
Computers and Mathematics with Applications 156 (2024) 74–86

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Laplacian regularized eikonal equation with Soner boundary condition on

polyhedral meshes ✩

Jooyoung Hahn ∗, Karol Mikula, Peter Frolkovič

Department of Mathematics and Descriptive Geometry, Slovak University of Technology, Radlinskeho 11, 810 05 Bratislava, Slovakia

A R T I C L E I N F O A B S T R A C T

Keywords:

Vanishing viscosity method

Eikonal equation

Soner boundary condition

Laplacian regularizer

Cell-centered finite volume method

Polyhedral meshes

In this paper, we propose a numerical algorithm based on a cell-centered finite volume method to compute
a distance from given objects on a three-dimensional computational domain discretized by polyhedral cells.
Inspired by the vanishing viscosity method, a Laplacian regularized eikonal equation is solved and the
Soner boundary condition is applied to the boundary of the domain to avoid a non-viscosity solution. As
the regularization parameter depending on a characteristic length of the discretized domain is reduced, a
corresponding numerical solution is calculated. A convergence to the viscosity solution is verified numerically as
the characteristic length becomes smaller and the regularization parameter accordingly becomes smaller. From
the numerical experiments, the second experimental order of convergence in the 𝐿1 norm error is confirmed for
smooth solutions. Compared to solve a time-dependent form of the eikonal equation, the Laplacian regularized
eikonal equation has the advantage of reducing computational cost dramatically when a more significant number
of cells is used or a region of interest is far away from the given objects. The implementation of parallel
computing using domain decomposition with 1-ring face neighborhood structure can be done straightforwardly
by a standard cell-centered finite volume code.
1. Introduction

The viscosity solution of an eikonal equation is used in various appli-

cations from pure geometrical analysis to complicated problems men-

tioned in [1,2]. In the premixed turbulent combustion with thin flame
fronts [3], a distance from the thin flame modeled by a surface is used to
design the flame-wall interaction and quenching [4] or the end-gas au-

toignition for knock prediction [5]. A distance from a computational
boundary, so-called wall distance, is a crucial feature in turbulence
modeling methods [6–10]. It is also useful to obtain the medial axis
transformation [11,12] of a given domain, which is crucial to auto-

mated mesh generation [13,14]. In cardiac electrophysiology [15–17],
a properly modeled eikonal equation approximates a propagation of ex-

citation wavefront by the time to excite all points in the myocardium. In
geophysics, a propagation of seismic waves is described by an eikonal
equation in the high frequency regions [18].

In order to make the more realistic simulation of the mentioned
applications, it is necessary to use three-dimensional (3D) discretized

✩ The work was supported by grants, VEGA 1/0436/20, VEGA 1/0314/23, and APVV-19-0460. This project No. 2140/01/01 has received funding from the
European Unionś Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 945478.

* Corresponding author.

E-mail addresses: jooyoung.hahn@stuba.sk (J. Hahn), karol.mikula@stuba.sk (K. Mikula), peter.frolkovic@stuba.sk (P. Frolkovič).

domain in a fine scale to capture detailed phenomena. On such a do-

main, parallel computing using domain decomposition is inevitable
because of the significantly high consumption of memory. Moreover,
computational domains of the industrial problems described by a com-

plex boundary shape are commonly discretized by polyhedral cells; see
more advantages to using polyhedral cells [19]. Therefore, the target we
would like to achieve here is to compute a distance function from given
objects on polyhedral meshes by parallel computing using domain de-

composition with the simplest structure of overlapping domains, that is,
1-ring face neighbor structure [20]. For usability of the developed algo-

rithm, it should be possible to make a straightforward implementation
in a standard code of cell-centered finite volume method (FVM).

The most well-known algorithm to efficiently solve an eikonal equa-

tion is usually considered to be the fast marching method (FMM) [21–

23]. The fast computation is obtained by keeping a heap data struc-

ture to handle active nodes on a propagating front as candidates for
updating the values. However, for typical parallel computing using do-

main decomposition, the heap structure is difficult to be maintained
https://doi.org/10.1016/j.camwa.2023.12.016

0898-1221/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2023.12.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2023.12.016&domain=pdf
mailto:jooyoung.hahn@stuba.sk
mailto:karol.mikula@stuba.sk
mailto:peter.frolkovic@stuba.sk
https://doi.org/10.1016/j.camwa.2023.12.016

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86
efficiently in parallel computation. An alternative approach is the fast
sweeping method (FSM) [24–27] by updating necessary values with a
Gauss-Seidel type iterations and it achieves better computational speed
in simple computational domain because sorting is not used; see de-

tailed computational study of FMM and FSM in [28,29]. In the fast
iterative method (FIM) [30–32], a fine-grained parallel algorithm to
solve an eikonal equation is presented on regular square, triangular,
and tetrahedron meshes. A particular assumption to use FIM and FMM
on triangular or tetrahedral meshes is that the shape of the cell is re-

stricted to an acute triangle or tetrahedron. For obtuse shapes, a smart
division is necessary to make all cells as acute shapes but it is not clear
how efficiently it can be divided in polyhedral meshes in a situation of
moving mesh or remeshing that commonly happens in combustion sim-

ulation. The mentioned limitation is resolved in [33] based on the jet
marching method (JMM) [34] to solve the eikonal equation, using Her-

mite interpolation and a compact high-order semi-Lagrangian method.

In this paper, we numerically find a viscosity solution of an eikonal
equation:

|∇𝑢(𝐱)| = 1, 𝐱 ∈Ω ⧵ Γ,

𝑢(𝐱) = 0, 𝐱 ∈ Γ,
(1)

where a computational domain Ω ⊂ℝ3 is either convex or non-convex
and Γ indicates fixed locations represented by a collection of curves
or surfaces or a part of the boundary of the computational domain.
The viscosity solution of (1) defined in [35] is the Euclidean distance
function from Γ on the domain Ω. A noticeable necessary condition
of being the viscosity solution of (1) is an inequality condition on the
boundary of the domain:

𝝂(𝐱) ⋅∇𝑢(𝐱) ≥ 0, 𝐱 ∈ 𝜕Ω ⧵ Γ, (2)

where 𝝂 is the outward normal to the boundary of the domain. The
above inequality is presented in the Remark of interpreting Proposition
II.1 in [36]. It is so-called the Soner boundary condition [37] or the state
constraint condition in optimal control problems [36,38]. The condition
is applied on obstacle boundaries [39] and it restricts the discrete set
of admissible control on all points in a domain in order to avoid an
incorrect search direction. A general shape of obstacle embedded in a
discretized domain is considered in [29]. The eikonal equation (1) and
the Soner boundary condition (2) are discretized by a monotone finite
difference scheme in [37] when a set Γ is a collection of finite discrete
points and the error bound of the scheme is derived to the order of
the square of cell size on a regular rectangular mesh. The obstacle [39]

can be understood as a hole in a domain [40]. The necessity of using
the Soner boundary condition and its geometrical interpretation is ex-

plained in [40] by numerical examples.

A time-relaxed formulation of (1) with the Soner boundary condi-

tion (2) is presented to compute a signed distance function when a
shape of Γ is a closed, bounded, orientable, and connected surface Γ
in a general computational domain Ω ⊂ℝ3 [40]:

𝜕

𝜕𝑡
𝜙(𝐱, 𝑡) ± |∇𝜙(𝐱, 𝑡)| = ±1 (𝐱, 𝑡) ∈ Ω± × (0, 𝑇],

𝜙(𝐱, 𝑡) = 0 (𝐱, 𝑡) ∈ Γ × [0, 𝑇],

𝝂(𝐱) ⋅∇𝜙(𝐱, 𝑡) ≥ 0 (𝐱, 𝑡) ∈ (𝜕Ω ⧵ Γ) × (0, 𝑇],

(3)

where 𝜙(𝐱, 0) > 0 on Ω+ and 𝜙(𝐱, 0) < 0 on Ω− are outside and in-

side the closed surface, respectively. The Soner boundary condition is
essential to avoid a non-viscosity solution, especially on a non-convex
domain. The distance information from Γ is propagated into the rest of
the domain Ω ⧵Γ along the normal direction to Γ over time. The steady
state solution eventually becomes a signed distance function from Γ.
In the case of computing a wall distance function, that is, Γ = 𝜕Ω, a
transport form of eikonal equation (1) is presented in [11] and the al-

gorithm is implemented by a standard FVM code with the first order
upwind scheme. Even if the time relaxation in [11,40] with a proper
75
choice of time step brings robustness of the algorithm, a main disad-

vantage of using (3) is a large amount of computational cost when a
region of interest is located far away from Γ.

Inspired by the vanishing viscosity method [36], the equation we
would like to solve numerically in this paper is combined with a Lapla-

cian regularizer:

−𝜖△ 𝑢𝜖(𝐱) + |∇𝑢𝜖(𝐱)| = 1 𝐱 ∈Ω ⧵ Γ,

𝑢𝜖(𝐱) = 0 𝐱 ∈ Γ,
(4)

where 𝜖 > 0 is the regularization parameter. When Γ = 𝜕Ω, the van-

ishing viscosity method proves that the solution 𝑢𝜖 converges to the
viscosity solution of (1) as 𝜖 → 0. In the case of Γ ⊊ 𝜕Ω, a boundary
condition on 𝜕Ω has to be imposed in order to solve (4) numerically. A
Dirichlet boundary condition on 𝜕Ω can only be applied to extremely
simple problems, e.g., where Γ is a sphere and Ω is a box, so it is not
a realistic boundary condition for general shapes of Γ and Ω. When a
Neumann boundary condition is used, it is also unrealistic because the
level surfaces of the solution arrive to the boundary with any angles,
which cannot be known in advance; see also [39]. A linearly extended
boundary condition in [20] is used with the bidirectional flow, how-

ever, it is obviously not accurate enough except the case of a linear
solution. As shown in [40], the Soner boundary condition plays a cru-

cial role in keeping a numerical solution not to being a non-viscosity
solution. Using the Soner boundary condition of 𝑢𝜖 , 𝜖 > 0, in (4),

𝝂(𝐱) ⋅∇𝑢𝜖(𝐱) ≥ 0 𝐱 ∈ 𝜕Ω ⧵ Γ, (5)

we can avoid a non-viscosity solution when 𝜖→ 0. The inequality makes
intuitive sense because the distance function from a given Γ is an in-

creasing function and must be increasing on the boundary. When (4) is
solved by a standard finite volume method with an iterative numer-

ical solver, since there is no guarantee to keep the Soner boundary
condition, it is critical to impose (5) in order to eventually find an ap-

proximation of a viscosity solution (1).

Compared to solve (3), a clear advantage of solving the equations (4)

and (5) is to improve computational cost because of an infinite propa-

gation speed caused by the Laplacian regularization term. In order to
numerically solve (4) and (5), two difficulties should be resolved: the
first is how to deal with the nonlinear term and the second is how to
choose a regularization parameter. In [41,42], the same Laplacian reg-

ularizer is used for computing a wall distance function, that is, Γ = 𝜕Ω.
The non-linearity in (4) is resolved by using |∇𝑢𝜖|2 and its linearization.
The choice of the regularization parameter depends on an approxi-

mated distance from Γ, which makes more inaccurate results on the
far field. In [43–46], the non-linearity in (1) is managed by an energy
minimization with the constraint 𝐩 = ∇𝑢 and then a penalty method or
augmented Lagrangian method is used to approximate a viscosity solu-

tion of (1) for the cases of Γ = 𝜕Ω. Throughout this paper, we discuss
the details of two mentioned difficulties of solving (4) and (5) in order
to obtain a meaningful convergence order numerically.

The rest of the paper is presented as follows. In Section 2, we ex-

plain the proposed method to compute a solution of the governing
equation (4) and (5) on a polyhedron mesh. In Section 3, numerical
properties of the proposed algorithm are presented by examples with
exact solutions. Finally, we conclude in Section 4

2. Proposed method

We start with explaining concrete notations to bring a clear under-

standing of polyhedral cells. In the following subsections, a linearized
eikonal equation with Laplacian regularizer is introduced and its dis-

cretization based on a cell-centered FVM is presented in detail. Finally,
we explain how to design a decreasing sequence of regularization pa-

rameters and propose an algorithm to approximate a viscosity solution
of (1) by solving (4) and (5) in the last subsection.

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86
Fig. 1. An illustration of two polyhedral cells with a tessellated face.

2.1. Notations

Let us denote a discretized computational domain as a union of non-

overlapped polyhedral cells with a non-zero volume:

Ω̄ =
⋃
𝑝∈

Ω̄𝑝, (6)

where Ω𝑝 is open and  is a set of the indices of cells; see an illustration
of two polyhedral cells in Fig. 1. If a face is in-between two adjacent
cells, we call it an internal face. Otherwise, we call it a boundary face.
A set  is the collection of indices of all internal faces. Since the face
of a polyhedron cell is difficult to be a plane in a general shape of the
computational domain, we always consider a tessellation of a face into
triangles unless the face is already a triangle. From a face 𝑒𝑔 , 𝑔 ∈ ,
whose vertices are 𝐱𝑣𝑖 , 𝑖 = 1, … , 𝑟𝑔 , a triangle 𝑖 =  (𝐱𝑣𝑖 , 𝐱𝑣𝑖+1 , 𝐱0) of
three points, 𝐱𝑣𝑖 , 𝐱𝑣𝑖+1 , and the center of the mass 𝐱0 =

1
𝑟𝑔

∑𝑟𝑔

𝑖=1 𝐱𝑣𝑖 is
used to define a center of the face:

𝐱𝑔 =
∑𝑟𝑔

𝑖=1
||𝑖|| �̄�𝑖∑𝑟𝑔

𝑖=1
||𝑖|| , (7)

where 𝐱𝑣𝑟𝑔+1 = 𝐱𝑣1 and �̄�𝑖 and |𝑖| are the center and area of the triangle
𝑖, respectively. Note that 𝐱𝑔 is not necessarily the same as 𝐱0 the center
of the mass in general. In order to indicate the tessellated faces of a
general face indexed by , we define a set of the indices of a tessellated
internal and boundary faces as  and . For example, 𝑒𝑓 , 𝑓 ∈  , is
a triangle on a face between left and right cells in Fig. 1 and 𝐱𝑓 (red
point) is the center of the triangle, where all triangles share a vertex,
the center of the face 𝐱𝑔 (blue point). To sum up, for a face 𝑒𝑔 , 𝑔 ∈ ,
there exists a subset 𝑔 ⊂  such that

𝑒𝑔 =
⋃
𝑓∈𝑔

𝑒𝑓 .

If a face 𝑒𝑔 is not a triangle, it is a collection of tessellated faces (trian-

gles) 𝑒𝑓 , 𝑓 ∈ 𝑔 , whose common vertex is 𝐱𝑔 . If 𝑒𝑔 is a triangle, then
there is an index 𝑓 ∈  such that 𝑒𝑔 = 𝑒𝑓 .

For a cell Ω𝑝, 𝑝 ∈ , we define a set 𝑝 as the indices of neighbor
cells Ω𝑞 such that the intersection 𝜕Ω𝑝 ∩ 𝜕Ω𝑞 = 𝑒𝑔 , 𝑔 ∈ , is a face of
non-zero area between two adjacent cells. We also define 𝑝 and 𝑝

as internal and boundary triangles tessellated by faces of Ω𝑝. When
𝑝 is empty, we call the cell Ω𝑝 as an internal cell. Otherwise, it is
called a boundary cell. For example, if a green cell Ω𝑝 in Fig. 1 is a
boundary cell whose only left side is a part of the boundary of the
computational domain, |𝑝| = 5, |𝑝| = 20, and |𝑝| = 4. If the cell
next to the green cell is Ω𝑞 , then 𝑞 ∈𝑝 and there is an index 𝑔 ∈ 
such that 𝑒𝑔 = 𝜕Ω𝑝 ∩ 𝜕Ω𝑞 . In the rest of the paper, we use the subscripts
𝑓 , 𝑏, and 𝑔 to indicate an internal triangle 𝑒𝑓 , a boundary triangle 𝑒𝑏,
and an internal face 𝑒𝑔 , respectively, unless otherwise noted.

For an internal triangle 𝑒𝑓 , 𝑓 ∈ 𝑝, 𝑝 ∈ , the vector 𝐧𝑝𝑓 is the
outward normal to the triangle and its length is the area of the trian-

gle, |𝐧𝑝𝑓 | = |𝑒𝑓 |. Then, 𝑒𝑓 ⊂ 𝜕Ω𝑞 for 𝑞 ∈𝑝, 𝐧𝑞𝑓 = −𝐧𝑝𝑓 holds. For a
boundary triangle 𝑒𝑏, 𝑏 ∈𝑝, 𝑝 ∈ , the vector 𝐧𝑏 = 𝐧𝑝𝑏 is the outward
normal to the triangle, that is, the outward normal to the boundary
of the computational domain, and its length is the area of the trian-

gle, |𝐧𝑏| = |𝑒𝑏|. When a directional vector is specified by two position
vectors 𝐱𝑎 and 𝐱𝑏, we use a notation 𝐝𝑎𝑏 = 𝐱𝑏 − 𝐱𝑎. For an internal
76
face 𝑒𝑔 = 𝜕Ω𝑝 ∩ 𝜕Ω𝑞 , 𝑔 ∈ , 𝑝, 𝑞 ∈ , whose vertices are written by 𝐱𝑣𝑖 ,
𝑖 = 1, … , 𝑟𝑔 , we define a vector:

𝐧𝑔 =
1
2

𝑟𝑔−1∑
𝑖=2

𝐝𝑣1𝑣𝑖 × 𝐝𝑣1𝑣𝑖+1 , (8)

where the order of vertices is decided such that the cross product 𝐝𝑣1𝑣𝑖 ×
𝐝𝑣1𝑣𝑖+1 indicates the outward to the cell Ω𝑝 for all 𝑖 = 2, … , 𝑟𝑔 −1. If the
face 𝑒𝑔 is planar, the vector 𝐧𝑔 becomes an outward normal vector to
the face of the cell Ω𝑝 and its length |𝐧𝑔| = |𝑒𝑔| is the area of the face.

The characteristic length of a discretized domain ∪𝑝∈L
Ω𝑝 is defined

by the average of one-third power to the volume of the bounding box
of a cell:

ℎL =
1|L| ∑

𝑝∈L

|Ω𝑝| 13𝐵 , (9)

where |Ω𝑝|𝐵 is the volume of the box whose diagonal is a vector
𝐱𝑀 − 𝐱𝑚, where 𝐱𝑚 and 𝐱𝑀 are component-wise minimum and max-

imum of all vertices 𝐱𝑣𝑖 of Ω𝑝, respectively. The L indicates the level of
mesh refinement, that is, when L increases, finer cells are generated. In
Section 3, we use four levels of cells, roughly ℎL+1 ≈

1
2ℎL, to check the

experimental order of convergence (𝐸𝑂𝐶).

2.2. Linearized eikonal equation with Laplacian regularization

In this subsection, we assume that there is a known function 𝑢𝜖′
which is possibly close to the solution of (4) and (5) with a regular-

ization parameter 𝜖′ > 0. We present how to use a cell-centered finite
volume method with the Soner boundary condition to numerically find
a solution 𝑢𝜖 of (4) and (5) with a smaller regularization parameter
𝜖 < 𝜖′. Firstly, a linearization of the nonlinear term in (4) is used to
obtain an equation of unknown function 𝑢𝜖 :

−𝜖△ 𝑢𝜖(𝐱) + 𝐯(𝐱) ⋅∇𝑢𝜖(𝐱) = 1, 𝐯(𝐱) =
∇𝑢𝜖′ (𝐱)|∇𝑢𝜖′ (𝐱)|𝜎 , 𝐱 ∈Ω ⧵ Γ, (10)

where |𝐱|𝜎 = (|𝐱|2 + 𝜎2)
1
2 with a small constant 𝜎 = 10−12. Note that 𝐯

is a fixed vector and the details of computing 𝑢𝜖′ are explained in the
next subsection. Secondly, we show how to apply the Soner boundary
condition in a cell-centered finite volume method. Even if a discretiza-

tion of the normal flow term, 𝐯 ⋅ ∇𝑢𝜖 , with Soner boundary condition
is already presented in [40], we repeat the key points of the numerical
scheme in order to completely explain a discretization of the Laplacian
term with Soner boundary condition based on the flux-balanced approx-

imation [47] on a polyhedral cell.

Before we derive a discretization of using the Soner boundary con-

dition, a gradient computation is necessary at the center 𝐱𝑝 of the cell
Ω𝑝. Since Γ can be a part of the boundary of the computational domain,
let us denote an index set to indicate triangles on the boundary and Γ:

𝐷 = {𝑏 ∈ ∶ 𝑒𝑏 ⊂ Γ ∩ 𝜕Ω}. (11)

Defining 𝑝 =𝑝 ∪
(𝑝 ∩𝐷

)
, the weighted least-squares method is

used to compute the gradient at the center 𝐱𝑝:

∇𝑢𝑝 ≡∇𝑢(𝐱𝑝) = argmin
𝐲∈ℝ3|𝐲|≤1

⎛⎜⎜⎝
∑
𝑎∈𝑝

(𝑢𝑝 + 𝐲 ⋅ 𝐝𝑝𝑎 − 𝑢𝑎)2|𝐝𝑝𝑎|2
⎞⎟⎟⎠ . (12)

Note that 𝑢𝑎 = 𝑢(𝐱𝑎) = 0, 𝑎 ∈ 𝑝 ∩ 𝐷 , because of Dirichlet boundary
condition in (4). The constraint in (12) is also used in [40] which brings
a more stable numerical computation. A component-wise constraint of
the gradient is presented in [41,11] to improve stability. In [48], the
same constraint in (12) is shown for a minimization approach to solve
the eikonal equation.

Now, we use the basic idea of flux-balanced approximation [47]

and a deferred correction method on the linearized equation (10). By

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86
the relation ∇𝑢 ⋅ 𝐯 = ∇ ⋅ (𝑢𝐯) − 𝑢∇ ⋅ 𝐯, the equation is evaluated at the
center of the cell Ω𝑝:

−𝜖∇ ⋅∇𝑢(𝐱𝑝) + ∇ ⋅ (𝑢𝐯)(𝐱𝑝) − 𝑢(𝐱𝑝)∇ ⋅ 𝐯(𝐱𝑝) = 1,

where 𝑢 = 𝑢𝜖 for simplicity of formula derivation. Approximating a di-

vergence of vector-valued function 𝐅 evaluated at 𝐱𝑝 by integrating over
the cell Ω𝑝:

∇ ⋅ 𝐅(𝐱𝑝) ≈
1|Ω𝑝| ∫

Ω𝑝

∇ ⋅ 𝐅𝑑𝑉 = 1|Ω𝑝| ∫
𝜕Ω𝑝

𝐅 ⋅ 𝐧𝑑𝑆,

where 𝐧 is an unit outward normal vector to 𝜕Ω𝑝, then we have

0 = −𝜖 ∫
𝜕Ω𝑝

∇𝑢 ⋅ 𝐧𝑑𝑆

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
(II)

+ ∫
𝜕Ω𝑝

𝑢𝐯 ⋅ 𝐧𝑑𝑆 − 𝑢𝑝 ∫
𝜕Ω𝑝

𝐯 ⋅ 𝐧𝑑𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(I)

−|Ω𝑝| (13)

After the complete discretization of two terms (I) and (II) is derived,
we present a deferred correction method to compute the solution of (10)

at the end of this subsection.

The term (I) in (13) is further calculated:

(I) =
∑

𝑓∈𝑝∪𝑝

⎛⎜⎜⎜⎝∫𝑒𝑓 𝑢𝐯 ⋅
𝐧𝑝𝑓|𝐧𝑝𝑓 |𝑑𝑆 − 𝑢𝑝 ∫

𝑒𝑓

𝐯 ⋅
𝐧𝑝𝑓|𝐧𝑝𝑓 |𝑑𝑆

⎞⎟⎟⎟⎠
≈

∑
𝑓∈𝑝∪𝑝

(
𝑢𝑝𝑓 − 𝑢𝑝

)
𝜇𝑝𝑓 , (14)

where 𝑢𝑝𝑓 is a value at the center of face 𝑒𝑓 , 𝑓 ∈ 𝑝, 𝑢𝑝 = 𝑢(𝐱𝑝), and the
normal flux 𝜇𝑝𝑓 is computed by

𝜇𝑝𝑓 = ∫
𝑒𝑓

𝐯 ⋅
𝐧𝑝𝑓|𝐧𝑝𝑓 |𝑑𝑆 ≈ 𝐯𝑓 ⋅ 𝐧𝑝𝑓 . (15)

The last term above is obtained by a formula with a small constant
𝜎 = 10−12:

𝜇𝑝𝑓 ≈
𝜷𝑓(|𝜷𝑓 |2 + 𝜎2

) 1
2

⋅ 𝐧𝑝𝑓 , (16)

where 𝜷𝑓 is a gradient whose length is less than or equal to 1 at the
center of the triangle 𝑒𝑓 , 𝑓 ∈ 𝑝 ∪𝑝, computed by a constraint mini-

mization using the pre-computed known function 𝑢𝜖′ ; see the equation
(33) and the Remark 1 in [40] for the technical details. In order to find
the complete discretization of the first term, we define the sets of in-

dices depending on the sign of the normal flux:

−
𝑝 = {𝑏 ∈𝑝 ∶ 𝜇𝑝𝑏 < 0}, +

𝑝 =𝑝 ⧵−
𝑝 ,

−
𝑝 = {𝑓 ∈ 𝑝 ∶ 𝜇𝑝𝑓 < 0}, +

𝑝 = 𝑝 ⧵−
𝑝 .

(17)

Considering a general case of Γ in (4), for example, a part of 𝜕Ω, we
split the index set of boundary triangles into three cases:

𝑝 =
(−

𝑝 ∩𝐷

)
∪
(−

𝑝 ⧵𝐷

)
∪+

𝑝 , (18)

where 𝐷 is defined by (11). On a boundary triangle 𝑒𝑏, 𝑏 ∈ 𝑝, we
derive the numerical scheme on +

𝑝 because it does not violate Soner
boundary condition and on −

𝑝 ∩ 𝐷 because Dirichlet boundary con-

dition should be explicitly applied. The terms occurring on −
𝑝 ⧵ 𝐷

should be set to zero so as not to violate the Soner boundary condi-

tion. Then, the original discretization of the normal flow in [49,50] is
changed because of using the Soner boundary condition:

(I) ≈
∑
𝑓∈−

𝑝

(
𝑢𝑞 +𝑞𝑢 ⋅ 𝐝𝑞𝑓 − 𝑢𝑝

)
𝜇𝑝𝑓 +

∑
𝑓∈+

𝑝 ∪+
𝑝

(𝑝𝑢 ⋅ 𝐝𝑝𝑓
)
𝜇𝑝𝑓

+
∑

𝑏∈−∩
(
𝑢𝑏 − 𝑢𝑝

)
𝜇𝑝𝑏

(19)
𝑝 𝐷

77
where 𝑢𝑏 = 𝑢(𝐱𝑏) = 0, 𝑏 ∈ −
𝑝 ∩𝐷 and the modified inflow-based gra-

dient 𝑝𝑢 is used to include the influence of the Soner boundary condi-

tion:

𝑝𝑢 =

∑
𝑓∈−

𝑝 ∪(−
𝑝 ∩𝐷)

1|𝐝𝑝𝑓 |𝜷𝑓∑
𝑓∈−

𝑝 ∪(−
𝑝 ∩𝐷)

1|𝐝𝑝𝑓 |
. (20)

The term (II) is followed by the discretization of flux-balanced
approximation [47]:

(II)=
∑
𝑞∈𝑝

∫
𝑒𝑔

∇𝑢 ⋅
𝐧𝑔|𝐧𝑔|𝑑𝑆 +

∑
𝑏∈𝑝

∫
𝑒𝑏

∇𝑢 ⋅
𝐧𝑝𝑏|𝐧𝑝𝑏|𝑑𝑆, (21)

where a polygon face 𝑒𝑔 = 𝜕Ω𝑝 ∩ 𝜕Ω𝑞 , 𝑔 ∈ , 𝑞 ∈𝑝, 𝑝 ∈ . From the
centers of two cells, 𝐱𝑝 and 𝐱𝑞 , we find two points 𝐱𝑝′ and 𝐱𝑞′ such
that the directional vectors 𝐝𝑝𝑝′ and 𝐝𝑞𝑞′ are perpendicular to the line
passing at 𝐱𝑔 (7) along the direction 𝐧𝑔 (8):

𝐝𝑝𝑝′ = 𝐝𝑝𝑔 −
(𝐧𝑔|𝐧𝑔| ⋅ 𝐝𝑝𝑔

) 𝐧𝑔|𝐧𝑔| , 𝐝𝑞𝑞′ = 𝐝𝑞𝑔 −
(𝐧𝑔|𝐧𝑔| ⋅ 𝐝𝑞𝑔

) 𝐧𝑔|𝐧𝑔| .
Using the explicit expression 𝐝𝑝𝑝′ and 𝐝𝑞𝑞′ , we have an approximation
of the first integral in (21):∑
𝑞∈𝑝

∫
𝑒𝑔

∇𝑢 ⋅
𝐧𝑔|𝐧𝑔|𝑑𝑆 ≈

∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ | (𝑢𝑞′ − 𝑢𝑝′
)

≈
∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ | ((𝑢𝑞 +∇𝑢𝑞 ⋅𝐝𝑞𝑞′
)
−
(
𝑢𝑝+∇𝑢𝑝 ⋅𝐝𝑝𝑝′

))
(22)

Note that more technical details are described in [47]. The second in-

tegral in (21) should be considered more carefully to apply the Soner
boundary condition. Similar to (18), we split the index set of 𝑝 into
three cases.

𝑝 =
(𝑝 ∩𝐷

)
∪
(𝑝 ⧵𝐷

)
=
(𝑝 ∩𝐷

)
∪
(+

𝑝 ⧵𝐷

)
∪
(−

𝑝 ⧵𝐷

)
.

(23)

In the first case, on a triangle 𝑒𝑏, 𝑏 ∈ 𝑝 ∩ 𝐷 , the Dirichlet condition
is applied. In the second case, we use numerical values inside the com-

putational domain. In the third case, the terms occurring on −
𝑝 ⧵ 𝐷

should be set to zero not to violate the Soner boundary condition. Con-

sidering the mentioned three cases, we have an approximation of the
second integral (21):∑
𝑏∈𝑝

∫
𝑒𝑏

∇𝑢 ⋅
𝐧𝑝𝑏|𝐧𝑝𝑏|𝑑𝑆 ≈

∑
𝑏∈𝑝∩𝐷

|𝑒𝑏||𝐝𝑝′𝑏| (𝑢𝑏 − 𝑢𝑝 −∇𝑢𝑝 ⋅ 𝐝𝑝𝑝′
)

+
∑

𝑏∈+
𝑝 ⧵𝐷

∇𝑢𝑝 ⋅ 𝐧𝑏, (24)

where 𝑢𝑏 = 𝑢(𝐱𝑏) = 0, 𝑏 ∈𝑝 ∩𝐷 .

Combining all derivations (19), (22), and (24), we have a complete
discretization using the Soner boundary condition to solve (10):

0 = − 𝜖

⎛⎜⎜⎝
∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ | (𝑢𝑞 +∇𝑢𝑞 ⋅ 𝐝𝑞𝑞′ − 𝑢𝑝 −∇𝑢𝑝 ⋅ 𝐝𝑝𝑝′
)⎞⎟⎟⎠

− 𝜖

⎛⎜⎜⎝
∑

𝑏∈𝑝∩𝐷

|𝑒𝑏||𝐝𝑝′𝑏| (𝑢𝑏 − 𝑢𝑝 −∇𝑢𝑝 ⋅ 𝐝𝑝𝑝′
)
+

∑
𝑏∈+

𝑝 ⧵𝐷

∇𝑢𝑝 ⋅ 𝐧𝑏
⎞⎟⎟⎠

+
∑
𝑓∈−

𝑝

(
𝑢𝑞 +𝑞𝑢 ⋅ 𝐝𝑞𝑓 − 𝑢𝑝

)
𝜇𝑝𝑓 +

∑
𝑓∈+

𝑝 ∪+
𝑝

(𝑝𝑢 ⋅ 𝐝𝑝𝑓
)
𝜇𝑝𝑓

+
∑

𝑏∈−∩
(
𝑢𝑏 − 𝑢𝑝

)
𝜇𝑝𝑏 − |Ω𝑝|,

(25)
𝑝 𝐷

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86
where the gradient ∇𝑢𝑝 and the modified inflow-based gradient 𝑝𝑢

are defined by (12) and (20), respectively. On a regular cubic mesh, the
displacement 𝐝𝑝𝑝′ and 𝐝𝑞𝑞′ are zero vectors and the equation above is
a banded block diagonal matrix equation. In parallel computing using
domain decomposition with the 1-ring neighborhood structure, if Ω𝑝 is
located in the domain 𝐷1 and one of faces of Ω𝑝 is located between two
domains, 𝐷1 and 𝐷2, one of the second face neighbor cells on Ω𝑝, that
is, Ω𝑟, 𝑟 ∈𝑞 ⧵𝑝 and 𝑞 ∈𝑝, may not be accessible by the domain
𝐷1 where Ω𝑝 is located. Such a cell exists when we compute ∇𝑢𝑞 or
𝑞𝑢 in the formulation of (25) and then it is not possible to construct a
correct linear system in the domains 𝐷1 and 𝐷2. To overcome the men-

tioned technical difficulties, we use a deferred correction method [51]

to solve (25) iteratively:

0 = − 𝜖

⎛⎜⎜⎝
∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ |
(
𝑢𝑘𝑞 +∇𝑢𝑘−1𝑞 ⋅ 𝐝𝑞𝑞′ − 𝑢𝑘𝑝 −∇𝑢𝑘−1𝑝 ⋅ 𝐝𝑝𝑝′

)⎞⎟⎟⎠
− 𝜖

⎛⎜⎜⎝
∑

𝑏∈𝑝∩𝐷

|𝑒𝑏||𝐝𝑝′𝑏|
(
𝑢𝑏 − 𝑢𝑘𝑝 −∇𝑢𝑘−1𝑝 ⋅ 𝐝𝑝𝑝′

)
+

∑
𝑏∈+

𝑝 ⧵𝐷

∇𝑢𝑘−1𝑝 ⋅ 𝐧𝑏
⎞⎟⎟⎠

+
∑
𝑓∈−

𝑝

(
𝑢𝑘𝑞 +𝑘−1

𝑞 𝑢 ⋅ 𝐝𝑞𝑓 − 𝑢𝑘𝑝

)
𝜇𝑝𝑓 +

∑
𝑓∈+

𝑝 ∪+
𝑝

(𝑝𝑢
𝑘−1 ⋅ 𝐝𝑝𝑓

)
𝜇𝑝𝑓

+
∑

𝑏∈−
𝑝 ∩𝐷

(
𝑢𝑏 − 𝑢𝑘𝑝

)
𝜇𝑝𝑏 − |Ω𝑝|,

(26)

where 𝑘 ∈ ℕ and 𝑢0 = 𝑢𝜖′ . Keeping in mind the formulation above, we
continue to discuss a decreasing sequence of regularization parameters
𝜖 and a pre-computed function 𝑢𝜖′ in (10) in the next subsection.

2.3. The regularization parameter 𝜖

The vanishing viscosity method expects that the solution 𝑢𝜖 of (4)

becomes close to the viscosity solution of (1) when the regularization
parameter 𝜖 > 0 is smaller and smaller. Similarly, we would like to find
a numerical solution of (4) and (5) converges to the viscosity solution
when the characteristic length ℎ𝐿 (9) becomes smaller and smaller.
That is, a numerical convergence is related to not only the character-

istic length ℎ𝐿 but also the regularization parameter 𝜖. An empirical
relation between ℎ𝐿 and 𝜖 to obtain a numerical convergence is that
when ℎ𝐿 becomes smaller, the regularization parameter 𝜖 must become
smaller too. Such a relation is also observed in solving a variant of the
phase field model of the simplified Stefan problem [52].

Another aspect of the regularization parameter 𝜖 is that it cannot be
too small in a fixed discretized domain. The reason is similar to that the
time step cannot be too large in the time-relaxed eikonal equation (3).
The direct effect of time relaxation in a linear system is to add positive
values on a diagonal element which brings more stable computation to
solve the linear system; see more details in [40]. When the time step
is too large, the positive value being added to the diagonal elements
is too small and then we can observe oscillation over time as it is al-

ready shown in [40]. Similarly, if the regularization parameter 𝜖 is too
small on a fixed discretized domain, then the numerical solution does
not become close enough to the viscosity solution of (1). The same phe-

nomenon of a regularization parameter 𝜂 is also observed in [53,54] by
solving a singularly perturbed boundary value problem in [55] or the
screened Poisson equation [56],

−𝜂2 △𝑤(𝐱) +𝑤(𝐱) = 0, 𝐱 ∈Ω,

𝑤(𝐱) = 1, 𝐱 ∈ 𝜕Ω,
(27)

which can be transformed to

−𝜂△ 𝑣(𝐱) + |∇𝑣(𝐱)|2 = 1, 𝐱 ∈Ω,

𝑣(𝐱) = 0, 𝐱 ∈ 𝜕Ω,
(28)
78
by the Hopf–Cole transformation [57,58].

The obvious effect of using regularization parameter 𝜖 is to eliminate
singularities and compute a smooth solution. However, if the parame-

ter is too large, the numerical solution is not accurate enough to be the
distance function. If it is too small, the numerical computation is not
stable enough. Therefore, a reasonable choice of the regularization pa-

rameter 𝜖 is from a large value to a small value in a certain range. We
choose regularization parameters as a decreasing sequence:

𝜖𝑛 =
(
ℎ𝐿

) 1
2 𝑛 , 𝑛 ∈ℕ, (29)

where ℎ𝐿 < 1 is the characteristic length (9).

2.4. Proposed algorithm

In this subsection, combining the iterative algorithm (26) and a de-

creasing sequence 𝜖𝑛 of the regularization parameter (29), we propose
an algorithm to compute a sequential numerical solution:

0 = − 𝜖𝑛

⎛⎜⎜⎝
∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ |
(
𝑢𝑛,𝑘𝑞 +∇𝑢𝑛,𝑘−1𝑞 ⋅ 𝐝𝑞𝑞′ − 𝑢𝑛,𝑘𝑝 −∇𝑢𝑛,𝑘−1𝑝 ⋅ 𝐝𝑝𝑝′

)⎞⎟⎟⎠
− 𝜖𝑛

⎛⎜⎜⎝
∑

𝑏∈𝑝∩𝐷

|𝑒𝑏||𝐝𝑝′𝑏|
(
𝑢𝑏 − 𝑢𝑛,𝑘𝑝 −∇𝑢𝑛,𝑘−1𝑝 ⋅ 𝐝𝑝𝑝′

)

+
∑

𝑏∈+
𝑝 ⧵𝐷

∇𝑢𝑛,𝑘−1𝑝 ⋅ 𝐧𝑏
⎞⎟⎟⎠

+
∑
𝑓∈−

𝑝

(
𝑢𝑛,𝑘𝑞 +𝑞𝑢

𝑛,𝑘−1 ⋅ 𝐝𝑞𝑓 − 𝑢𝑛,𝑘𝑝

)
𝜇𝑛−1
𝑝𝑓

+
∑

𝑓∈+
𝑝 ∪+

𝑝

(𝑝𝑢
𝑛,𝑘−1 ⋅ 𝐝𝑝𝑓

)
𝜇𝑛−1
𝑝𝑓

+
∑

𝑏∈−
𝑝 ∩𝐷

(
𝑢𝑏 − 𝑢𝑛,𝑘𝑝

)
𝜇𝑛−1
𝑝𝑏

− |Ω𝑝|, 𝑘 = 1,… ,𝐾𝑛

(30)

where 𝑢0 = 0, 𝑢𝑛,0 = 𝑢𝑛−1 is a pre-computed solution of (10), 𝐾𝑛 is
defined by (32). The solution 𝑢𝑛,𝑘 of (30) is computed by 𝑢𝑛−1, the
parameter 𝜖𝑛, and the 𝑘th number of iterations in (30). Note that we ex-

plain how to numerically implement Dirichlet boundary condition (4)

in the linear system (30) at the end of this subsection. Rewriting (30)

formally as a matrix equation,

𝐀𝑛−1𝑢𝑛,𝑘 = 𝐟(𝑢𝑛,𝑘−1), (31)

an algebraic multigrid method is used to solve the above equation. The
𝑘th iteration is stopped at the smallest 𝐾𝑛 such that a residual error is
smaller than a chosen error bound 𝜂 = 10−8:

𝐾𝑛 =min

{
𝑘∈ℕ ∶ 𝜌𝑛,𝑘 = 1|| ∑

𝑝∈
|||(𝐀𝑛−1𝜙𝑛,𝑘 − 𝐟(𝜙𝑛,𝑘)

)
𝑝

||| < 𝜂

}
, 𝑛≥2,

(32)

where the parenthesis above with a subscript (𝐫)𝑝 denotes the 𝑝th com-

ponent of the vector 𝐫. Then, we define 𝑢𝑛 ≡ 𝑢𝑛,𝐾𝑛 for 𝑛 ≥ 2. When 𝑛 = 1,
we use 𝐾𝑛 = 1. The proposed algorithm is also presented step by step in
Algorithm 1.

Remark 1. In the matrix of the linear system (30) on the 𝑝th row, the di-

agonal element is the coefficient of 𝑢𝑛,𝑘𝑝 and all off-diagonal elements are
the coefficients of 𝑢𝑛,𝑘𝑞 , 𝑞 ∈𝑝. It means the system only uses neighbor
cells across faces of Ω𝑝. Then, an implementation of (30) in a standard
cell-centered FVM code is straightforwardly done for parallel comput-

ing using domain decomposition with 1-ring face neighborhood.

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86
Algorithm 1 A procedure to compute a numerical solution of (4)

and (5).

procedure

Initialization 𝑢0 = 0.

Set 𝑛 = 1 and 𝐾1 = 1.

Find a solution 𝑢1 = 𝑢1,1 of (30) with 𝑢1,0 = 𝑢0 = 0.

for 𝑛 ← 2 to 5 do

Set 𝑢𝑛,0 = 𝑢𝑛−1 .

Set 𝑘 = 1.

while 𝜌𝑛,𝑘 ≥ 𝜂 do ⊳ See (32).

Find a solution 𝑢𝑛,𝑘 of (30) with 𝑢𝑛,𝑘−1 .

𝑘 ← 𝑘 + 1
end while

end for

end procedure

When 𝑛 = 1 in the proposed algorithm (30), the linear system com-

putes a solution of the equation below because all gradients are zero
with the initial choice 𝑢1,0 = 𝑢0 = 0:

−𝜖△ �̄�(𝐱) = 1 𝐱 ∈Ω ⧵ Γ,

�̄�(𝐱) = 0 𝐱 ∈ Γ,

𝝂(𝐱) ⋅∇�̄�(𝐱) = 0 𝐱 ∈ 𝜕Ω ⧵ Γ.

(33)

The direction of ∇�̄� is the same as the gradient of the viscosity solution
in (1) because their zero level set Γ is identical. Then, for 𝑛 ≥ 2, the nor-

malized vector 𝐯 in (10) on Γ is already same as the vector 𝐯 computed
by the viscosity solution of (1). In the case of Γ = 𝜕Ω, the solution of
Poisson equation (33) is also used to approximate a distance function
on a close neighborhood of Γ by a normalization scheme [59]. In [60],
it is argued that there is a proximity in 𝐿2 sense between the solution
of (33) and the distance function from Γ.

In order to complete the description of the proposed algorithm, we
need to explain how the boundary value on Γ is implemented in a poly-

hedron mesh because Γ ⊂ Ω̄ is generally located on a given mesh. To do
so, we define index sets to select the cells where Γ is located in Ω̄:

1 =
{
𝑝 ∈  ∶ Ω̄𝑝 ∩ Γ ≠ ∅, Γ ⊆ 𝜕Ω

}
,

2 =
{
𝑝 ∈  ∶ Ω̄𝑝 ∩ Γ ≠ ∅, Γ ⊊Ω, Γ ∩ 𝜕Ω= ∅

}
.

(34)

If Γ is a general shape, an octree search and point-in-cell algorithms
are used to define the index sets above. Let us define a function
 ∶𝐾 ⊂  →  by  (𝐾) =

{
𝑞 ∈  ∶ 𝑞 ∈𝑝, ∀𝑝 ∈𝐾

}
∪𝐾 . Now, we use

the set Γ0 =  ( (2)) ∪  (1) and it is straightforward to compute the
exact distance value from Γ at all points 𝐱𝑝, 𝑝 ∈ Γ0. An octree search
algorithm can find a short list of potential elements in Γ to compute
the shortest distance from 𝐱𝑝 to Γ and it is efficient enough because all
points 𝐱𝑝, 𝑝 ∈ Γ0, are close to Γ. Then, the computed distance value on
Γ0 is used in the proposed algorithm. That is, on the 𝑝th row of the ma-

trix (30), 𝑝 ∈ Γ0, we use the value and make all relevant off-diagonal
element of Ω𝑝 to be zero in the matrix.

3. Numerical results

We present various examples to show the numerical properties of
the proposed algorithm (30). The meshes generated by AVL FIRETM
are illustrated in Fig. 2 and the number of polyhedral cells |L| and
the characteristic length ℎL (9) of the meshes are presented for four
levels of meshes, L ∈ {1, 2, 3, 4}, in Table 1. Note that ℎL+1 < ℎL. The
test examples are basically to compute a distance function from Γ on a
given computation domain Ω and all details are explained below with
constants 𝛾𝑖 =

𝑅𝑖
15 for 𝑖 = 1, 2, where 𝑅1 = 1.25 and 𝑅2 = 10.

EX1 Γ is a sphere with the center at the origin and the radius is 0.6
in the computational domain Ω = [−𝑅1, 𝑅1]3. The mesh 1

𝐿
is

used in Table 1. The first level of mesh is shown in Fig. 2-(a).

EX2 Γ is a sphere at the origin with the radius is 0.3 in the computa-

tional domain Ω = [−8𝛾1, 22𝛾1] × [−15𝛾1, 15𝛾1] × [−15𝛾1, 15𝛾1] ⧵
79
Fig. 2. It is an illustration of meshes for computational domains in Table 1 with
𝐿 = 1. The bold black lines are the boundary of the computational domain. The
polyhedral cells inside the domain are presented. Note that the right side is the
positive direction of 𝑥 axis, the top side is the positive direction of 𝑦 axis, and
the direction coming out of the paper is the positive direction of 𝑧 axis.

Table 1

The numbers of polyhedral cells L and
the characteristic length ℎL (9) of the
meshes are presented; see the shape of
the computational domains at the level
L = 1 in Fig. 2.

mesh L |L| ℎL

1
L

1 10421 1.54 ⋅ 10−1
2 48516 9.24 ⋅ 10−2
3 331146 4.87 ⋅ 10−2
4 2301237 2.55 ⋅ 10−2

2
L

1 14821 1.17 ⋅ 10−1
2 70859 6.89 ⋅ 10−2
3 363418 4.08 ⋅ 10−2
4 2153388 2.34 ⋅ 10−2

3
L

1 18118 7.02 ⋅ 10−2
2 74301 4.22 ⋅ 10−2
3 362679 2.44 ⋅ 10−2
4 1868820 1.45 ⋅ 10−2

4
L

1 7863 6.52 ⋅ 10−1
2 58091 3.42 ⋅ 10−1
3 457436 1.73 ⋅ 10−1
4 3660530 8.71 ⋅ 10−2

Ω′, where Ω′ = [8𝛾1, 15𝛾1] ×[−15𝛾1, 15𝛾1] ×[−5𝛾1, 5𝛾1]. The mesh
2

𝐿
is used in Table 1. The first level of mesh is shown in Fig. 2-

(b).

EX3 The computational domain is Ω = [−15𝛾1, 15𝛾1] ×[−15𝛾1, 15𝛾1] ×
[−5𝛾1, 5𝛾1] ⧵Ω′, where Ω′=[−5𝛾1, 15𝛾1] ×[−5𝛾1, 5𝛾1] ×[−5𝛾1, 5𝛾1]
and Γ = {15𝛾1} ×[5𝛾1, 15𝛾1] ×[−5𝛾1, 5𝛾1] is the upper right plane.
The mesh 3

𝐿
is used in Table 1. The first level of mesh is shown

in Fig. 2-(c).

EX4 The computational domain Ω is same as EX3 and Γ = {15𝛾1} ×
[5𝛾1, 15𝛾1] × [−5𝛾1, 5𝛾1] ∪ {15𝛾1} × [−15𝛾1, −5𝛾1] × [−5𝛾1, 5𝛾1] is
the upper right and the lower right planes in Fig. 2-(c). The mesh
3

𝐿
is used in Table 1.

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86
EX5 The computational domain Ω is same as EX3 and Γ = 𝜕Ω. The
mesh 3

𝐿
is used in Table 1.

EX6 The computational domain is Ω =
[
−𝑅2

2 ,
𝑅2
2

]3
and Γ = 𝜕Ω. The

mesh 4
𝐿

is used in Table 1.

EX7 The computational domain is the same as EX6 and Γ is a circle
with the center at the origin and the radius 0.6, where the normal
vector of the plane containing the circle is 𝑧 axis. The mesh 4

𝐿
is used in Table 1.

EX8 The computational domain is same as EX6 and Γ is a disk whose
boundary is the circle in EX7. The mesh 4

𝐿
is used in Table 1.

EX9 The computational domain is Ω = [−𝑅2, 𝑅2]3 and Γ is a square
with the center at the origin and the length of the side is 7𝑟2,
where the normal vector of the plane containing the square is 𝑧
axis. The mesh 4

𝐿
is used in Table 1. The first level of mesh is

shown in Fig. 2-(d).

EX10 The computational domain is same as EX9 and Γ is two squares
of the same size used in EX9. The center of the first and second
square is located at (0, 0, 7.5𝛾2) and (0, 0, −7.5𝛾2), respectively.
The mesh 4

𝐿
is used in Table 1.

The exact solutions from EX1 to EX5 are already presented in [40] and
the exact solutions from EX6 to EX10 can be analytically obtained. Note
that the polyhedron meshes 2 and 3 are exactly the same as the
one in [40]. A typical body-fitted surface mesh is used on two squares Γ
in the case of EX10. In Fig. 2-(d), half of a small square is visible on the
boundary of 4

𝐿
, 𝐿 = 1. The same mesh is used to test cases from EX6

to EX10.

Prior to the numerical properties of the proposed algorithm, equidis-

tant isosurfaces of numerical solutions computed by the proposed algo-

rithm (30) are presented in Fig. 3 on the level 𝐿 = 4 in Table 1. They
are qualitatively shown as a distance function from a given Γ illustrated
by the color of dark red. In the cases of EX1, EX2, and EX10, we use a
transparency on Γ to visually observe isosurfaces behind Γ. In the cases
of EX5 and EX6, the surface Γ is not presented because Γ = 𝜕Ω.

The first numerical property is an experimental order of convergence
(𝐸𝑂𝐶). Since exact solutions for all examples are known, we compute
the errors 𝐸1

L
and 𝐸∞

L
of 𝐿1 and 𝐿∞ norms between a numerical solu-

tion on the Lth level of mesh and an exact solution, respectively. Then,
for each error, the corresponding 𝐸𝑂𝐶 is calculated by

𝐸𝑂𝐶L =
log

(
𝐸L+1

𝐸L

)
log

(
ℎL+1

ℎL

) , L ∈ {1, 2, 3}. (35)

In Table 2, we present 𝐸𝑂𝐶s of all examples for a numerical solution of
the proposed algorithm (30) with 𝜖𝑛, 𝑛 = 5. For smooth solutions of EX8

and EX9, the 𝐸𝑂𝐶s with 𝐸1 and 𝐸∞ errors are close to 2. In EX1, the
𝐸𝑂𝐶s with 𝐸1 is larger than 2, but the 𝐸𝑂𝐶s with 𝐸∞ is close to 1
because of a singularity at the origin. For all non-smooth solutions, the
𝐸𝑂𝐶s with 𝐸1 and 𝐸∞ errors are close to 1. Compared to the 𝐸𝑂𝐶s
in [40], the behavior of 𝐸𝑂𝐶 is quite similar.

The second numerical property is the behavior of the errors versus
the regularization parameter 𝜖𝑛 on a fixed level of meshes. For each 𝑛 on
the Lth level of mesh, the proposed algorithm (30) provides a numerical
solution 𝑢𝑛 with 𝜖𝑛 = (ℎL)

1
2 𝑛. For the next 𝑛 + 1, we use the solution 𝑢𝑛

and then find the next solution 𝑢𝑛+1 with 𝜖𝑛+1 (< 𝜖𝑛). In Table 3, for the
case of EX1, errors 𝐸1 and 𝐸∞ of numerical solutions 𝑢𝑛 with 𝜖𝑛 from
𝑛 = 2 to 𝑛 = 5 are presented on all levels of meshes.

A crucial observation is that the choice of 𝜖5 = ℎ
5
2
𝐿

brings a better re-

sult, that is, smaller errors, than the other regularization values 𝜖𝑛 for
1 ≤ 𝑛 ≤ 4. Since we use 𝐾1 = 1 in (30), the results of 𝑛 = 1 are far from
the exact solution. On a fixed level of mesh, when the regularization pa-

rameter 𝜖𝑛 is smaller, that is, 𝑛 becomes larger, the errors 𝐸1 and 𝐸∞

become smaller until 𝑛 = 5. The mentioned property can be seen on the
rows with the same gray color in Table 3. For example, when L = 1, by
80
Fig. 3. Iso-surfaces of numerical solutions computed by the proposed algo-

rithm (30) are presented on the level 𝐿 = 4 in Table 1.

the value on the second row of 𝐸1 column, the error on every fourth
row below in the same column decreases; see the error values shad-

owed by the darkest gray color in Table 3. Also, the 𝐸𝑂𝐶s on different
levels of meshes become better from 𝑛 = 2 to 𝑛 = 5. In order to check
similar phenomena for all other examples, we provide a graph version
of Table 3 from Figs. 4 to 8. When 𝑛 ≥ 6, the effect of the Laplacian
regularizer is too small to solve the linear system (30) stably enough.
A similar instability of using too small regularization parameter is also
observed in [17,53,61]. A relation between the regularization parame-

ter and the order of the numerical scheme is also observed in [58]. A
further numerical analysis is necessary to find an optimal regularization
parameter to minimize an error between a numerical solution on a dis-

crete space of (4) and (5) and a viscosity solution of (1), which is out of
the scope of this paper.

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86

Table 2

The 𝐸𝑂𝐶s (35) of all examples for a numerical solution of (30)

with 𝜖𝑛, 𝑛 = 5, are presented. L is the level of mesh listed in
Table 1.

L 𝐸1 𝐸𝑂𝐶 𝐸∞ 𝐸𝑂𝐶

EX1

1 6.37 ⋅ 10−3 1.76 4.95 ⋅ 10−2 3.65
2 2.60 ⋅ 10−3 2.10 7.68 ⋅ 10−3 1.41
3 6.77 ⋅ 10−4 2.21 3.10 ⋅ 10−3 0.75
4 1.62 ⋅ 10−4 1.91 ⋅ 10−3

EX2

1 1.04 ⋅ 10−2 1.43 1.08 ⋅ 10−1 1.45
2 4.91 ⋅ 10−3 1.75 5.03 ⋅ 10−2 0.92
3 1.96 ⋅ 10−3 1.78 3.11 ⋅ 10−2 1.28
4 7.28 ⋅ 10−4 1.53 ⋅ 10−2

EX3

1 1.34 ⋅ 10−2 1.50 3.88 ⋅ 10−2 1.26
2 6.23 ⋅ 10−3 1.22 2.04 ⋅ 10−2 1.24
3 3.19 ⋅ 10−3 1.10 1.04 ⋅ 10−2 1.06
4 1.81 ⋅ 10−3 5.97 ⋅ 10−3

EX4

1 3.33 ⋅ 10−3 1.27 5.61 ⋅ 10−2 1.02
2 1.74 ⋅ 10−3 1.17 3.33 ⋅ 10−2 1.03
3 9.20 ⋅ 10−4 1.25 1.90 ⋅ 10−2 1.40
4 4.81 ⋅ 10−4 9.19 ⋅ 10−3

EX5

1 5.95 ⋅ 10−3 1.04 5.78 ⋅ 10−2 0.91
2 3.49 ⋅ 10−3 1.92 3.64 ⋅ 10−2 1.12
3 1.22 ⋅ 10−3 2.24 1.97 ⋅ 10−2 0.78
4 3.82 ⋅ 10−4 1.32 ⋅ 10−2

EX6

1 9.29 ⋅ 10−2 4.33 7.35 ⋅ 10−1 2.95
2 5.73 ⋅ 10−3 1.78 1.10 ⋅ 10−1 1.76
3 1.70 ⋅ 10−3 1.69 3.32 ⋅ 10−2 0.61
4 5.34 ⋅ 10−4 2.18 ⋅ 10−2

EX7

1 3.12 ⋅ 10−1 1.40 6.67 ⋅ 10−1 1.63
2 1.26 ⋅ 10−1 1.91 2.33 ⋅ 10−1 2.09
3 3.44 ⋅ 10−2 1.93 5.60 ⋅ 10−2 2.03
4 9.09 ⋅ 10−3 1.38 ⋅ 10−2

EX8

1 2.89 ⋅ 10−1 1.47 6.53 ⋅ 10−1 1.62
2 1.12 ⋅ 10−1 1.94 2.30 ⋅ 10−1 2.08
3 2.99 ⋅ 10−2 1.95 5.61 ⋅ 10−2 2.00
4 7.78 ⋅ 10−3 1.42 ⋅ 10−2

EX9

1 2.60 ⋅ 10−1 1.39 7.81 ⋅ 10−1 1.38
2 1.06 ⋅ 10−1 1.78 3.22 ⋅ 10−1 1.93
3 3.17 ⋅ 10−2 1.84 8.64 ⋅ 10−2 1.80
4 8.95 ⋅ 10−3 2.49 ⋅ 10−2

EX10

1 1.01 1.86 2.06 1.60
2 3.05 ⋅ 10−1 1.73 7.37 ⋅ 10−1 1.62
3 9.45 ⋅ 10−2 1.51 2.44 ⋅ 10−1 1.41
4 3.34 ⋅ 10−2 9.26 ⋅ 10−2

Table 3

For the case of EX1, errors 𝐸1 and 𝐸∞ of numerical so-

lutions (30) with 𝜖𝑛 from 𝑛 = 2 to 𝑛 = 5 are presented
on all levels of meshes. From a fixed 𝜖𝑛, the 𝐸𝑂𝐶s are
also shown on different levels of meshes.

L 𝜖𝑛 𝐸1 𝐸𝑂𝐶 𝐸∞ 𝐸𝑂𝐶

1

ℎ1
L

9.87E-02 −0.23 2.52E-01 −0.14
2 1.11E-01 0.44 2.70E-01 0.23
3 8.40E-02 0.59 2.34E-01 0.24
4 5.72E-02 2.00E-01

1

ℎ
3
2
L

3.63E-02 0.74 1.20E-01 0.56
2 2.48E-02 1.10 9.05E-02 0.81
3 1.23E-02 1.18 5.40E-02 1.05
4 5.73E-03 2.74E-02

1

ℎ2
L

1.52E-02 1.33 7.47E-02 1.79
2 7.72E-03 1.66 3.00E-02 1.36
3 2.67E-03 1.87 1.26E-02 1.10
4 7.98E-04 6.20E-03

1

ℎ
5
2
L

6.37E-03 1.76 4.95E-02 3.65
2 2.60E-03 2.10 7.68E-03 1.41
3 6.77E-04 2.21 3.10E-03 0.75
4 1.62E-04 1.91E-03

The third numerical property is a comparison of computational
cost. To minimize a systematical bias, we purposely choose the time-

relaxed bidirectional eikonal equation [40] already implemented in

AVL FIRETM. The proposed algorithm is also implemented in the same
language (Fortran 2003) and all algorithms are compiled by the same
compiler options.

Since the time-relaxed bidirectional eikonal equation is time-

dependent and the governing equation in this paper is time-independent,
we stop the time evolution in (3) right before the 𝐸1 error of (3) be-

comes smaller than the 𝐸1 error of the proposed algorithm. That is, we
measure a computational cost until two methods reach the same error
bound. In Table 4, such a final time 𝑇 is shown on the column labeled
by “Final 𝑇 ” for all examples. On that column, 𝑇𝑀 means that 𝐸1 error
of (3) is not smaller than the 𝐸1 error of the proposed algorithm until
the predetermined final time 𝑇𝑀 , specified in [40]. Time1 and Time2

are the computation time in seconds for the proposed algorithm (30)

and the algorithm in [40], respectively, and the corresponding total
number of iterations are shown right next to the computational time.
The calculations of using 2 ⋅ L numbers of CPUs for all examples in the
Lth level of mesh are repeated five times in a shared memory system (In-

tel® Core™ Processor i7-8700K CPU 3.70 GHz 12 CPUs and 62 gigabyte
memory). The computational time (Time1 and Time2) in Table 4 is the
average of five measurements. Since the distance information in (3) is
evolved from Γ over time, the time-relaxed bidirectional equation has
certainly a disadvantage in computational time whenever it is neces-

sary to compute a distance further away from Γ. The last column shows
how much the proposed algorithm is faster than the algorithm to solve
the time-relaxed bidirectional eikonal equation to reach the same 𝐸1

error. In the case of EX5, the time ratio is quite different from other
examples because Γ = 𝜕Ω makes the traveling distance much shorter
than other examples. In other words, the computational time of the
proposed algorithm becomes faster than the previous approach [40] as
long as the region of interest to find distance values is far away from
Γ.

In the last example, we would like to show the sequential results
along the decreasing regularization parameter 𝜖𝑛 and we present a qual-

itative comparison of the proposed algorithm (30) between polyhedron
and hexahedron mesh on a box shape of the computational domain
[−0.101, 0.111] × [−0.061, 0.091] × [−0.049, 0.053]. The number of cells
and the characteristic length on polyhedron mesh are 𝑁 = 2452429 and
ℎ = 1.49 ⋅ 10−3. For the hexahedron mesh, we have 𝑁 = 3105000 and
ℎ = 1.02 ⋅ 10−3. We use the residual error bound 𝜂 = 10−6 in (32). The
given surface Γ, the Dragon, is illustrated in Fig. 10 from the Stan-

ford 3D scanning repository.1 In Fig. 10, from the top to the bottom,
we present equidistance isosurfaces from the solutions of (30) on the
polyhedron mesh with the decreasing regularization parameters 𝜖𝑛,
𝑛 = 1, … , 4. The results of the first 𝜖1 are far away from the distance
function of the Dragon surface. However, the results of the second 𝜖2
are dramatically improved because the normalized gradient vectors of
the first result on the Dragon surface are already the same as the vectors
computed by the viscosity solution of the eikonal equation. In Fig. 11,
the results in the first row are computed on the polyhedron mesh with
𝜖5 = ℎ

5
2 and they are almost the same as the results in the last row

(𝜖4 = ℎ
4
2) in Fig. 10. The results in the second row in Fig. 11 are com-

puted on the hexahedron mesh with 𝜖5 = ℎ
5
2 . They are nearly the same

results on the polyhedron mesh because the characteristic lengths of
two meshes are deliberately chosen to be a similar size.

4. Conclusion

We present a cell-centered finite volume method to solve a Lapla-

cian regularized eikonal equation with Soner boundary condition on

1 http://graphics .stanford .edu /data /3Dscanrep.
81

http://graphics.stanford.edu/data/3Dscanrep

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86

Fig. 4. For the cases of EX1 and EX2, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second
order convergence, respectively.

Fig. 5. For the cases of EX3 and EX4, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second
order convergence, respectively.

Fig. 6. For the cases of EX5 and EX6, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second
order convergence, respectively.
polyhedral meshes in order to compute a distance function from given
objects. Using a linearized form of the equation, a numerical solution
is sequentially updated by a decreasing sequence of the regularization
parameters depending on a characteristic length of discretized domain.
The normalized gradient field of the first solution in the sequence is
substantially improved on the given objects. As the characteristic length
becomes smaller, the regularization parameter becomes smaller and a
convergence to the viscosity solution is numerically verified. The 𝐸𝑂𝐶
of 𝐿1 norm of the error is shown to be the second order for tested
smooth solutions. Compared to the computational time of solving the
82
time-relaxed bidirectional eikonal equation, the proposed algorithm has
the advantage to dramatically reducing the time when a larger number
of cells is used or a region of interest is far away from where the dis-

tance measurement starts. The implementation of parallel computing
using domain decomposition with the 1-ring face neighbor structure
can be done straightforwardly by a standard cell-centered finite volume
code.

Data availability

Data will be made available on request.

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86

Fig. 7. For the cases of EX7 and EX8, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second
order convergence, respectively.

Fig. 8. For the cases of EX9 and EX10, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second
order convergence, respectively.

Table 4

For all examples, a comparison of computational cost is presented by
using 2 ⋅ L numbers of CPUs on the Lth level of mesh. Time1 and Time2

are the computation time in seconds of the proposed algorithm (30) and
the algorithm in [40], respectively, and the corresponding total number
of iterations are shown right next to the computational time. The final
𝑇 to solve (3) is decided by the same 𝐸1 error value as the proposed
method; see more details in Section 3.

L Time1 (s)

5∑
𝑛=1

𝐾𝑛 Final 𝑇 Time2 (s) 𝑁𝑡𝑜𝑡 Ratio

EX1

1 5.04 33 1.200 6.59 30 1.31
2 10.72 24 1.280 38.42 64 3.58
3 66.37 16 1.360 625.15 136 9.42
4 438.30 12 1.430 7378.86 286 16.84

EX2

1 7.95 43 1.640 10.58 41 1.33
2 20.25 35 1.680 67.18 84 3.32
3 92.46 25 1.730 774.62 173 8.38
4 488.79 15 1.775 8250.24 355 16.88

EX3

1 9.73 42 4.080 24.97 102 2.56
2 19.23 27 4.220 126.51 105 6.58
3 75.46 13 4.210 1473.19 421 19.52
4 304.69 8 4.225 13159.04 845 43.19

EX4

1 7.69 29 2.680 16.54 67 2.15
2 15.72 19 2.980 90.00 149 5.73
3 63.34 10 2.940 1031.72 294 16.29
4 233.38 6 2.870 8929.88 574 38.26

EX5

1 5.68 20 𝑇𝑀 = 2 12.44 50 2.19
2 12.63 16 𝑇𝑀 = 2 60.38 100 4.78
3 54.87 12 𝑇𝑀 = 2 708.74 200 12.92
4 173.09 7 0.630 1951.68 126 11.28
83

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86

Fig. 9. Two sides of dragon surface Γ.

Fig. 10. From the top to the bottom, we present equidistance isosurfaces from the solutions of (30) on the polyhedron mesh with the decreasing regularization
parameters.
84

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86

Fig. 11. The qualitative comparison of equidistance isosurfaces from the dragon surface in Fig. 9 is shown by the results computed on polyhedron and hexahedron
mesh with a similar size of the characteristic length.
Acknowledgements

The authors thank the anonymous reviewers for their valuable sug-

gestions. The authors also thank Prof. Silvia Tozza in University of
Bologna, Italy, for the comments of the Soner boundary condition. We
also sincerely thank Dr. Branislav Basara and Dr. Reinhard Tatschl in
AVL List GmbH, Austria, for supporting the University Partnership Pro-

gram.2

References

[1] J.A. Sethian, Level Set Methods and Fast Marching Methods, Evolving Interfaces in
Computational Geometry Fluid Mechanics, Computer Vision, and Materials Science,
Cambridge University Press, New York, 1999.

[2] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer,
Berlin, 2000.

[3] N. Peters, Turbulent Combustion, Cambridge Monographs on Mechanics, Cambridge
University Press, 2000.

[4] D. Suckart, D. Linse, E. Schutting, H. Eichlseder, Experimental and simulative inves-

tigation of flame-wall interactions and quenching in spark-ignition engines, Auto-

mot. Engine Technol. 2 (1) (2017) 25–38.

[5] A. Manz, Modeling of End-Gas Autoignition for Knock Prediction in Gasoline En-

gines, Logos Verlag Berlin, 2016.

[6] B. Baldwin, H. Lomax, Thin-layer approximation and algebraic model for sepa-

rated turbulentflows, in: American Institute of Aeronautics and Astronautics 16th
Aerospace Sciences Meeting, 1978, 78-257.

[7] B. Baldwin, T. Barth, A one-equation turbulence transport model for high Reynolds
number wall-bounded flows, in: American Institute of Aeronautics and Astronautics
29th Aerospace Sciences Meeting, 1991, 91-0610.

[8] P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows,
AIAA 1992-439, in: 30th Aerospace Sciences Meeting and Exhibit, January 1992.

[9] E. Fares, W. Schröder, A differential equation for approximate wall distance, Int. J.
Numer. Methods Fluids 39 (2002) 743–762.

[10] P.G. Tucker, Differential equation-based wall distance computation for DES and
RANS, J. Comput. Phys. 190 (2003) 229–248.

[11] H. Xia, P.G. Tucker, Finite volume distance field and its application to medial axis
transforms, Int. J. Numer. Methods Eng. 82 (2010) 114–134.

[12] H. Xia, P.G. Tucker, Fast equal and biased distance fields for medial axis transform
with meshing in mind, Appl. Math. Model. 35 (2011) 5804–5819.

2 See more details in AVL Advanced Simulation Technologies University
Partnership Program: https://www .avl .com /documents /10138 /3372587 /AVL _
UPP _Flyer .pdf.
85
[13] M.A. Price, C.G. Armstrong, M.A. Sabin, Hexahedral mesh generation by medial
surface subdivision: Part I. Solids with convex edges, Int. J. Numer. Methods Eng.
38 (1995) 3335–3359.

[14] W.R. Quadros, K. Ramaswami, F.B. Prinz, B. Gurumoorthy, Laytracks: a new ap-

proach to automated geometry adaptive quadrilateral mesh generation using medial
axis transform, Int. J. Numer. Methods Eng. 61 (2004) 209–237.

[15] P. Colli-Franzone, L. Guerri, Spreading of excitation in 3-D models of the anisotropic
cardiac tissue. I. Validation of the eikonal model, Math. Biosci. 113 (1993) 145–209.

[16] J.P. Keener, An eikonal-curvature equation for action potential propagation in my-

ocardium, J. Math. Biol. 29 (1991) 629–651.

[17] K.A. Tomlinson, P.J. Hunter, A.J. Pullan, A finite element method for an eikonal
equation model of myocardial excitation wavefront propagation, SIAM J. Appl.
Math. 63 (2002) 324–350.

[18] N. Rawlinson, M. Sambridge, The fast marching method: an effective tool for to-

mographic imaging and tracking multiple phases in complex layered media, Explor.
Geophys. 36 (2005) 341–350.

[19] M. Perič, Flow simulation using control volumes of arbitrary polyhedral shape, ER-

COFTAC Bull. 62 (2004) 25–29.

[20] J. Hahn, K. Mikula, P. Frolkovič, B. Basara, Inflow-based gradient finite volume
method for a propagation in a normal direction in a polyhedron mesh, J. Sci. Com-

put. 72 (2017) 442–465.

[21] J.A. Sethian, A fast marching level set method for monotonically advancing fronts,
Proc. Natl. Acad. Sci. 93 (1996) 1591–1595.

[22] T.J. Barth, J.A. Sethian, Numerical schemes for the Hamilton-Jacobi and level set
equations on triangulated domains, J. Comput. Phys. 145 (1998) 1–40.

[23] R. Kimmel, J.A. Sethian, Computing geodesic paths on manifolds, Proc. Natl. Acad.
Sci. 95 (1998) 8431–8435.

[24] H.-K. Zhao, Fast sweeping method for eikonal equations, Math. Comput. 74 (2005)
603–627.

[25] H.-K. Zhao, Parallel implementations of the fast sweep method, J. Comput. Math.
25 (2007) 421–429.

[26] J.-L. Qian, Y.-T. Zhang, H.-K. Zhao, Fast sweeping methods for eikonal equations on
triangular meshes, SIAM J. Numer. Anal. 31 (2007) 83–107.

[27] Y.-H.R. Tsai, L.-T. Cheng, S. Osher, H.-K. Zhao, Fast sweeping algorithms for a class
of Hamilton-Jacobi equations, SIAM J. Numer. Anal. 41 (2003) 673–694.

[28] S.-R. Hysing, S. Turek, The eikonal equation: numerical efficiency vs. algorithmic
complexity on quadrilateral grids, in: Proceedings of ALGORITMY, 2005, pp. 22–31.

[29] P.A. Gremaud, C.M. Kuster, Computational study of fast methods for the eikonal
equation, SIAM J. Sci. Comput. 27 (2006) 1803–1816.

[30] W.-K. Jeong, R.T. Whitaker, A fast iterative method for eikonal equations, SIAM J.
Sci. Comput. 30 (2008) 2512–2534.

[31] Z. Fu, W.-K. Jeong, Y. Pan, R.M. Kirby, R.T. Whitaker, A fast iterative method
for solving the eikonal equation on triangulated surfaces, SIAM J. Sci. Comput. 33
(2011) 2468–2488.

[32] Z. Fu, R.M. Kirby, R.T. Whitaker, A fast iterative method for solving the eikonal
equation on tetrahedral domains, SIAM J. Sci. Comput. 35 (2013) C473–C494.

http://refhub.elsevier.com/S0898-1221(23)00565-5/bibDBC86A320F9F3C7BD37C0B2DC443FB94s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibDBC86A320F9F3C7BD37C0B2DC443FB94s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibDBC86A320F9F3C7BD37C0B2DC443FB94s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib1CE48C962C52377D3B4351D0D768D324s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib1CE48C962C52377D3B4351D0D768D324s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib23291970E58D66274849E52672B6A568s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib23291970E58D66274849E52672B6A568s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib10186EA6AA77334CC65DB4C7C7A603E7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib10186EA6AA77334CC65DB4C7C7A603E7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib10186EA6AA77334CC65DB4C7C7A603E7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib573C7C4C49B0DE9B9BC41BE62769F40As1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib573C7C4C49B0DE9B9BC41BE62769F40As1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC81939CC81E032071290F3BAB921431As1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC81939CC81E032071290F3BAB921431As1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC81939CC81E032071290F3BAB921431As1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibE1565F37164E6F989D712AF64536DBCDs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibE1565F37164E6F989D712AF64536DBCDs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibE1565F37164E6F989D712AF64536DBCDs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib568978D47F4BEA23CED8BDEF000E2BFFs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib568978D47F4BEA23CED8BDEF000E2BFFs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib98CA07EEA7308810C3B3D1803E8F0BB0s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib98CA07EEA7308810C3B3D1803E8F0BB0s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib1B6B191C6FF43DA5BA69B84A092AC109s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib1B6B191C6FF43DA5BA69B84A092AC109s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib2418ADF22D077723111A28CC85E43942s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib2418ADF22D077723111A28CC85E43942s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib609F0858DBED33150B5FB62E639FC7D5s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib609F0858DBED33150B5FB62E639FC7D5s1
https://www.avl.com/documents/10138/3372587/AVL_UPP_Flyer.pdf
https://www.avl.com/documents/10138/3372587/AVL_UPP_Flyer.pdf
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib9C43CFE9ED211DF568722239544873C3s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib9C43CFE9ED211DF568722239544873C3s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib9C43CFE9ED211DF568722239544873C3s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib0101EF1C4D0B752EC068DE682FD109F2s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib0101EF1C4D0B752EC068DE682FD109F2s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib0101EF1C4D0B752EC068DE682FD109F2s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibB304CB38FBEFE95FA82DD73FDB0F69A7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibB304CB38FBEFE95FA82DD73FDB0F69A7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib4B5F5ED834A8DEC0323E79E6DACCCFE7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib4B5F5ED834A8DEC0323E79E6DACCCFE7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6D480A950DC0C8FA78DEE3246D13E081s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6D480A950DC0C8FA78DEE3246D13E081s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6D480A950DC0C8FA78DEE3246D13E081s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibADBE894539455A4BE214BB99EC4C1457s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibADBE894539455A4BE214BB99EC4C1457s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibADBE894539455A4BE214BB99EC4C1457s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibAE87F5743DA74528E7EB7A9B40C89168s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibAE87F5743DA74528E7EB7A9B40C89168s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib1C402A6581F7BDD5412292751FDC55BAs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib1C402A6581F7BDD5412292751FDC55BAs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib1C402A6581F7BDD5412292751FDC55BAs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib586729F3D9E33789E91F8799C94CB6A6s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib586729F3D9E33789E91F8799C94CB6A6s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib4CC8512A2C770B3A870B1E06E0599851s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib4CC8512A2C770B3A870B1E06E0599851s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib0E950D4D88E7E854C8D016808373F77Ds1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib0E950D4D88E7E854C8D016808373F77Ds1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib62D2D9456CCC1B45E3BB818FD0BE822Cs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib62D2D9456CCC1B45E3BB818FD0BE822Cs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib651E2DA53F086F8F6C17551653A8E992s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib651E2DA53F086F8F6C17551653A8E992s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib986D229711AC598ACA877C8EC3444038s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib986D229711AC598ACA877C8EC3444038s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibB1A41B77D6DF309DEE947C84090ADA59s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibB1A41B77D6DF309DEE947C84090ADA59s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC1FE755CB7DC812268BAB94CA8AAA1A7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC1FE755CB7DC812268BAB94CA8AAA1A7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib73D5311832FF5C4A0C0CFF0F20EA3DA1s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib73D5311832FF5C4A0C0CFF0F20EA3DA1s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC5B7645FCD1147D0FE19192810F6389Bs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC5B7645FCD1147D0FE19192810F6389Bs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA07C467025458A6093965D0B21C8D136s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA07C467025458A6093965D0B21C8D136s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA07C467025458A6093965D0B21C8D136s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib891A26F82A0EE94893296D2A29E74BD8s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib891A26F82A0EE94893296D2A29E74BD8s1

J. Hahn, K. Mikula and P. Frolkovič Computers and Mathematics with Applications 156 (2024) 74–86
[33] S.F. Potter, M.K. Cameron, R. Duraiswami, Numerical geometric acoustics: an
eikonal-based approach for modeling sound propagation in 3D environments, J.
Comput. Phys. 486 (2023) 112111.

[34] S.F. Potter, M.K. Cameron, Jet marching methods for solving the eikonal equation,
SIAM J. Sci. Comput. 43 (6) (2021) A4121–A4146.

[35] M.G. Crandall, L.C. Evans, P.-L. Lions, Some properties of viscosity solutions of
Hamilton-Jacobi equations, Trans. Am. Math. Soc. 282 (487–502) (1984).

[36] I. Capuzzo-Dolcetta, P.-L. Lions, Hamilton-Jacobi equations with state constraints,
Trans. Am. Math. Soc. 318 (1990) 643–683.

[37] K. Deckelnick, C.M. Elliott, V. Styles, Numerical analysis of an inverse problem for
the eikonal equation, Numer. Math. 119 (2011) 245–269.

[38] H.M. Soner, Optimal control with state-space constraint. II, SIAM J. Control Optim.
24 (1986) 1110–1122.

[39] M. Falcone, C. Truini, A level-set algorithm for front propagation in the presence of
obstacles, Rend. Mat. Appl. 29 (2009) 29–50.

[40] J. Hahn, K. Mikula, P. Frolkovič, B. Basara, Finite volume method with the Soner
boundary condition for computing the signed distance function on polyhedral
meshes, Int. J. Numer. Methods Eng. 123 (2022) 1057–1077.

[41] P.G. Tucker, C.L. Rumsey, P.R. Spalart, R.E. Bartels, R.T. Biedron, Computations of
wall distances based on differential equations, AIAA J. 43 (2005) 539–549.

[42] P.G. Tucker, Hybrid Hamilton-Jacobi-Poisson wall distance function model, Com-

put. Fluids 44 (2011) 130–142.

[43] A.G. Belyaev, P.-A. Fayolle, On variational and PDE-based distance function approx-

imations, Comput. Graph. Forum 34 (8) (2015) 104–118.

[44] A. Caboussat, R. Glowinski, T.-W. Pan, On the numerical solution of some eikonal
equations: an elliptic solver approach, Chin. Ann. Math., Ser. B 36 (2015) 689–702.

[45] A.G. Belyaev, P.-A. Fayolle, A variational method for accurate distance function
estimation, in: Numerical Geometry, Grid Generation and Scientific Computing,
Springer International Publishing, 2019, pp. 175–181.

[46] H. Ennaji, N. Igbida, V.T. Nguyen, Augmented Lagrangian methods for degenerate
Hamilton-Jacobi equations, Calc. Var. Partial Differ. Equ. 60 (2021) 238.

[47] P. Frolkovič, K. Mikula, J. Hahn, D. Martin, B. Basara, Flux balanced approximation
with least-squares gradient for diffusion equation on polyhedral mesh, in: Discrete
& Continuous Dynamical Systems - S, 2020.

[48] P.-A. Fayolle, A.G. Belyaev, An ADMM-based scheme for distance function approxi-

mation, Numer. Algorithms 84 (2020) 983–996.

[49] J. Hahn, K. Mikula, P. Frolkovič, B. Basara, Semi-implicit level set method with
inflow-based gradient in a polyhedron mesh, in: C. Cancès, P. Omnes (Eds.), Finite
Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Prob-

lems, Springer International Publishing, 2017, pp. 81–89.

[50] J. Hahn, K. Mikula, P. Frolkovič, M. Medl’a, B. Basara, Iterative inflow-implicit
outflow-explicit finite volume scheme for level-set equations on polyhedron meshes,
Comput. Math. Appl. 77 (2019) 1639–1654.

[51] K. Böhmer, P.W. Hemker, H.J. Stetter, The defect correction approach, in: Defect
Correction Methods, Springer, 1984, pp. 1–32.

[52] P. Strachota, M. Beneš, Design and verification of the MPFA scheme for three-

dimensional phase field model of dendritic crystal growth, in: Numerical Mathemat-

ics and Advanced Applications 2011, Springer Berlin Heidelberg, Berlin, Heidelberg,
2013, pp. 459–467.

[53] K. Crane, C. Weischedel, M. Wardetzky, Geodesics in heat: a new approach to com-

puting distance based on heat flow, ACM Trans. Graph. 32 (2013) 152.

[54] A.G. Churbanov, P.N. Vabishchevich, Numerical solution of boundary value prob-

lems for the eikonal equation in an anisotropic medium, J. Comput. Appl. Math. 362
(2019) 55–67.

[55] S.R.S. Varadhan, On the behavior of the fundamental solution of the heat equation
with variable coefficients, Commun. Pure Appl. Math. 20 (1967) 431–455.

[56] P. Areias, N. Sukumar, J. Ambrósio, Continuous gap contact formulation based on
the screened Poisson equation, Comput. Mech. (2023), https://doi .org /10 .1007 /
s00466 -023 -02309 -8.

[57] L.C. Evans, Partial Differential Equations, American Mathematical Society, Provi-

dence, R.I., 1998.

[58] K.S. Gurumoorthy, A. Rangarajan, A Schrödinger equation for the fast computa-

tion of approximate Euclidean distance functions, in: Scale Space and Variational
Methods in Computer Vision, SSVM 2009, in: Lecture Notes in Computer Science,
vol. 5567, Springer, Berlin, Heidelberg, 2009, pp. 100–111.

[59] P.G. Tucker, Assessment of geometric multilevel convergence robustness and a wall
distance method for flows with multiple internal boundaries, Appl. Math. Model. 22
(1998) 293–311.

[60] G. Aubert, J.-F. Aujol, Poisson skeleton revisited: a new mathematical perspective,
J. Math. Imaging Vis. 48 (2014) 149–159.

[61] K. Crane, C. Weischedel, M. Wardetzky, The heat method for distance computation,
Commun. ACM 60 (2017) 90–99.
86

http://refhub.elsevier.com/S0898-1221(23)00565-5/bib033C0C1F1CD0CA362400AB10D9362C76s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib033C0C1F1CD0CA362400AB10D9362C76s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib033C0C1F1CD0CA362400AB10D9362C76s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6CDD0C1B098B51865B7DAE14F466E76Es1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6CDD0C1B098B51865B7DAE14F466E76Es1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibAF051E5AD64121EBFE28F532A20B048Ds1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibAF051E5AD64121EBFE28F532A20B048Ds1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA0A9863E30C0ECE70C19295F4DC34A25s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA0A9863E30C0ECE70C19295F4DC34A25s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib7273A6C2A7B66DAB049DA92310580DD0s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib7273A6C2A7B66DAB049DA92310580DD0s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib0CA1D2B2CCB4BB1BD71213ED99B479DEs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib0CA1D2B2CCB4BB1BD71213ED99B479DEs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibE3483B86D23040601C3111533A51AA0Bs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibE3483B86D23040601C3111533A51AA0Bs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibFAC09E680FFA5E94876B6600A7DD8602s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibFAC09E680FFA5E94876B6600A7DD8602s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibFAC09E680FFA5E94876B6600A7DD8602s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib1AE43E2FE3AAA0D448E71CDC57E81247s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib1AE43E2FE3AAA0D448E71CDC57E81247s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib4D624B33514DDF9C1E064FCBCF745505s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib4D624B33514DDF9C1E064FCBCF745505s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6B93FFD1B9E3C36863E972E1992A5005s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6B93FFD1B9E3C36863E972E1992A5005s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibDFCEB9CFFF51C450A0576DD382ECBF9Fs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibDFCEB9CFFF51C450A0576DD382ECBF9Fs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC5DE27C965807417B379054F0F16B3C6s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC5DE27C965807417B379054F0F16B3C6s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibC5DE27C965807417B379054F0F16B3C6s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6A5CC7D560D040958280E2D445881B3Es1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6A5CC7D560D040958280E2D445881B3Es1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib31594F53B016F39C482876EA63D4A33Bs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib31594F53B016F39C482876EA63D4A33Bs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib31594F53B016F39C482876EA63D4A33Bs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib547018A5046F2D305AD0239CDB315A37s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib547018A5046F2D305AD0239CDB315A37s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibF60AC5AD90930A2161582361ADB913CDs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibF60AC5AD90930A2161582361ADB913CDs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibF60AC5AD90930A2161582361ADB913CDs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibF60AC5AD90930A2161582361ADB913CDs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib213FDC36641371A125F53A5EA210539Cs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib213FDC36641371A125F53A5EA210539Cs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib213FDC36641371A125F53A5EA210539Cs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibD22851D731AA759C25B253EDCDEE18C9s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibD22851D731AA759C25B253EDCDEE18C9s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib77187A98095B26890B78FF271C2B27D7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib77187A98095B26890B78FF271C2B27D7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib77187A98095B26890B78FF271C2B27D7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib77187A98095B26890B78FF271C2B27D7s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibB76FA850220650B97883CF3FD561304Es1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibB76FA850220650B97883CF3FD561304Es1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA266AB320ED3E64B86478A0B5FC2C5FAs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA266AB320ED3E64B86478A0B5FC2C5FAs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA266AB320ED3E64B86478A0B5FC2C5FAs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA77BDDCC3EAB807244DA6953ED69D552s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibA77BDDCC3EAB807244DA6953ED69D552s1
https://doi.org/10.1007/s00466-023-02309-8
https://doi.org/10.1007/s00466-023-02309-8
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib661ABFEE85B8FEBE0265C27C440B4990s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib661ABFEE85B8FEBE0265C27C440B4990s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibBAB53733A97DD1595E6666189DB94970s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibBAB53733A97DD1595E6666189DB94970s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibBAB53733A97DD1595E6666189DB94970s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bibBAB53733A97DD1595E6666189DB94970s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6DFEEDC0703B2F40DE2DDB86865E3A27s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6DFEEDC0703B2F40DE2DDB86865E3A27s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib6DFEEDC0703B2F40DE2DDB86865E3A27s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib02478D2D8DF307616656B2C0E7113D43s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib02478D2D8DF307616656B2C0E7113D43s1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib3361E469DF04EFF9B7C78E047003299Cs1
http://refhub.elsevier.com/S0898-1221(23)00565-5/bib3361E469DF04EFF9B7C78E047003299Cs1

	Laplacian regularized eikonal equation with Soner boundary condition on polyhedral meshes
	1 Introduction
	2 Proposed method
	2.1 Notations
	2.2 Linearized eikonal equation with Laplacian regularization
	2.3 The regularization parameter ϵ
	2.4 Proposed algorithm

	3 Numerical results
	4 Conclusion
	Data availability
	Acknowledgements
	References

