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In this paper, we propose a numerical algorithm based on a cell-centered finite volume method to compute 
a distance from given objects on a three-dimensional computational domain discretized by polyhedral cells. 
Inspired by the vanishing viscosity method, a Laplacian regularized eikonal equation is solved and the 
Soner boundary condition is applied to the boundary of the domain to avoid a non-viscosity solution. As 
the regularization parameter depending on a characteristic length of the discretized domain is reduced, a 
corresponding numerical solution is calculated. A convergence to the viscosity solution is verified numerically as 
the characteristic length becomes smaller and the regularization parameter accordingly becomes smaller. From 
the numerical experiments, the second experimental order of convergence in the 𝐿1 norm error is confirmed for 
smooth solutions. Compared to solve a time-dependent form of the eikonal equation, the Laplacian regularized 
eikonal equation has the advantage of reducing computational cost dramatically when a more significant number 
of cells is used or a region of interest is far away from the given objects. The implementation of parallel 
computing using domain decomposition with 1-ring face neighborhood structure can be done straightforwardly 
by a standard cell-centered finite volume code.
1. Introduction

The viscosity solution of an eikonal equation is used in various appli-

cations from pure geometrical analysis to complicated problems men-

tioned in [1,2]. In the premixed turbulent combustion with thin flame 
fronts [3], a distance from the thin flame modeled by a surface is used to 
design the flame-wall interaction and quenching [4] or the end-gas au-

toignition for knock prediction [5]. A distance from a computational 
boundary, so-called wall distance, is a crucial feature in turbulence 
modeling methods [6–10]. It is also useful to obtain the medial axis 
transformation [11,12] of a given domain, which is crucial to auto-

mated mesh generation [13,14]. In cardiac electrophysiology [15–17], 
a properly modeled eikonal equation approximates a propagation of ex-

citation wavefront by the time to excite all points in the myocardium. In 
geophysics, a propagation of seismic waves is described by an eikonal 
equation in the high frequency regions [18].

In order to make the more realistic simulation of the mentioned 
applications, it is necessary to use three-dimensional (3D) discretized 
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domain in a fine scale to capture detailed phenomena. On such a do-

main, parallel computing using domain decomposition is inevitable 
because of the significantly high consumption of memory. Moreover, 
computational domains of the industrial problems described by a com-

plex boundary shape are commonly discretized by polyhedral cells; see 
more advantages to using polyhedral cells [19]. Therefore, the target we 
would like to achieve here is to compute a distance function from given 
objects on polyhedral meshes by parallel computing using domain de-

composition with the simplest structure of overlapping domains, that is, 
1-ring face neighbor structure [20]. For usability of the developed algo-

rithm, it should be possible to make a straightforward implementation 
in a standard code of cell-centered finite volume method (FVM).

The most well-known algorithm to efficiently solve an eikonal equa-

tion is usually considered to be the fast marching method (FMM) [21–

23]. The fast computation is obtained by keeping a heap data struc-

ture to handle active nodes on a propagating front as candidates for 
updating the values. However, for typical parallel computing using do-

main decomposition, the heap structure is difficult to be maintained 
https://doi.org/10.1016/j.camwa.2023.12.016
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efficiently in parallel computation. An alternative approach is the fast 
sweeping method (FSM) [24–27] by updating necessary values with a 
Gauss-Seidel type iterations and it achieves better computational speed 
in simple computational domain because sorting is not used; see de-

tailed computational study of FMM and FSM in [28,29]. In the fast 
iterative method (FIM) [30–32], a fine-grained parallel algorithm to 
solve an eikonal equation is presented on regular square, triangular, 
and tetrahedron meshes. A particular assumption to use FIM and FMM 
on triangular or tetrahedral meshes is that the shape of the cell is re-

stricted to an acute triangle or tetrahedron. For obtuse shapes, a smart 
division is necessary to make all cells as acute shapes but it is not clear 
how efficiently it can be divided in polyhedral meshes in a situation of 
moving mesh or remeshing that commonly happens in combustion sim-

ulation. The mentioned limitation is resolved in [33] based on the jet 
marching method (JMM) [34] to solve the eikonal equation, using Her-

mite interpolation and a compact high-order semi-Lagrangian method.

In this paper, we numerically find a viscosity solution of an eikonal 
equation:

|∇𝑢(𝐱)| = 1, 𝐱 ∈Ω ⧵ Γ,

𝑢(𝐱) = 0, 𝐱 ∈ Γ,
(1)

where a computational domain Ω ⊂ℝ3 is either convex or non-convex 
and Γ indicates fixed locations represented by a collection of curves 
or surfaces or a part of the boundary of the computational domain. 
The viscosity solution of (1) defined in [35] is the Euclidean distance 
function from Γ on the domain Ω. A noticeable necessary condition 
of being the viscosity solution of (1) is an inequality condition on the 
boundary of the domain:

𝝂(𝐱) ⋅∇𝑢(𝐱) ≥ 0, 𝐱 ∈ 𝜕Ω ⧵ Γ, (2)

where 𝝂 is the outward normal to the boundary of the domain. The 
above inequality is presented in the Remark of interpreting Proposition 
II.1 in [36]. It is so-called the Soner boundary condition [37] or the state 
constraint condition in optimal control problems [36,38]. The condition 
is applied on obstacle boundaries [39] and it restricts the discrete set 
of admissible control on all points in a domain in order to avoid an 
incorrect search direction. A general shape of obstacle embedded in a 
discretized domain is considered in [29]. The eikonal equation (1) and 
the Soner boundary condition (2) are discretized by a monotone finite 
difference scheme in [37] when a set Γ is a collection of finite discrete 
points and the error bound of the scheme is derived to the order of 
the square of cell size on a regular rectangular mesh. The obstacle [39]

can be understood as a hole in a domain [40]. The necessity of using 
the Soner boundary condition and its geometrical interpretation is ex-

plained in [40] by numerical examples.

A time-relaxed formulation of (1) with the Soner boundary condi-

tion (2) is presented to compute a signed distance function when a 
shape of Γ is a closed, bounded, orientable, and connected surface Γ
in a general computational domain Ω ⊂ℝ3 [40]:

𝜕

𝜕𝑡
𝜙(𝐱, 𝑡) ± |∇𝜙(𝐱, 𝑡)| = ±1 (𝐱, 𝑡) ∈ Ω± × (0, 𝑇 ],

𝜙(𝐱, 𝑡) = 0 (𝐱, 𝑡) ∈ Γ × [0, 𝑇 ],

𝝂(𝐱) ⋅∇𝜙(𝐱, 𝑡) ≥ 0 (𝐱, 𝑡) ∈ (𝜕Ω ⧵ Γ) × (0, 𝑇 ],

(3)

where 𝜙(𝐱, 0) > 0 on Ω+ and 𝜙(𝐱, 0) < 0 on Ω− are outside and in-

side the closed surface, respectively. The Soner boundary condition is 
essential to avoid a non-viscosity solution, especially on a non-convex 
domain. The distance information from Γ is propagated into the rest of 
the domain Ω ⧵Γ along the normal direction to Γ over time. The steady 
state solution eventually becomes a signed distance function from Γ. 
In the case of computing a wall distance function, that is, Γ = 𝜕Ω, a 
transport form of eikonal equation (1) is presented in [11] and the al-

gorithm is implemented by a standard FVM code with the first order 
upwind scheme. Even if the time relaxation in [11,40] with a proper 
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choice of time step brings robustness of the algorithm, a main disad-

vantage of using (3) is a large amount of computational cost when a 
region of interest is located far away from Γ.

Inspired by the vanishing viscosity method [36], the equation we 
would like to solve numerically in this paper is combined with a Lapla-

cian regularizer:

−𝜖△ 𝑢𝜖(𝐱) + |∇𝑢𝜖(𝐱)| = 1 𝐱 ∈Ω ⧵ Γ,

𝑢𝜖(𝐱) = 0 𝐱 ∈ Γ,
(4)

where 𝜖 > 0 is the regularization parameter. When Γ = 𝜕Ω, the van-

ishing viscosity method proves that the solution 𝑢𝜖 converges to the 
viscosity solution of (1) as 𝜖 → 0. In the case of Γ ⊊ 𝜕Ω, a boundary 
condition on 𝜕Ω has to be imposed in order to solve (4) numerically. A 
Dirichlet boundary condition on 𝜕Ω can only be applied to extremely 
simple problems, e.g., where Γ is a sphere and Ω is a box, so it is not 
a realistic boundary condition for general shapes of Γ and Ω. When a 
Neumann boundary condition is used, it is also unrealistic because the 
level surfaces of the solution arrive to the boundary with any angles, 
which cannot be known in advance; see also [39]. A linearly extended 
boundary condition in [20] is used with the bidirectional flow, how-

ever, it is obviously not accurate enough except the case of a linear 
solution. As shown in [40], the Soner boundary condition plays a cru-

cial role in keeping a numerical solution not to being a non-viscosity 
solution. Using the Soner boundary condition of 𝑢𝜖 , 𝜖 > 0, in (4),

𝝂(𝐱) ⋅∇𝑢𝜖(𝐱) ≥ 0 𝐱 ∈ 𝜕Ω ⧵ Γ, (5)

we can avoid a non-viscosity solution when 𝜖→ 0. The inequality makes 
intuitive sense because the distance function from a given Γ is an in-

creasing function and must be increasing on the boundary. When (4) is 
solved by a standard finite volume method with an iterative numer-

ical solver, since there is no guarantee to keep the Soner boundary 
condition, it is critical to impose (5) in order to eventually find an ap-

proximation of a viscosity solution (1).

Compared to solve (3), a clear advantage of solving the equations (4)

and (5) is to improve computational cost because of an infinite propa-

gation speed caused by the Laplacian regularization term. In order to 
numerically solve (4) and (5), two difficulties should be resolved: the 
first is how to deal with the nonlinear term and the second is how to 
choose a regularization parameter. In [41,42], the same Laplacian reg-

ularizer is used for computing a wall distance function, that is, Γ = 𝜕Ω. 
The non-linearity in (4) is resolved by using |∇𝑢𝜖|2 and its linearization. 
The choice of the regularization parameter depends on an approxi-

mated distance from Γ, which makes more inaccurate results on the 
far field. In [43–46], the non-linearity in (1) is managed by an energy 
minimization with the constraint 𝐩 = ∇𝑢 and then a penalty method or 
augmented Lagrangian method is used to approximate a viscosity solu-

tion of (1) for the cases of Γ = 𝜕Ω. Throughout this paper, we discuss 
the details of two mentioned difficulties of solving (4) and (5) in order 
to obtain a meaningful convergence order numerically.

The rest of the paper is presented as follows. In Section 2, we ex-

plain the proposed method to compute a solution of the governing 
equation (4) and (5) on a polyhedron mesh. In Section 3, numerical 
properties of the proposed algorithm are presented by examples with 
exact solutions. Finally, we conclude in Section 4

2. Proposed method

We start with explaining concrete notations to bring a clear under-

standing of polyhedral cells. In the following subsections, a linearized 
eikonal equation with Laplacian regularizer is introduced and its dis-

cretization based on a cell-centered FVM is presented in detail. Finally, 
we explain how to design a decreasing sequence of regularization pa-

rameters and propose an algorithm to approximate a viscosity solution 
of (1) by solving (4) and (5) in the last subsection.
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Fig. 1. An illustration of two polyhedral cells with a tessellated face.

2.1. Notations

Let us denote a discretized computational domain as a union of non-

overlapped polyhedral cells with a non-zero volume:

Ω̄ =
⋃
𝑝∈

Ω̄𝑝, (6)

where Ω𝑝 is open and  is a set of the indices of cells; see an illustration 
of two polyhedral cells in Fig. 1. If a face is in-between two adjacent 
cells, we call it an internal face. Otherwise, we call it a boundary face. 
A set  is the collection of indices of all internal faces. Since the face 
of a polyhedron cell is difficult to be a plane in a general shape of the 
computational domain, we always consider a tessellation of a face into 
triangles unless the face is already a triangle. From a face 𝑒𝑔 , 𝑔 ∈ , 
whose vertices are 𝐱𝑣𝑖 , 𝑖 = 1, … , 𝑟𝑔 , a triangle 𝑖 =  (𝐱𝑣𝑖 , 𝐱𝑣𝑖+1 , 𝐱0) of 
three points, 𝐱𝑣𝑖 , 𝐱𝑣𝑖+1 , and the center of the mass 𝐱0 =

1
𝑟𝑔

∑𝑟𝑔

𝑖=1 𝐱𝑣𝑖 is 
used to define a center of the face:

𝐱𝑔 =
∑𝑟𝑔

𝑖=1
||𝑖|| �̄�𝑖∑𝑟𝑔

𝑖=1
||𝑖|| , (7)

where 𝐱𝑣𝑟𝑔+1 = 𝐱𝑣1 and �̄�𝑖 and |𝑖| are the center and area of the triangle 
𝑖, respectively. Note that 𝐱𝑔 is not necessarily the same as 𝐱0 the center 
of the mass in general. In order to indicate the tessellated faces of a 
general face indexed by , we define a set of the indices of a tessellated 
internal and boundary faces as  and . For example, 𝑒𝑓 , 𝑓 ∈  , is 
a triangle on a face between left and right cells in Fig. 1 and 𝐱𝑓 (red 
point) is the center of the triangle, where all triangles share a vertex, 
the center of the face 𝐱𝑔 (blue point). To sum up, for a face 𝑒𝑔 , 𝑔 ∈ , 
there exists a subset 𝑔 ⊂  such that

𝑒𝑔 =
⋃
𝑓∈𝑔

𝑒𝑓 .

If a face 𝑒𝑔 is not a triangle, it is a collection of tessellated faces (trian-

gles) 𝑒𝑓 , 𝑓 ∈ 𝑔 , whose common vertex is 𝐱𝑔 . If 𝑒𝑔 is a triangle, then 
there is an index 𝑓 ∈  such that 𝑒𝑔 = 𝑒𝑓 .

For a cell Ω𝑝, 𝑝 ∈ , we define a set 𝑝 as the indices of neighbor 
cells Ω𝑞 such that the intersection 𝜕Ω𝑝 ∩ 𝜕Ω𝑞 = 𝑒𝑔 , 𝑔 ∈ , is a face of 
non-zero area between two adjacent cells. We also define 𝑝 and 𝑝

as internal and boundary triangles tessellated by faces of Ω𝑝. When 
𝑝 is empty, we call the cell Ω𝑝 as an internal cell. Otherwise, it is 
called a boundary cell. For example, if a green cell Ω𝑝 in Fig. 1 is a 
boundary cell whose only left side is a part of the boundary of the 
computational domain, |𝑝| = 5, |𝑝| = 20, and |𝑝| = 4. If the cell 
next to the green cell is Ω𝑞 , then 𝑞 ∈𝑝 and there is an index 𝑔 ∈ 
such that 𝑒𝑔 = 𝜕Ω𝑝 ∩ 𝜕Ω𝑞 . In the rest of the paper, we use the subscripts 
𝑓 , 𝑏, and 𝑔 to indicate an internal triangle 𝑒𝑓 , a boundary triangle 𝑒𝑏, 
and an internal face 𝑒𝑔 , respectively, unless otherwise noted.

For an internal triangle 𝑒𝑓 , 𝑓 ∈ 𝑝, 𝑝 ∈ , the vector 𝐧𝑝𝑓 is the 
outward normal to the triangle and its length is the area of the trian-

gle, |𝐧𝑝𝑓 | = |𝑒𝑓 |. Then, 𝑒𝑓 ⊂ 𝜕Ω𝑞 for 𝑞 ∈𝑝, 𝐧𝑞𝑓 = −𝐧𝑝𝑓 holds. For a 
boundary triangle 𝑒𝑏, 𝑏 ∈𝑝, 𝑝 ∈ , the vector 𝐧𝑏 = 𝐧𝑝𝑏 is the outward 
normal to the triangle, that is, the outward normal to the boundary 
of the computational domain, and its length is the area of the trian-

gle, |𝐧𝑏| = |𝑒𝑏|. When a directional vector is specified by two position 
vectors 𝐱𝑎 and 𝐱𝑏, we use a notation 𝐝𝑎𝑏 = 𝐱𝑏 − 𝐱𝑎. For an internal 
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face 𝑒𝑔 = 𝜕Ω𝑝 ∩ 𝜕Ω𝑞 , 𝑔 ∈ , 𝑝, 𝑞 ∈ , whose vertices are written by 𝐱𝑣𝑖 , 
𝑖 = 1, … , 𝑟𝑔 , we define a vector:

𝐧𝑔 =
1
2

𝑟𝑔−1∑
𝑖=2

𝐝𝑣1𝑣𝑖 × 𝐝𝑣1𝑣𝑖+1 , (8)

where the order of vertices is decided such that the cross product 𝐝𝑣1𝑣𝑖 ×
𝐝𝑣1𝑣𝑖+1 indicates the outward to the cell Ω𝑝 for all 𝑖 = 2, … , 𝑟𝑔 −1. If the 
face 𝑒𝑔 is planar, the vector 𝐧𝑔 becomes an outward normal vector to 
the face of the cell Ω𝑝 and its length |𝐧𝑔| = |𝑒𝑔| is the area of the face.

The characteristic length of a discretized domain ∪𝑝∈L
Ω𝑝 is defined 

by the average of one-third power to the volume of the bounding box 
of a cell:

ℎL =
1|L| ∑

𝑝∈L

|Ω𝑝| 13𝐵 , (9)

where |Ω𝑝|𝐵 is the volume of the box whose diagonal is a vector 
𝐱𝑀 − 𝐱𝑚, where 𝐱𝑚 and 𝐱𝑀 are component-wise minimum and max-

imum of all vertices 𝐱𝑣𝑖 of Ω𝑝, respectively. The L indicates the level of 
mesh refinement, that is, when L increases, finer cells are generated. In 
Section 3, we use four levels of cells, roughly ℎL+1 ≈

1
2ℎL, to check the 

experimental order of convergence (𝐸𝑂𝐶).

2.2. Linearized eikonal equation with Laplacian regularization

In this subsection, we assume that there is a known function 𝑢𝜖′
which is possibly close to the solution of (4) and (5) with a regular-

ization parameter 𝜖′ > 0. We present how to use a cell-centered finite 
volume method with the Soner boundary condition to numerically find 
a solution 𝑢𝜖 of (4) and (5) with a smaller regularization parameter 
𝜖 < 𝜖′. Firstly, a linearization of the nonlinear term in (4) is used to 
obtain an equation of unknown function 𝑢𝜖 :

−𝜖△ 𝑢𝜖(𝐱) + 𝐯(𝐱) ⋅∇𝑢𝜖(𝐱) = 1, 𝐯(𝐱) =
∇𝑢𝜖′ (𝐱)|∇𝑢𝜖′ (𝐱)|𝜎 , 𝐱 ∈Ω ⧵ Γ, (10)

where |𝐱|𝜎 = (|𝐱|2 + 𝜎2)
1
2 with a small constant 𝜎 = 10−12. Note that 𝐯

is a fixed vector and the details of computing 𝑢𝜖′ are explained in the 
next subsection. Secondly, we show how to apply the Soner boundary 
condition in a cell-centered finite volume method. Even if a discretiza-

tion of the normal flow term, 𝐯 ⋅ ∇𝑢𝜖 , with Soner boundary condition 
is already presented in [40], we repeat the key points of the numerical 
scheme in order to completely explain a discretization of the Laplacian 
term with Soner boundary condition based on the flux-balanced approx-

imation [47] on a polyhedral cell.

Before we derive a discretization of using the Soner boundary con-

dition, a gradient computation is necessary at the center 𝐱𝑝 of the cell 
Ω𝑝. Since Γ can be a part of the boundary of the computational domain, 
let us denote an index set to indicate triangles on the boundary and Γ:

𝐷 = {𝑏 ∈ ∶ 𝑒𝑏 ⊂ Γ ∩ 𝜕Ω}. (11)

Defining 𝑝 =𝑝 ∪
(𝑝 ∩𝐷

)
, the weighted least-squares method is 

used to compute the gradient at the center 𝐱𝑝:

∇𝑢𝑝 ≡∇𝑢(𝐱𝑝) = argmin
𝐲∈ℝ3|𝐲|≤1

⎛⎜⎜⎝
∑
𝑎∈𝑝

(𝑢𝑝 + 𝐲 ⋅ 𝐝𝑝𝑎 − 𝑢𝑎)2|𝐝𝑝𝑎|2
⎞⎟⎟⎠ . (12)

Note that 𝑢𝑎 = 𝑢(𝐱𝑎) = 0, 𝑎 ∈ 𝑝 ∩ 𝐷 , because of Dirichlet boundary 
condition in (4). The constraint in (12) is also used in [40] which brings 
a more stable numerical computation. A component-wise constraint of 
the gradient is presented in [41,11] to improve stability. In [48], the 
same constraint in (12) is shown for a minimization approach to solve 
the eikonal equation.

Now, we use the basic idea of flux-balanced approximation [47]

and a deferred correction method on the linearized equation (10). By 
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the relation ∇𝑢 ⋅ 𝐯 = ∇ ⋅ (𝑢𝐯) − 𝑢∇ ⋅ 𝐯, the equation is evaluated at the 
center of the cell Ω𝑝:

−𝜖∇ ⋅∇𝑢(𝐱𝑝) + ∇ ⋅ (𝑢𝐯)(𝐱𝑝) − 𝑢(𝐱𝑝)∇ ⋅ 𝐯(𝐱𝑝) = 1,

where 𝑢 = 𝑢𝜖 for simplicity of formula derivation. Approximating a di-

vergence of vector-valued function 𝐅 evaluated at 𝐱𝑝 by integrating over 
the cell Ω𝑝:

∇ ⋅ 𝐅(𝐱𝑝) ≈
1|Ω𝑝| ∫

Ω𝑝

∇ ⋅ 𝐅𝑑𝑉 = 1|Ω𝑝| ∫
𝜕Ω𝑝

𝐅 ⋅ 𝐧𝑑𝑆,

where 𝐧 is an unit outward normal vector to 𝜕Ω𝑝, then we have

0 = −𝜖 ∫
𝜕Ω𝑝

∇𝑢 ⋅ 𝐧𝑑𝑆

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
(II)

+ ∫
𝜕Ω𝑝

𝑢𝐯 ⋅ 𝐧𝑑𝑆 − 𝑢𝑝 ∫
𝜕Ω𝑝

𝐯 ⋅ 𝐧𝑑𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(I)

−|Ω𝑝| (13)

After the complete discretization of two terms (I) and (II) is derived, 
we present a deferred correction method to compute the solution of (10)

at the end of this subsection.

The term (I) in (13) is further calculated:

(I) =
∑

𝑓∈𝑝∪𝑝

⎛⎜⎜⎜⎝∫𝑒𝑓 𝑢𝐯 ⋅
𝐧𝑝𝑓|𝐧𝑝𝑓 |𝑑𝑆 − 𝑢𝑝 ∫

𝑒𝑓

𝐯 ⋅
𝐧𝑝𝑓|𝐧𝑝𝑓 |𝑑𝑆

⎞⎟⎟⎟⎠
≈

∑
𝑓∈𝑝∪𝑝

(
𝑢𝑝𝑓 − 𝑢𝑝

)
𝜇𝑝𝑓 , (14)

where 𝑢𝑝𝑓 is a value at the center of face 𝑒𝑓 , 𝑓 ∈ 𝑝, 𝑢𝑝 = 𝑢(𝐱𝑝), and the 
normal flux 𝜇𝑝𝑓 is computed by

𝜇𝑝𝑓 = ∫
𝑒𝑓

𝐯 ⋅
𝐧𝑝𝑓|𝐧𝑝𝑓 |𝑑𝑆 ≈ 𝐯𝑓 ⋅ 𝐧𝑝𝑓 . (15)

The last term above is obtained by a formula with a small constant 
𝜎 = 10−12:

𝜇𝑝𝑓 ≈
𝜷𝑓(|𝜷𝑓 |2 + 𝜎2

) 1
2

⋅ 𝐧𝑝𝑓 , (16)

where 𝜷𝑓 is a gradient whose length is less than or equal to 1 at the 
center of the triangle 𝑒𝑓 , 𝑓 ∈ 𝑝 ∪𝑝, computed by a constraint mini-

mization using the pre-computed known function 𝑢𝜖′ ; see the equation 
(33) and the Remark 1 in [40] for the technical details. In order to find 
the complete discretization of the first term, we define the sets of in-

dices depending on the sign of the normal flux:

−
𝑝 = {𝑏 ∈𝑝 ∶ 𝜇𝑝𝑏 < 0}, +

𝑝 =𝑝 ⧵−
𝑝 ,

−
𝑝 = {𝑓 ∈ 𝑝 ∶ 𝜇𝑝𝑓 < 0}, +

𝑝 = 𝑝 ⧵−
𝑝 .

(17)

Considering a general case of Γ in (4), for example, a part of 𝜕Ω, we 
split the index set of boundary triangles into three cases:

𝑝 =
(−

𝑝 ∩𝐷

)
∪
(−

𝑝 ⧵𝐷

)
∪+

𝑝 , (18)

where 𝐷 is defined by (11). On a boundary triangle 𝑒𝑏, 𝑏 ∈ 𝑝, we 
derive the numerical scheme on +

𝑝 because it does not violate Soner 
boundary condition and on −

𝑝 ∩ 𝐷 because Dirichlet boundary con-

dition should be explicitly applied. The terms occurring on −
𝑝 ⧵ 𝐷

should be set to zero so as not to violate the Soner boundary condi-

tion. Then, the original discretization of the normal flow in [49,50] is 
changed because of using the Soner boundary condition:

(I) ≈
∑
𝑓∈−

𝑝

(
𝑢𝑞 +𝑞𝑢 ⋅ 𝐝𝑞𝑓 − 𝑢𝑝

)
𝜇𝑝𝑓 +

∑
𝑓∈+

𝑝 ∪+
𝑝

(𝑝𝑢 ⋅ 𝐝𝑝𝑓
)
𝜇𝑝𝑓

+
∑

𝑏∈−∩
(
𝑢𝑏 − 𝑢𝑝

)
𝜇𝑝𝑏

(19)
𝑝 𝐷
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where 𝑢𝑏 = 𝑢(𝐱𝑏) = 0, 𝑏 ∈ −
𝑝 ∩𝐷 and the modified inflow-based gra-

dient 𝑝𝑢 is used to include the influence of the Soner boundary condi-

tion:

𝑝𝑢 =

∑
𝑓∈−

𝑝 ∪(−
𝑝 ∩𝐷)

1|𝐝𝑝𝑓 |𝜷𝑓∑
𝑓∈−

𝑝 ∪(−
𝑝 ∩𝐷)

1|𝐝𝑝𝑓 |
. (20)

The term (II) is followed by the discretization of flux-balanced 
approximation [47]:

(II)=
∑
𝑞∈𝑝

∫
𝑒𝑔

∇𝑢 ⋅
𝐧𝑔|𝐧𝑔|𝑑𝑆 +

∑
𝑏∈𝑝

∫
𝑒𝑏

∇𝑢 ⋅
𝐧𝑝𝑏|𝐧𝑝𝑏|𝑑𝑆, (21)

where a polygon face 𝑒𝑔 = 𝜕Ω𝑝 ∩ 𝜕Ω𝑞 , 𝑔 ∈ , 𝑞 ∈𝑝, 𝑝 ∈ . From the 
centers of two cells, 𝐱𝑝 and 𝐱𝑞 , we find two points 𝐱𝑝′ and 𝐱𝑞′ such 
that the directional vectors 𝐝𝑝𝑝′ and 𝐝𝑞𝑞′ are perpendicular to the line 
passing at 𝐱𝑔 (7) along the direction 𝐧𝑔 (8):

𝐝𝑝𝑝′ = 𝐝𝑝𝑔 −
( 𝐧𝑔|𝐧𝑔| ⋅ 𝐝𝑝𝑔

) 𝐧𝑔|𝐧𝑔| , 𝐝𝑞𝑞′ = 𝐝𝑞𝑔 −
( 𝐧𝑔|𝐧𝑔| ⋅ 𝐝𝑞𝑔

) 𝐧𝑔|𝐧𝑔| .
Using the explicit expression 𝐝𝑝𝑝′ and 𝐝𝑞𝑞′ , we have an approximation 
of the first integral in (21):∑
𝑞∈𝑝

∫
𝑒𝑔

∇𝑢 ⋅
𝐧𝑔|𝐧𝑔|𝑑𝑆 ≈

∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ | (𝑢𝑞′ − 𝑢𝑝′
)

≈
∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ | ((𝑢𝑞 +∇𝑢𝑞 ⋅𝐝𝑞𝑞′
)
−
(
𝑢𝑝+∇𝑢𝑝 ⋅𝐝𝑝𝑝′

))
(22)

Note that more technical details are described in [47]. The second in-

tegral in (21) should be considered more carefully to apply the Soner 
boundary condition. Similar to (18), we split the index set of 𝑝 into 
three cases.

𝑝 =
(𝑝 ∩𝐷

)
∪
(𝑝 ⧵𝐷

)
=
(𝑝 ∩𝐷

)
∪
(+

𝑝 ⧵𝐷

)
∪
(−

𝑝 ⧵𝐷

)
.

(23)

In the first case, on a triangle 𝑒𝑏, 𝑏 ∈ 𝑝 ∩ 𝐷 , the Dirichlet condition 
is applied. In the second case, we use numerical values inside the com-

putational domain. In the third case, the terms occurring on −
𝑝 ⧵ 𝐷

should be set to zero not to violate the Soner boundary condition. Con-

sidering the mentioned three cases, we have an approximation of the 
second integral (21):∑
𝑏∈𝑝

∫
𝑒𝑏

∇𝑢 ⋅
𝐧𝑝𝑏|𝐧𝑝𝑏|𝑑𝑆 ≈

∑
𝑏∈𝑝∩𝐷

|𝑒𝑏||𝐝𝑝′𝑏| (𝑢𝑏 − 𝑢𝑝 −∇𝑢𝑝 ⋅ 𝐝𝑝𝑝′
)

+
∑

𝑏∈+
𝑝 ⧵𝐷

∇𝑢𝑝 ⋅ 𝐧𝑏, (24)

where 𝑢𝑏 = 𝑢(𝐱𝑏) = 0, 𝑏 ∈𝑝 ∩𝐷 .

Combining all derivations (19), (22), and (24), we have a complete 
discretization using the Soner boundary condition to solve (10):

0 = − 𝜖

⎛⎜⎜⎝
∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ | (𝑢𝑞 +∇𝑢𝑞 ⋅ 𝐝𝑞𝑞′ − 𝑢𝑝 −∇𝑢𝑝 ⋅ 𝐝𝑝𝑝′
)⎞⎟⎟⎠

− 𝜖

⎛⎜⎜⎝
∑

𝑏∈𝑝∩𝐷

|𝑒𝑏||𝐝𝑝′𝑏| (𝑢𝑏 − 𝑢𝑝 −∇𝑢𝑝 ⋅ 𝐝𝑝𝑝′
)
+

∑
𝑏∈+

𝑝 ⧵𝐷

∇𝑢𝑝 ⋅ 𝐧𝑏
⎞⎟⎟⎠

+
∑
𝑓∈−

𝑝

(
𝑢𝑞 +𝑞𝑢 ⋅ 𝐝𝑞𝑓 − 𝑢𝑝

)
𝜇𝑝𝑓 +

∑
𝑓∈+

𝑝 ∪+
𝑝

(𝑝𝑢 ⋅ 𝐝𝑝𝑓
)
𝜇𝑝𝑓

+
∑

𝑏∈−∩
(
𝑢𝑏 − 𝑢𝑝

)
𝜇𝑝𝑏 − |Ω𝑝|,

(25)
𝑝 𝐷
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where the gradient ∇𝑢𝑝 and the modified inflow-based gradient 𝑝𝑢

are defined by (12) and (20), respectively. On a regular cubic mesh, the 
displacement 𝐝𝑝𝑝′ and 𝐝𝑞𝑞′ are zero vectors and the equation above is 
a banded block diagonal matrix equation. In parallel computing using 
domain decomposition with the 1-ring neighborhood structure, if Ω𝑝 is 
located in the domain 𝐷1 and one of faces of Ω𝑝 is located between two 
domains, 𝐷1 and 𝐷2, one of the second face neighbor cells on Ω𝑝, that 
is, Ω𝑟, 𝑟 ∈𝑞 ⧵𝑝 and 𝑞 ∈𝑝, may not be accessible by the domain 
𝐷1 where Ω𝑝 is located. Such a cell exists when we compute ∇𝑢𝑞 or 
𝑞𝑢 in the formulation of (25) and then it is not possible to construct a 
correct linear system in the domains 𝐷1 and 𝐷2. To overcome the men-

tioned technical difficulties, we use a deferred correction method [51]

to solve (25) iteratively:

0 = − 𝜖

⎛⎜⎜⎝
∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ |
(
𝑢𝑘𝑞 +∇𝑢𝑘−1𝑞 ⋅ 𝐝𝑞𝑞′ − 𝑢𝑘𝑝 −∇𝑢𝑘−1𝑝 ⋅ 𝐝𝑝𝑝′

)⎞⎟⎟⎠
− 𝜖

⎛⎜⎜⎝
∑

𝑏∈𝑝∩𝐷

|𝑒𝑏||𝐝𝑝′𝑏|
(
𝑢𝑏 − 𝑢𝑘𝑝 −∇𝑢𝑘−1𝑝 ⋅ 𝐝𝑝𝑝′

)
+

∑
𝑏∈+

𝑝 ⧵𝐷

∇𝑢𝑘−1𝑝 ⋅ 𝐧𝑏
⎞⎟⎟⎠

+
∑
𝑓∈−

𝑝

(
𝑢𝑘𝑞 +𝑘−1

𝑞 𝑢 ⋅ 𝐝𝑞𝑓 − 𝑢𝑘𝑝

)
𝜇𝑝𝑓 +

∑
𝑓∈+

𝑝 ∪+
𝑝

(𝑝𝑢
𝑘−1 ⋅ 𝐝𝑝𝑓

)
𝜇𝑝𝑓

+
∑

𝑏∈−
𝑝 ∩𝐷

(
𝑢𝑏 − 𝑢𝑘𝑝

)
𝜇𝑝𝑏 − |Ω𝑝|,

(26)

where 𝑘 ∈ ℕ and 𝑢0 = 𝑢𝜖′ . Keeping in mind the formulation above, we 
continue to discuss a decreasing sequence of regularization parameters 
𝜖 and a pre-computed function 𝑢𝜖′ in (10) in the next subsection.

2.3. The regularization parameter 𝜖

The vanishing viscosity method expects that the solution 𝑢𝜖 of (4)

becomes close to the viscosity solution of (1) when the regularization 
parameter 𝜖 > 0 is smaller and smaller. Similarly, we would like to find 
a numerical solution of (4) and (5) converges to the viscosity solution 
when the characteristic length ℎ𝐿 (9) becomes smaller and smaller. 
That is, a numerical convergence is related to not only the character-

istic length ℎ𝐿 but also the regularization parameter 𝜖. An empirical 
relation between ℎ𝐿 and 𝜖 to obtain a numerical convergence is that 
when ℎ𝐿 becomes smaller, the regularization parameter 𝜖 must become 
smaller too. Such a relation is also observed in solving a variant of the 
phase field model of the simplified Stefan problem [52].

Another aspect of the regularization parameter 𝜖 is that it cannot be 
too small in a fixed discretized domain. The reason is similar to that the 
time step cannot be too large in the time-relaxed eikonal equation (3). 
The direct effect of time relaxation in a linear system is to add positive 
values on a diagonal element which brings more stable computation to 
solve the linear system; see more details in [40]. When the time step 
is too large, the positive value being added to the diagonal elements 
is too small and then we can observe oscillation over time as it is al-

ready shown in [40]. Similarly, if the regularization parameter 𝜖 is too 
small on a fixed discretized domain, then the numerical solution does 
not become close enough to the viscosity solution of (1). The same phe-

nomenon of a regularization parameter 𝜂 is also observed in [53,54] by 
solving a singularly perturbed boundary value problem in [55] or the 
screened Poisson equation [56],

−𝜂2 △𝑤(𝐱) +𝑤(𝐱) = 0, 𝐱 ∈Ω,

𝑤(𝐱) = 1, 𝐱 ∈ 𝜕Ω,
(27)

which can be transformed to

−𝜂△ 𝑣(𝐱) + |∇𝑣(𝐱)|2 = 1, 𝐱 ∈Ω,

𝑣(𝐱) = 0, 𝐱 ∈ 𝜕Ω,
(28)
78
by the Hopf–Cole transformation [57,58].

The obvious effect of using regularization parameter 𝜖 is to eliminate 
singularities and compute a smooth solution. However, if the parame-

ter is too large, the numerical solution is not accurate enough to be the 
distance function. If it is too small, the numerical computation is not 
stable enough. Therefore, a reasonable choice of the regularization pa-

rameter 𝜖 is from a large value to a small value in a certain range. We 
choose regularization parameters as a decreasing sequence:

𝜖𝑛 =
(
ℎ𝐿

) 1
2 𝑛 , 𝑛 ∈ℕ, (29)

where ℎ𝐿 < 1 is the characteristic length (9).

2.4. Proposed algorithm

In this subsection, combining the iterative algorithm (26) and a de-

creasing sequence 𝜖𝑛 of the regularization parameter (29), we propose 
an algorithm to compute a sequential numerical solution:

0 = − 𝜖𝑛

⎛⎜⎜⎝
∑
𝑞∈𝑝

|𝑒𝑔||𝐝𝑝′𝑞′ |
(
𝑢𝑛,𝑘𝑞 +∇𝑢𝑛,𝑘−1𝑞 ⋅ 𝐝𝑞𝑞′ − 𝑢𝑛,𝑘𝑝 −∇𝑢𝑛,𝑘−1𝑝 ⋅ 𝐝𝑝𝑝′

)⎞⎟⎟⎠
− 𝜖𝑛

⎛⎜⎜⎝
∑

𝑏∈𝑝∩𝐷

|𝑒𝑏||𝐝𝑝′𝑏|
(
𝑢𝑏 − 𝑢𝑛,𝑘𝑝 −∇𝑢𝑛,𝑘−1𝑝 ⋅ 𝐝𝑝𝑝′

)

+
∑

𝑏∈+
𝑝 ⧵𝐷

∇𝑢𝑛,𝑘−1𝑝 ⋅ 𝐧𝑏
⎞⎟⎟⎠

+
∑
𝑓∈−

𝑝

(
𝑢𝑛,𝑘𝑞 +𝑞𝑢

𝑛,𝑘−1 ⋅ 𝐝𝑞𝑓 − 𝑢𝑛,𝑘𝑝

)
𝜇𝑛−1
𝑝𝑓

+
∑

𝑓∈+
𝑝 ∪+

𝑝

(𝑝𝑢
𝑛,𝑘−1 ⋅ 𝐝𝑝𝑓

)
𝜇𝑛−1
𝑝𝑓

+
∑

𝑏∈−
𝑝 ∩𝐷

(
𝑢𝑏 − 𝑢𝑛,𝑘𝑝

)
𝜇𝑛−1
𝑝𝑏

− |Ω𝑝|, 𝑘 = 1,… ,𝐾𝑛

(30)

where 𝑢0 = 0, 𝑢𝑛,0 = 𝑢𝑛−1 is a pre-computed solution of (10), 𝐾𝑛 is 
defined by (32). The solution 𝑢𝑛,𝑘 of (30) is computed by 𝑢𝑛−1, the 
parameter 𝜖𝑛, and the 𝑘th number of iterations in (30). Note that we ex-

plain how to numerically implement Dirichlet boundary condition (4)

in the linear system (30) at the end of this subsection. Rewriting (30)

formally as a matrix equation,

𝐀𝑛−1𝑢𝑛,𝑘 = 𝐟(𝑢𝑛,𝑘−1), (31)

an algebraic multigrid method is used to solve the above equation. The 
𝑘th iteration is stopped at the smallest 𝐾𝑛 such that a residual error is 
smaller than a chosen error bound 𝜂 = 10−8:

𝐾𝑛 =min

{
𝑘∈ℕ ∶ 𝜌𝑛,𝑘 = 1|| ∑

𝑝∈
|||(𝐀𝑛−1𝜙𝑛,𝑘 − 𝐟(𝜙𝑛,𝑘)

)
𝑝

||| < 𝜂

}
, 𝑛≥2,

(32)

where the parenthesis above with a subscript (𝐫)𝑝 denotes the 𝑝th com-

ponent of the vector 𝐫. Then, we define 𝑢𝑛 ≡ 𝑢𝑛,𝐾𝑛 for 𝑛 ≥ 2. When 𝑛 = 1, 
we use 𝐾𝑛 = 1. The proposed algorithm is also presented step by step in 
Algorithm 1.

Remark 1. In the matrix of the linear system (30) on the 𝑝th row, the di-

agonal element is the coefficient of 𝑢𝑛,𝑘𝑝 and all off-diagonal elements are 
the coefficients of 𝑢𝑛,𝑘𝑞 , 𝑞 ∈𝑝. It means the system only uses neighbor 
cells across faces of Ω𝑝. Then, an implementation of (30) in a standard 
cell-centered FVM code is straightforwardly done for parallel comput-

ing using domain decomposition with 1-ring face neighborhood.
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Algorithm 1 A procedure to compute a numerical solution of (4)

and (5).

procedure

Initialization 𝑢0 = 0.

Set 𝑛 = 1 and 𝐾1 = 1.

Find a solution 𝑢1 = 𝑢1,1 of (30) with 𝑢1,0 = 𝑢0 = 0.

for 𝑛 ← 2 to 5 do

Set 𝑢𝑛,0 = 𝑢𝑛−1 .

Set 𝑘 = 1.

while 𝜌𝑛,𝑘 ≥ 𝜂 do ⊳ See (32).

Find a solution 𝑢𝑛,𝑘 of (30) with 𝑢𝑛,𝑘−1 .

𝑘 ← 𝑘 + 1
end while

end for

end procedure

When 𝑛 = 1 in the proposed algorithm (30), the linear system com-

putes a solution of the equation below because all gradients are zero 
with the initial choice 𝑢1,0 = 𝑢0 = 0:

−𝜖△ �̄�(𝐱) = 1 𝐱 ∈Ω ⧵ Γ,

�̄�(𝐱) = 0 𝐱 ∈ Γ,

𝝂(𝐱) ⋅∇�̄�(𝐱) = 0 𝐱 ∈ 𝜕Ω ⧵ Γ.

(33)

The direction of ∇�̄� is the same as the gradient of the viscosity solution 
in (1) because their zero level set Γ is identical. Then, for 𝑛 ≥ 2, the nor-

malized vector 𝐯 in (10) on Γ is already same as the vector 𝐯 computed 
by the viscosity solution of (1). In the case of Γ = 𝜕Ω, the solution of 
Poisson equation (33) is also used to approximate a distance function 
on a close neighborhood of Γ by a normalization scheme [59]. In [60], 
it is argued that there is a proximity in 𝐿2 sense between the solution 
of (33) and the distance function from Γ.

In order to complete the description of the proposed algorithm, we 
need to explain how the boundary value on Γ is implemented in a poly-

hedron mesh because Γ ⊂ Ω̄ is generally located on a given mesh. To do 
so, we define index sets to select the cells where Γ is located in Ω̄:

1 =
{
𝑝 ∈  ∶ Ω̄𝑝 ∩ Γ ≠ ∅, Γ ⊆ 𝜕Ω

}
,

2 =
{
𝑝 ∈  ∶ Ω̄𝑝 ∩ Γ ≠ ∅, Γ ⊊Ω, Γ ∩ 𝜕Ω= ∅

}
.

(34)

If Γ is a general shape, an octree search and point-in-cell algorithms 
are used to define the index sets above. Let us define a function 
 ∶𝐾 ⊂  →  by  (𝐾) =

{
𝑞 ∈  ∶ 𝑞 ∈𝑝, ∀𝑝 ∈𝐾

}
∪𝐾 . Now, we use 

the set Γ0 =  ( (2)) ∪  (1) and it is straightforward to compute the 
exact distance value from Γ at all points 𝐱𝑝, 𝑝 ∈ Γ0. An octree search 
algorithm can find a short list of potential elements in Γ to compute 
the shortest distance from 𝐱𝑝 to Γ and it is efficient enough because all 
points 𝐱𝑝, 𝑝 ∈ Γ0, are close to Γ. Then, the computed distance value on 
Γ0 is used in the proposed algorithm. That is, on the 𝑝th row of the ma-

trix (30), 𝑝 ∈ Γ0, we use the value and make all relevant off-diagonal 
element of Ω𝑝 to be zero in the matrix.

3. Numerical results

We present various examples to show the numerical properties of 
the proposed algorithm (30). The meshes generated by AVL FIRETM
are illustrated in Fig. 2 and the number of polyhedral cells |L| and 
the characteristic length ℎL (9) of the meshes are presented for four 
levels of meshes, L ∈ {1, 2, 3, 4}, in Table 1. Note that ℎL+1 < ℎL. The 
test examples are basically to compute a distance function from Γ on a 
given computation domain Ω and all details are explained below with 
constants 𝛾𝑖 =

𝑅𝑖
15 for 𝑖 = 1, 2, where 𝑅1 = 1.25 and 𝑅2 = 10.

EX1 Γ is a sphere with the center at the origin and the radius is 0.6
in the computational domain Ω = [−𝑅1, 𝑅1]3. The mesh 1

𝐿
is 

used in Table 1. The first level of mesh is shown in Fig. 2-(a).

EX2 Γ is a sphere at the origin with the radius is 0.3 in the computa-

tional domain Ω = [−8𝛾1, 22𝛾1] × [−15𝛾1, 15𝛾1] × [−15𝛾1, 15𝛾1] ⧵
79
Fig. 2. It is an illustration of meshes for computational domains in Table 1 with 
𝐿 = 1. The bold black lines are the boundary of the computational domain. The 
polyhedral cells inside the domain are presented. Note that the right side is the 
positive direction of 𝑥 axis, the top side is the positive direction of 𝑦 axis, and 
the direction coming out of the paper is the positive direction of 𝑧 axis.

Table 1

The numbers of polyhedral cells L and 
the characteristic length ℎL (9) of the 
meshes are presented; see the shape of 
the computational domains at the level 
L = 1 in Fig. 2.

mesh L |L| ℎL

1
L

1 10421 1.54 ⋅ 10−1
2 48516 9.24 ⋅ 10−2
3 331146 4.87 ⋅ 10−2
4 2301237 2.55 ⋅ 10−2

2
L

1 14821 1.17 ⋅ 10−1
2 70859 6.89 ⋅ 10−2
3 363418 4.08 ⋅ 10−2
4 2153388 2.34 ⋅ 10−2

3
L

1 18118 7.02 ⋅ 10−2
2 74301 4.22 ⋅ 10−2
3 362679 2.44 ⋅ 10−2
4 1868820 1.45 ⋅ 10−2

4
L

1 7863 6.52 ⋅ 10−1
2 58091 3.42 ⋅ 10−1
3 457436 1.73 ⋅ 10−1
4 3660530 8.71 ⋅ 10−2

Ω′, where Ω′ = [8𝛾1, 15𝛾1] ×[−15𝛾1, 15𝛾1] ×[−5𝛾1, 5𝛾1]. The mesh 
2

𝐿
is used in Table 1. The first level of mesh is shown in Fig. 2-

(b).

EX3 The computational domain is Ω = [−15𝛾1, 15𝛾1] ×[−15𝛾1, 15𝛾1] ×
[−5𝛾1, 5𝛾1] ⧵Ω′, where Ω′=[−5𝛾1, 15𝛾1] ×[−5𝛾1, 5𝛾1] ×[−5𝛾1, 5𝛾1]
and Γ = {15𝛾1} ×[5𝛾1, 15𝛾1] ×[−5𝛾1, 5𝛾1] is the upper right plane. 
The mesh 3

𝐿
is used in Table 1. The first level of mesh is shown 

in Fig. 2-(c).

EX4 The computational domain Ω is same as EX3 and Γ = {15𝛾1} ×
[5𝛾1, 15𝛾1] × [−5𝛾1, 5𝛾1] ∪ {15𝛾1} × [−15𝛾1, −5𝛾1] × [−5𝛾1, 5𝛾1] is 
the upper right and the lower right planes in Fig. 2-(c). The mesh 
3

𝐿
is used in Table 1.
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EX5 The computational domain Ω is same as EX3 and Γ = 𝜕Ω. The 
mesh 3

𝐿
is used in Table 1.

EX6 The computational domain is Ω =
[
−𝑅2

2 ,
𝑅2
2

]3
and Γ = 𝜕Ω. The 

mesh 4
𝐿

is used in Table 1.

EX7 The computational domain is the same as EX6 and Γ is a circle 
with the center at the origin and the radius 0.6, where the normal 
vector of the plane containing the circle is 𝑧 axis. The mesh 4

𝐿
is used in Table 1.

EX8 The computational domain is same as EX6 and Γ is a disk whose 
boundary is the circle in EX7. The mesh 4

𝐿
is used in Table 1.

EX9 The computational domain is Ω = [−𝑅2, 𝑅2]3 and Γ is a square 
with the center at the origin and the length of the side is 7𝑟2, 
where the normal vector of the plane containing the square is 𝑧
axis. The mesh 4

𝐿
is used in Table 1. The first level of mesh is 

shown in Fig. 2-(d).

EX10 The computational domain is same as EX9 and Γ is two squares 
of the same size used in EX9. The center of the first and second 
square is located at (0, 0, 7.5𝛾2) and (0, 0, −7.5𝛾2), respectively. 
The mesh 4

𝐿
is used in Table 1.

The exact solutions from EX1 to EX5 are already presented in [40] and 
the exact solutions from EX6 to EX10 can be analytically obtained. Note 
that the polyhedron meshes 2 and 3 are exactly the same as the 
one in [40]. A typical body-fitted surface mesh is used on two squares Γ
in the case of EX10. In Fig. 2-(d), half of a small square is visible on the 
boundary of 4

𝐿
, 𝐿 = 1. The same mesh is used to test cases from EX6

to EX10.

Prior to the numerical properties of the proposed algorithm, equidis-

tant isosurfaces of numerical solutions computed by the proposed algo-

rithm (30) are presented in Fig. 3 on the level 𝐿 = 4 in Table 1. They 
are qualitatively shown as a distance function from a given Γ illustrated 
by the color of dark red. In the cases of EX1, EX2, and EX10, we use a 
transparency on Γ to visually observe isosurfaces behind Γ. In the cases 
of EX5 and EX6, the surface Γ is not presented because Γ = 𝜕Ω.

The first numerical property is an experimental order of convergence 
(𝐸𝑂𝐶). Since exact solutions for all examples are known, we compute 
the errors 𝐸1

L
and 𝐸∞

L
of 𝐿1 and 𝐿∞ norms between a numerical solu-

tion on the Lth level of mesh and an exact solution, respectively. Then, 
for each error, the corresponding 𝐸𝑂𝐶 is calculated by

𝐸𝑂𝐶L =
log

(
𝐸L+1

𝐸L

)
log

(
ℎL+1

ℎL

) , L ∈ {1, 2, 3}. (35)

In Table 2, we present 𝐸𝑂𝐶s of all examples for a numerical solution of 
the proposed algorithm (30) with 𝜖𝑛, 𝑛 = 5. For smooth solutions of EX8

and EX9, the 𝐸𝑂𝐶s with 𝐸1 and 𝐸∞ errors are close to 2. In EX1, the 
𝐸𝑂𝐶s with 𝐸1 is larger than 2, but the 𝐸𝑂𝐶s with 𝐸∞ is close to 1
because of a singularity at the origin. For all non-smooth solutions, the 
𝐸𝑂𝐶s with 𝐸1 and 𝐸∞ errors are close to 1. Compared to the 𝐸𝑂𝐶s 
in [40], the behavior of 𝐸𝑂𝐶 is quite similar.

The second numerical property is the behavior of the errors versus 
the regularization parameter 𝜖𝑛 on a fixed level of meshes. For each 𝑛 on 
the Lth level of mesh, the proposed algorithm (30) provides a numerical 
solution 𝑢𝑛 with 𝜖𝑛 = (ℎL)

1
2 𝑛. For the next 𝑛 + 1, we use the solution 𝑢𝑛

and then find the next solution 𝑢𝑛+1 with 𝜖𝑛+1 (< 𝜖𝑛). In Table 3, for the 
case of EX1, errors 𝐸1 and 𝐸∞ of numerical solutions 𝑢𝑛 with 𝜖𝑛 from 
𝑛 = 2 to 𝑛 = 5 are presented on all levels of meshes.

A crucial observation is that the choice of 𝜖5 = ℎ
5
2
𝐿

brings a better re-

sult, that is, smaller errors, than the other regularization values 𝜖𝑛 for 
1 ≤ 𝑛 ≤ 4. Since we use 𝐾1 = 1 in (30), the results of 𝑛 = 1 are far from 
the exact solution. On a fixed level of mesh, when the regularization pa-

rameter 𝜖𝑛 is smaller, that is, 𝑛 becomes larger, the errors 𝐸1 and 𝐸∞

become smaller until 𝑛 = 5. The mentioned property can be seen on the 
rows with the same gray color in Table 3. For example, when L = 1, by 
80
Fig. 3. Iso-surfaces of numerical solutions computed by the proposed algo-

rithm (30) are presented on the level 𝐿 = 4 in Table 1.

the value on the second row of 𝐸1 column, the error on every fourth 
row below in the same column decreases; see the error values shad-

owed by the darkest gray color in Table 3. Also, the 𝐸𝑂𝐶s on different 
levels of meshes become better from 𝑛 = 2 to 𝑛 = 5. In order to check 
similar phenomena for all other examples, we provide a graph version 
of Table 3 from Figs. 4 to 8. When 𝑛 ≥ 6, the effect of the Laplacian 
regularizer is too small to solve the linear system (30) stably enough. 
A similar instability of using too small regularization parameter is also 
observed in [17,53,61]. A relation between the regularization parame-

ter and the order of the numerical scheme is also observed in [58]. A 
further numerical analysis is necessary to find an optimal regularization 
parameter to minimize an error between a numerical solution on a dis-

crete space of (4) and (5) and a viscosity solution of (1), which is out of 
the scope of this paper.
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Table 2

The 𝐸𝑂𝐶s (35) of all examples for a numerical solution of (30)

with 𝜖𝑛, 𝑛 = 5, are presented. L is the level of mesh listed in 
Table 1.

L 𝐸1 𝐸𝑂𝐶 𝐸∞ 𝐸𝑂𝐶

EX1

1 6.37 ⋅ 10−3 1.76 4.95 ⋅ 10−2 3.65
2 2.60 ⋅ 10−3 2.10 7.68 ⋅ 10−3 1.41
3 6.77 ⋅ 10−4 2.21 3.10 ⋅ 10−3 0.75
4 1.62 ⋅ 10−4 1.91 ⋅ 10−3

EX2

1 1.04 ⋅ 10−2 1.43 1.08 ⋅ 10−1 1.45
2 4.91 ⋅ 10−3 1.75 5.03 ⋅ 10−2 0.92
3 1.96 ⋅ 10−3 1.78 3.11 ⋅ 10−2 1.28
4 7.28 ⋅ 10−4 1.53 ⋅ 10−2

EX3

1 1.34 ⋅ 10−2 1.50 3.88 ⋅ 10−2 1.26
2 6.23 ⋅ 10−3 1.22 2.04 ⋅ 10−2 1.24
3 3.19 ⋅ 10−3 1.10 1.04 ⋅ 10−2 1.06
4 1.81 ⋅ 10−3 5.97 ⋅ 10−3

EX4

1 3.33 ⋅ 10−3 1.27 5.61 ⋅ 10−2 1.02
2 1.74 ⋅ 10−3 1.17 3.33 ⋅ 10−2 1.03
3 9.20 ⋅ 10−4 1.25 1.90 ⋅ 10−2 1.40
4 4.81 ⋅ 10−4 9.19 ⋅ 10−3

EX5

1 5.95 ⋅ 10−3 1.04 5.78 ⋅ 10−2 0.91
2 3.49 ⋅ 10−3 1.92 3.64 ⋅ 10−2 1.12
3 1.22 ⋅ 10−3 2.24 1.97 ⋅ 10−2 0.78
4 3.82 ⋅ 10−4 1.32 ⋅ 10−2

EX6

1 9.29 ⋅ 10−2 4.33 7.35 ⋅ 10−1 2.95
2 5.73 ⋅ 10−3 1.78 1.10 ⋅ 10−1 1.76
3 1.70 ⋅ 10−3 1.69 3.32 ⋅ 10−2 0.61
4 5.34 ⋅ 10−4 2.18 ⋅ 10−2

EX7

1 3.12 ⋅ 10−1 1.40 6.67 ⋅ 10−1 1.63
2 1.26 ⋅ 10−1 1.91 2.33 ⋅ 10−1 2.09
3 3.44 ⋅ 10−2 1.93 5.60 ⋅ 10−2 2.03
4 9.09 ⋅ 10−3 1.38 ⋅ 10−2

EX8

1 2.89 ⋅ 10−1 1.47 6.53 ⋅ 10−1 1.62
2 1.12 ⋅ 10−1 1.94 2.30 ⋅ 10−1 2.08
3 2.99 ⋅ 10−2 1.95 5.61 ⋅ 10−2 2.00
4 7.78 ⋅ 10−3 1.42 ⋅ 10−2

EX9

1 2.60 ⋅ 10−1 1.39 7.81 ⋅ 10−1 1.38
2 1.06 ⋅ 10−1 1.78 3.22 ⋅ 10−1 1.93
3 3.17 ⋅ 10−2 1.84 8.64 ⋅ 10−2 1.80
4 8.95 ⋅ 10−3 2.49 ⋅ 10−2

EX10

1 1.01 1.86 2.06 1.60
2 3.05 ⋅ 10−1 1.73 7.37 ⋅ 10−1 1.62
3 9.45 ⋅ 10−2 1.51 2.44 ⋅ 10−1 1.41
4 3.34 ⋅ 10−2 9.26 ⋅ 10−2

Table 3

For the case of EX1, errors 𝐸1 and 𝐸∞ of numerical so-

lutions (30) with 𝜖𝑛 from 𝑛 = 2 to 𝑛 = 5 are presented 
on all levels of meshes. From a fixed 𝜖𝑛, the 𝐸𝑂𝐶s are 
also shown on different levels of meshes.

L 𝜖𝑛 𝐸1 𝐸𝑂𝐶 𝐸∞ 𝐸𝑂𝐶

1

ℎ1
L

9.87E-02 −0.23 2.52E-01 −0.14
2 1.11E-01 0.44 2.70E-01 0.23
3 8.40E-02 0.59 2.34E-01 0.24
4 5.72E-02 2.00E-01

1

ℎ
3
2
L

3.63E-02 0.74 1.20E-01 0.56
2 2.48E-02 1.10 9.05E-02 0.81
3 1.23E-02 1.18 5.40E-02 1.05
4 5.73E-03 2.74E-02

1

ℎ2
L

1.52E-02 1.33 7.47E-02 1.79
2 7.72E-03 1.66 3.00E-02 1.36
3 2.67E-03 1.87 1.26E-02 1.10
4 7.98E-04 6.20E-03

1

ℎ
5
2
L

6.37E-03 1.76 4.95E-02 3.65
2 2.60E-03 2.10 7.68E-03 1.41
3 6.77E-04 2.21 3.10E-03 0.75
4 1.62E-04 1.91E-03

The third numerical property is a comparison of computational 
cost. To minimize a systematical bias, we purposely choose the time-

relaxed bidirectional eikonal equation [40] already implemented in

AVL FIRETM. The proposed algorithm is also implemented in the same 
language (Fortran 2003) and all algorithms are compiled by the same 
compiler options.

Since the time-relaxed bidirectional eikonal equation is time-

dependent and the governing equation in this paper is time-independent, 
we stop the time evolution in (3) right before the 𝐸1 error of (3) be-

comes smaller than the 𝐸1 error of the proposed algorithm. That is, we 
measure a computational cost until two methods reach the same error 
bound. In Table 4, such a final time 𝑇 is shown on the column labeled 
by “Final 𝑇 ” for all examples. On that column, 𝑇𝑀 means that 𝐸1 error 
of (3) is not smaller than the 𝐸1 error of the proposed algorithm until 
the predetermined final time 𝑇𝑀 , specified in [40]. Time1 and Time2

are the computation time in seconds for the proposed algorithm (30)

and the algorithm in [40], respectively, and the corresponding total 
number of iterations are shown right next to the computational time. 
The calculations of using 2 ⋅ L numbers of CPUs for all examples in the 
Lth level of mesh are repeated five times in a shared memory system (In-

tel® Core™ Processor i7-8700K CPU 3.70 GHz 12 CPUs and 62 gigabyte 
memory). The computational time (Time1 and Time2) in Table 4 is the 
average of five measurements. Since the distance information in (3) is 
evolved from Γ over time, the time-relaxed bidirectional equation has 
certainly a disadvantage in computational time whenever it is neces-

sary to compute a distance further away from Γ. The last column shows 
how much the proposed algorithm is faster than the algorithm to solve 
the time-relaxed bidirectional eikonal equation to reach the same 𝐸1

error. In the case of EX5, the time ratio is quite different from other 
examples because Γ = 𝜕Ω makes the traveling distance much shorter 
than other examples. In other words, the computational time of the 
proposed algorithm becomes faster than the previous approach [40] as 
long as the region of interest to find distance values is far away from 
Γ.

In the last example, we would like to show the sequential results 
along the decreasing regularization parameter 𝜖𝑛 and we present a qual-

itative comparison of the proposed algorithm (30) between polyhedron 
and hexahedron mesh on a box shape of the computational domain 
[−0.101, 0.111] × [−0.061, 0.091] × [−0.049, 0.053]. The number of cells 
and the characteristic length on polyhedron mesh are 𝑁 = 2452429 and 
ℎ = 1.49 ⋅ 10−3. For the hexahedron mesh, we have 𝑁 = 3105000 and 
ℎ = 1.02 ⋅ 10−3. We use the residual error bound 𝜂 = 10−6 in (32). The 
given surface Γ, the Dragon, is illustrated in Fig. 10 from the Stan-

ford 3D scanning repository.1 In Fig. 10, from the top to the bottom, 
we present equidistance isosurfaces from the solutions of (30) on the 
polyhedron mesh with the decreasing regularization parameters 𝜖𝑛, 
𝑛 = 1, … , 4. The results of the first 𝜖1 are far away from the distance 
function of the Dragon surface. However, the results of the second 𝜖2
are dramatically improved because the normalized gradient vectors of 
the first result on the Dragon surface are already the same as the vectors 
computed by the viscosity solution of the eikonal equation. In Fig. 11, 
the results in the first row are computed on the polyhedron mesh with 
𝜖5 = ℎ

5
2 and they are almost the same as the results in the last row 

(𝜖4 = ℎ
4
2 ) in Fig. 10. The results in the second row in Fig. 11 are com-

puted on the hexahedron mesh with 𝜖5 = ℎ
5
2 . They are nearly the same 

results on the polyhedron mesh because the characteristic lengths of 
two meshes are deliberately chosen to be a similar size.

4. Conclusion

We present a cell-centered finite volume method to solve a Lapla-

cian regularized eikonal equation with Soner boundary condition on 

1 http://graphics .stanford .edu /data /3Dscanrep.
81

http://graphics.stanford.edu/data/3Dscanrep
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Fig. 4. For the cases of EX1 and EX2, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second 
order convergence, respectively.

Fig. 5. For the cases of EX3 and EX4, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second 
order convergence, respectively.

Fig. 6. For the cases of EX5 and EX6, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second 
order convergence, respectively.
polyhedral meshes in order to compute a distance function from given 
objects. Using a linearized form of the equation, a numerical solution 
is sequentially updated by a decreasing sequence of the regularization 
parameters depending on a characteristic length of discretized domain. 
The normalized gradient field of the first solution in the sequence is 
substantially improved on the given objects. As the characteristic length 
becomes smaller, the regularization parameter becomes smaller and a 
convergence to the viscosity solution is numerically verified. The 𝐸𝑂𝐶
of 𝐿1 norm of the error is shown to be the second order for tested 
smooth solutions. Compared to the computational time of solving the 
82
time-relaxed bidirectional eikonal equation, the proposed algorithm has 
the advantage to dramatically reducing the time when a larger number 
of cells is used or a region of interest is far away from where the dis-

tance measurement starts. The implementation of parallel computing 
using domain decomposition with the 1-ring face neighbor structure 
can be done straightforwardly by a standard cell-centered finite volume 
code.

Data availability

Data will be made available on request.
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Fig. 7. For the cases of EX7 and EX8, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second 
order convergence, respectively.

Fig. 8. For the cases of EX9 and EX10, the graphs ℎ𝐿 versus 𝐸1 (or 𝐸∞) are presented in the log-log scale. The gray and black dotted lines show the first and second 
order convergence, respectively.

Table 4

For all examples, a comparison of computational cost is presented by 
using 2 ⋅ L numbers of CPUs on the Lth level of mesh. Time1 and Time2

are the computation time in seconds of the proposed algorithm (30) and 
the algorithm in [40], respectively, and the corresponding total number 
of iterations are shown right next to the computational time. The final 
𝑇 to solve (3) is decided by the same 𝐸1 error value as the proposed 
method; see more details in Section 3.

L Time1 (s)

5∑
𝑛=1

𝐾𝑛 Final 𝑇 Time2 (s) 𝑁𝑡𝑜𝑡 Ratio

EX1

1 5.04 33 1.200 6.59 30 1.31
2 10.72 24 1.280 38.42 64 3.58
3 66.37 16 1.360 625.15 136 9.42
4 438.30 12 1.430 7378.86 286 16.84

EX2

1 7.95 43 1.640 10.58 41 1.33
2 20.25 35 1.680 67.18 84 3.32
3 92.46 25 1.730 774.62 173 8.38
4 488.79 15 1.775 8250.24 355 16.88

EX3

1 9.73 42 4.080 24.97 102 2.56
2 19.23 27 4.220 126.51 105 6.58
3 75.46 13 4.210 1473.19 421 19.52
4 304.69 8 4.225 13159.04 845 43.19

EX4

1 7.69 29 2.680 16.54 67 2.15
2 15.72 19 2.980 90.00 149 5.73
3 63.34 10 2.940 1031.72 294 16.29
4 233.38 6 2.870 8929.88 574 38.26

EX5

1 5.68 20 𝑇𝑀 = 2 12.44 50 2.19
2 12.63 16 𝑇𝑀 = 2 60.38 100 4.78
3 54.87 12 𝑇𝑀 = 2 708.74 200 12.92
4 173.09 7 0.630 1951.68 126 11.28
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Fig. 9. Two sides of dragon surface Γ.

Fig. 10. From the top to the bottom, we present equidistance isosurfaces from the solutions of (30) on the polyhedron mesh with the decreasing regularization 
parameters.
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Fig. 11. The qualitative comparison of equidistance isosurfaces from the dragon surface in Fig. 9 is shown by the results computed on polyhedron and hexahedron 
mesh with a similar size of the characteristic length.
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[47] P. Frolkovič, K. Mikula, J. Hahn, D. Martin, B. Basara, Flux balanced approximation 
with least-squares gradient for diffusion equation on polyhedral mesh, in: Discrete 
& Continuous Dynamical Systems - S, 2020.

[48] P.-A. Fayolle, A.G. Belyaev, An ADMM-based scheme for distance function approxi-

mation, Numer. Algorithms 84 (2020) 983–996.
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