, then it is parallel to
the graph of the original data. We can deduce that this method changes the
original distribution of the image gray levels producing an image sharpening,
although slightly shrinking the objects. To conclude this subsection, we also
observe that the GMCF, similarly to PM and SMCF models, is capable of
removing the spurious regions very well, cf. Table 4.

4.3 Comparison of the filtering methods with the optimally chosen parameters

By extensively testing computational methods for the studied PDE models,
we decided to choose as the optimal parameters the ones giving the lowest and
the flattest graph of the mean Hausdorff distance. We paid attention not only
to the minimal distance between the best isosurface and the gold standard but
also to the whole range of distances around the best value. In all the methods
we use h = 0.01 and the optimally chosen parameters are listed in Table 5.

For the GMCF filter we used as optimal parameters those chosen in the previ-
ous subsection taking number N of time steps equal to 15. Indeed, we observed
that reducing σ gives a similar graph of MHD, but with bigger distances, while
increasing it produces loss of information. A smaller value of K further flat-
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Table 5
The optimal parameters for different models. In the last row we present the com-
putational times for such settings of parameters.

MCF SMCF PM GMCF

τ 0.00001 0.0001 0.0001 0.0001

σ - 0.00005 0.00005 0.0001

K - 0.5 0.5 1

N 5 10 10 15

CPU time 95.97 s 263.22 s 119.44 s 386.54 s
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Fig. 9. A 2D cut of original data with cut of the isosurface 28 of original and filtered
data using the optimal values of parameters (cf. Table 5).

tens the graph for low isosurface levels but increases the slope of the others, a
bigger value of K makes the graph more convex. Since the smoothing effect of
MCF method is very fast, we use ten times smaller discrete time step τ and we
choose N = 5. The SMCF and PM methods show a very good behavior after
10 time steps, and we found useful to slightly modify the values of K and σ.
The new values and graphs of the mean Hausdorff distances are presented in
Table 6 and in Figure 10. We also evaluated the methods by visual inspection,
cf. Figures 9, 11 and 12 .

First of all, the mean curvature flow is the method that gives the minimum
value of the mean Hausdorff distance for the isosurface value 25, cf. Table 6.
It has the highest smoothing capability in a small range of gray levels around
this value, as also observed form the smooth shape of nuclei in Figures 11 and
12. However, from the strongly convex graph in Figure 10, it is easy to see
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Fig. 10. Graphs of the mean Hausdorff distances for the original data and data
filtered using the optimal values of parameters (cf. Table 5).

Table 6
The mean Hausdorff distances and their standard deviation in µm for the filtered
data using the optimal values of parameters (cf. Table 5).

Mean Hausdorff Distance

Isosurface MCF SMCF PM GMCF

15 0.394 ± 0.100 0.411 ± 0.107 0.369 ± 0.089 0.308 ± 0.087

20 0.271 ± 0.072 0.302 ± 0.072 0.292 ± 0.054 0.282 ± 0.049

25 0.238 ± 0.026 0.265 ± 0.033 0.272 ± 0.020 0.283 ± 0.039

30 0.262 ± 0.048 0.274 ± 0.039 0.284 ± 0.042 0.308 ± 0.060

35 0.319 ± 0.086 0.313 ± 0.068 0.318 ± 0.070 0.344 ± 0.078

40 0.393 ± 0.106 0.364 ± 0.083 0.367 ± 0.086 0.392 ± 0.087

45 0.473 ± 0.117 0.429 ± 0.095 0.424 ± 0.095 0.449 ± 0.096

that this method completely changes the distribution of the image gray levels
thus modifying the shape of the objects. Without using an edge information,
the method moves the level sets of the image with a speed given by their
curvature, smoothing fast the regions near the nuclei boundaries that should
be preserved and smoothing slowly the regions with low intensity gradient
that should be removed from the image. Consequently, Table 7 shows that this
method preserves spurious regions characterized by a low level of brightness.

Similarly to the previous subsection, analyzing the graphs of the mean Haus-
dorff distances, we conclude that the Perona-Malik method produces a little
sharpening in a similar way as the geodesic curvature method, while the slowed
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Table 7
The number of regions found in the original and filtered data using the optimal
choice of parameters (cf. Table 5).

Regions found using the optimal values of parameters

Isosurface original MCF SMCF PM GMCF

15 1690 19 11 11 11

20 756 12 11 11 11

25 342 11 11 11 11

30 171 11 11 11 11

35 129 11 11 11 11

40 100 11 11 11 11

45 97 11 11 11 12

mean curvature flow performs a pure edge preserving smoothing. Such behav-
ior can be observed also by visual inspection. Figure 12 shows, on the left, a
detail of the nuclei very close in the original data. While the sharpening is com-
pletely absent in the results obtained using the slowed mean curvature flow,
it increases from the Perona-Malik to the geodesic curvature method, which
is able to correctly divide the nuclei. In next section we analyze thoroughly
and quantitatively evaluate this particular aspect.

4.4 Comparison of filtering models using their ability of splitting adjacent
nuclei

In the previous sections we showed that the geodesic mean curvature flow is the
method that best enhances the nuclei edges. The image gray levels outside the
nuclei boundaries are smoothed while those around the boundaries accumulate
to form a step between the outward and the inward part of every nucleus.
Such a behavior allows to distinguish between two (or more) regions that are
connected due to acquisition errors intrinsically linked to LSM. In order to
quantify this ability of splitting the connected nuclei, we first filtered with the
parameters shown in Table 5 a selected volume in the time lapse series. Then
we considered the isosurface 28 (see section 4.2) of original and filtered data for
nuclei representation. A manual counting of connected components in original
data revealed that 45 nuclei are connected with another nucleus, giving rise to
22 connected regions (that is, 42 nuclei are joint two by two to form 21 regions
and three nuclei are joint to form one region). Every double or triple region has
been checked after the filtering. While the geodesic curvature flow is able to
divide half of the connected regions, the Perona-Malik method performs only
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(a) Original data (b) Mean curvature flow

(c) Slowed mean curvature flow (d) Perona-Malik

(e) Geodesic mean curvature flow

Fig. 11. Isosurface representation of original (a) and filtered data (by isosurface
value 28) using optimal parameters (b-e). Parameters are given in Table 5.

four divisions, the mean curvature flow two and the slowed mean curvature
flow only one. An example is shown in Figure 12 and results are summarized
in Table 8.

4.5 Comparison with the tensor nonlinear diffusion and Beltrami flow

In the previous sections we analyzed carefully the behavior of specific nonlin-
ear diffusion models applied to our data. The GMCF filter showed the best
properties. In this section we compare such method with other well known
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Table 8
The number of connected regions found in original and filtered data using the op-
timal choice of parameters , as given in Table 5.

Connected regions number

Original MCF SMCF PM GMCF

22 20 21 18 11

(a) Original data (b) Mean curvature flow

(c) Slowed mean curvature flow (d) Perona-Malik

(e) Geodesic mean curvature flow

Fig. 12. Isosurface representation of original (a) and filtered data (by isosurface
value 28) using optimal parameters,as shown in Table 5 (b-e). The Geodesic mean
curvature flow is able to distinguish between two very close nuclei.
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nonlinear diffusion filtering methods, the tensor nonlinear diffusion (TND)
and the Beltrami flow method. In both cases we evaluate the results using
the criteria previously introduced, based on visual inspection and quantita-
tive analysis. In particular the parameters have been still chosen according to
the best combination between the graph of MHD and the number of regions
detected. The results are compared with those obtained with GMCF.

The tensor nonlinear diffusion (TND), introduced in Weickert (1999), is given
by the equation

ut −∇ · (D∇u) = 0 (40)

where D is a diffusion tensor (matrix). This model is used when a strong
smoothing is desirable in a preferred direction, e.g. along 2D edge surfaces in
3D images and a low smoothing is expected in the perpendicular direction.
If the diffusion tensor D is properly designed, the model has the property to
improve the spatial coherence of structures, cf. Weickert (1999); Drbĺıková &
Mikula (2007a,b). For the tests we use 3D finite volume method for TND,
based on the similar discretization principles as described in this paper, which
was introduced in Drbĺıková & Mikula (2007b). We discuss below how TND
behaves for the nuclei images in 3D embryogenesis data sets. By an extensive
testing we found the optimal TND parameters with respect to the Hausdorff
distance. They are given by 3 filtering steps with a time step 10−5 and other
parameters as follows: σ = 10−5, ρ = 5 · 10−3, α = 10−3, where additionally to
our models, ρ represents a spatial Gaussian smoothing of coherence directions
and α gives the a diffusion in a perpendicular direction, cf. Drbĺıková & Mikula
(2007b).

Examining the graph of the MHD in Figure 13 we first observe that the dis-
tances are strongly reduced in the range between isosurfaces 25 and 45, while
for smaller isosurface values the distances are bigger that those of original
data. The graph shape is generally strongly convex and shows some flatness
only between isosurfaces 30 and 35. The behavior is then excellent in the re-
gions inside nuclei, after isosurface 30, but is poor outside them. The method
performs a very good smoothing but does not perform any sharpening. Fur-
thermore it tends to enlarge the nuclei. When a surface is jagged (e.g. thinking
in 1D, given by a sequence of peaks and valleys, as shown in Figure 14), it
tends to fill the valleys more than to smooth and lower the peaks. As a con-
sequence it does not offer any ability of splitting adjacent nuclei. None of the
22 connected regions in the original data was split after the filtering and the
number of connected regions even increased to 29. The smoothed shape of
nuclei surface after the filtering and the small increasing of volume can be
observed in Figure 15.

The Beltrami flow method (Sochen et al., 1995; Kimmel et al., 1996) considers
the images as embedding maps flowing towards minimal surfaces. The motion
equation can be explicitly given, in the three dimensional case, by the following
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expression

ut = H/
√

h (41)

where H is the mean curvature of the graph of subsequently smoothed image
intensity u and h = 1 + u2

x + u2
y + u2

z. The method performs a selective mean
curvature filtering for the image graph, which is smoothed only in the direction
given by the last component of the embedding space, the image intensity. The
Beltrami flow has a wide and rigorous mathematical treatment showing that
it is a solution of a minimization problem with a particular choice of image
metric. For further details we refer the reader e.g to Sochen et al. (1995, 2003).
Since the equation (41) can be written in the form ut = 1

h

√
hH , we can see

that its structure is similar to (10) with the edge indicator function g = 1/h.
Then one can easily derive semi-implicit finite volume scheme, cf. (19) and
(34), which is used for our tests. The best results with respect to Hausdorff
distance we found for the Beltrami flow using 15 scale steps with a time step
0.0001 and they are summarized in Figures 13,14,15 and Tables 9,10.

The shape of the MHD reveals that the method is edge-preserving and even
performs a small sharpening. The curve of the graph in the range between
isosurfaces 15-30 is almost parallel to the curve related to the original data.
The range 20-30 is almost flat and the MHD between filtered and original data
for isosurface 15 is bigger than for isosurface 20. Inside the nuclei the Beltrami
flow performs a pure edge-preserving smoothing. Such behavior is confirmed
by our splitting analysis, as on the 22 connected regions in the original data
only one is split after the filtering, in a similar way as PM and SMCF methods.
Despite this, the method does not seem to be able to distinguish between the
biggest regions representing the nuclei and the smallest corresponding to the
noise, as shown in Table 10. Moreover, observing Figure 14, it can be seen
how the method well reproduces the shape of internal regions but cannot
easily distinguish between regions of low and mean intensity. As a further
consequence the isosurface shape shown in Figure 15 appears more irregular
than in the case of other filtering methods. We tested that increasing the
number of scale steps in order to detect the correct number of regions produces
a very convex MHD graph and the method loses its ability to preserve-enhance
the edges. In particular, the MHD for low isosurfaces is bigger than for the
original data. To conclude this section, we observed that considering a modified
edge indicator g = 1/h in which the modulus of squared image gradient |∇u|2
is convolved with a Gaussian kernel with small variance (σ = 0.00005), the
basic properties of the Beltrami flow are preserved but the ability to detect
the correct number of regions is improved. Related results are summarized in
Figures 16, 17, 18 and Tables 11, 12.
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Fig. 13. Graph of the MHD comparing original, geodesic mean curvature flow, tensor
diffusion and Beltrami flow filtered data.

Table 9
Comparison between geodesic mean curvature flow, tensor diffusion and Beltrami
flow. Error expressed as the mean Hausdorff distance with its standard deviation.
Distances in µm for original and filtered data.

Mean Hausdorff Distance

Isosurface Original GMCF TND BELTRAMI

15 0.506 ± 0.085 0.308 ± 0.087 0.594 ± 0.077 0.403 ± 0.086

20 0.394 ± 0.063 0.282 ± 0.049 0.418 ± 0.079 0.313 ± 0.050

25 0.352 ± 0.025 0.283 ± 0.039 0.297 ± 0.067 0.290 ± 0.023

30 0.350 ± 0.035 0.308 ± 0.060 0.240 ± 0.031 0.300 ± 0.037

35 0.377 ± 0.062 0.344 ± 0.078 0.248 ± 0.036 0.331 ± 0.065

40 0.422 ± 0.088 0.392 ± 0.087 0.299 ± 0.074 0.373 ± 0.088

45 0.476 ± 0.112 0.449 ± 0.096 0.376 ± 0.096 0.430 ± 0.101

5 Conclusions

We applied the methods of nonlinear diffusion filtering to 3D LSM images of
cell nuclei during zebrafish embryogenesis, characterized by a low resolution
in z-direction (deepness) giving rise to partially overlapped regions. Our goal
was to identify the best filtering method and improve its numerical scheme
in order to facilitate further image processing procedures, as nuclei identifica-
tion, segmentation and tracking. To that aim we first improved known finite
volume schemes for solving the regularized Perona-Malik equation, and clas-
sical, slowed and geodesic mean curvature flow equations, by speeding up the
computations and improving accuracy. Then we studied the behavior of all the
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Fig. 14. Plot of original and filtered (gmcf, tnd and Beltrami) image intensities in
a neighborhood of one of the nuclei from Figure 6.

(a) Original (b) Geodesic mean curvature flow

(c) Tensor diffusion (d) Beltrami flow

Fig. 15. Isosurface of original (a) and filtered data (by isosurface value 28) compar-
ing the geodesic mean curvature flow, the tensor diffusion and the Beltrami flow
methods (b-d). The point of view is the same as in Figure 12.
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Table 10
The number of regions found in the original and filtered data comparing geodesic
mean curvature flow, tensor diffusion and Beltrami flow.

Regions found

Isosurface Original GMCF TND BELTRAMI

15 1690 11 11 15

20 756 11 11 14

25 342 11 11 16

30 171 11 11 20

35 129 11 11 24

40 100 11 11 28

45 97 12 11 35
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Fig. 16. Graph of the MHD comparing results obtained by Beltrami filtering with
and without a Gaussian convolution.

methods and evaluated their performances both visually and quantitatively.
The quantitative analysis has been carried out first by calculating the mean
Hausdorff distance of isosurfaces to a gold standard and by quantifying the
number of regions detected applying every method, then by counting the num-
ber of originally connected regions that can be split with the filtering step.
Such ability of splitting is essential to assure, in this particular typology of
data, a correct nuclei detection in subsequent image processing operations.

We showed that our numerical schemes, based on common discretization prin-
ciples (finite volume method in space and semi implicit method in time) are
fast, accurate and unconditionally stable. The unconditional stability provides
the robustness of methods and is especially important for solving the mean
curvature flow like problems. We proved that the nonlinear diffusion filter-
ing is efficient and robust in increasing the range of isosurfaces suitable for
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Fig. 17. Graphs of filtered image intensities in a neighborhood of one of the nuclei
from Figure 6 to compare the Beltrami flow with and without a Gaussian convolu-
tion.

Table 11
Comparison of the Beltrami flow with and without a Gaussian convolution. Error
expressed as the mean Hausdorff distance with its standard deviation. Distances in
µm for original and filtered data.

Mean Hausdorff Distance

Isosurface Original BELTRAMI conv.BELTRAMI

15 0.506 ± 0.085 0.403 ± 0.086 0.413 ± 0.106

20 0.394 ± 0.063 0.313 ± 0.050 0.315 ± 0.067

25 0.352 ± 0.025 0.290 ± 0.023 0.282 ± 0.029

30 0.350 ± 0.035 0.300 ± 0.037 0.285 ± 0.037

35 0.377 ± 0.062 0.331 ± 0.065 0.315 ± 0.065

40 0.422 ± 0.088 0.373 ± 0.088 0.355 ± 0.085

45 0.476 ± 0.112 0.430 ± 0.101 0.407 ± 0.098

localizing the nuclei. Thanks to the introduction of the use of the mean Haus-
dorff distance to evaluate the behavior of filtering methods around the object
boundaries, we quantified the smoothing and sharpening capabilities of every
model. We showed that all the analyzed methods are able to reduce the noise,
smooth small variations in image intensity of the original data and remove the
spurious regions. For the Perona-Malik, slowed and geodesic mean curvature
flow models, the filtering reduces the mean Hausdorff distance significantly
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Table 12
The number of regions found in the original and filtered data comparing Beltrami
flow with and without a Gaussian convolution.

Regions found

Isosurface Original BELTRAMI conv.BELTRAMI

15 1690 15 11

20 756 14 11

25 342 16 11

30 171 20 11

35 129 24 11

40 100 28 11

45 97 35 12

(a) Original (b) Beltrami flow

(c) Beltrami with convolution

Fig. 18. Isosurface of original (a) and filtered data (by isosurface value 28) comparing
Beltrami flow with and without a Gaussian convolution. The point of view is the
same as in Figures 12 and 15.

for a large range of isosurfaces, and it always extracts the correct number of
connected components of isosurface corresponding to the number of nuclei in
a tested subvolume of data. The geodesic mean curvature flow model shows
also the capability of sharpening, flattening the graph of the mean Hausdorff
distance on the boundaries of imaged nuclei. Such behavior produces an other
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very welcome effect, that is the ability of splitting the artificially connected
subregions, almost absent in the other evaluated models. These results iden-
tify the geodesic mean curvature flow as the best suited for this particular
application. Our choice is also supported by a qualitative and quantitative
comparison with two other well known nonlinear diffusion filtering methods,
the nonlinear tensor diffusion and the Beltrami flow. Both of them do not
show characteristics useful to treat the LSM nuclei data.
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& Schnörr, C., High performance cluster computing with 3D nonlinear dif-
fusion filters, Real-Time Imaging, 2004, 10, 41-51.

Cao F., Application of the Gestalt principles to detection of good continuations
and corners in image level lines, Computing and Visualization in Science,
2004, 7, 3-13.
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Handlovičová, A., Mikula, K., & Sgallari, F., Semi-implicit complementary
volume scheme for solving level set like equations in image processing and

39



curve evolution, Numer. Math., 2003, 93, 675-695.
Huttenlocher, D.P., Klanderman, G.A., & Rucklidge, W.J., Comparing Images

using the Hausdorff Distance, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1993, 15 (9) 850-863.
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Krivá, Z., & Mikula, K., An adaptive finite volume scheme for solving nonlin-
ear diffusion equations in image processing, J. Visual Communication and
Image Representation, 2002, 13, 22-35.

LeVeque, R.J., Finite Volume Methods for Hyperbolic Problems, Cambridge
Texts in Applied Mathematics, Cambridge University Press, 2002.

Lin, G. et al., Hierarchical model-based merging of multiple fragments for
improved three-dimensional segmentation of nuclei, Cytometry, 2005, 63A,
20-33.

Megason, S., & Fraser, S., Digitizing life at the level of the cell: highperfor-
mance laser -scanning microscopy and image analysis for in toto imaging of
development, Mech. Dev., 2003, 120, 1407-1420.

Melani, C., Lombardot, B., Campana, M., Rizzi, B., Zanella, C., Bourgine,
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