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Abstract: A novel approach to a three-dimensional (3D) model creation from data sets obtained by laser scanning or photogrammetry is pre-
sented, including a description of themethod and efficient numerical algorithms for 3Dmodel creation for surveying applications. The presented
method solves the fundamental problem of surface reconstruction by constructing models using differential geometry and partial differential
equations. The time-relaxed eikonal equation was used to obtain the distance function from the cloud of points, and the 3Dmodel was then cre-
ated by the evolution of an initial guess by the advection equation regularized by curvature, where the advective velocity is given by the gradient
of the computed distance function. The partial differential equations were discretized by the finite-difference schemes, and the results of the 3D
model creation arepresented anddiscussed.DOI: 10.1061/(ASCE)SU.1943-5428.0000159.© 2016AmericanSociety ofCivil Engineers.

Introduction

The creation of a three-dimensional (3D) model from a data set
obtained by laser scanning is often a very complicated and time-
consuming process. The principal aim of processing the data is the
creation of the model (S�), which approximates the real shape (S) as
much as possible. The main difficulties of surface reconstruction
from point clouds include (1) an unknown connectivity or ordering
information among the data points, (2) an unknown topology of
the original surface, and (3) a noise and nonuniformity of the data.

There are many approaches to the processing of these data sets.
Commercial software mostly uses three of them: triangulated surfa-
ces, nonuniform B-spline surfaces (NURBS), and the replacement
of data points by mathematically defined objects. The first two
methods are used for creating models of objects with complicated
topology, and the third one is used when it is possible to replace
some parts of the object by mathematically defined entities, such as
a sphere, cube, block, cylinder, or spire. Different software pack-
ages for different tasks of model creation are available. However,
because of the high price of these packages, it is sometimes difficult
and expensive to use the best one for each task. Because laser scan-
ning is widely applicable in various fields, efficient processing algo-
rithms have also been developed for particular tasks (Dorninger and
Pfeifer 2008; ElMeouche et al. 2013).

This paper presents a new approach to 3D model creation based
on the level set method (LSM). The LSM solves the level set equa-
tions inwhich the evolution of the level set function is given by solu-
tion of the partial differential equations (PDEs). The use of LSM is
diverse (i.e., there aremany applications in physics,material science,
image processing, or computer graphics; Bourgine et al. 2009;Osher

and Fedkiw 2002; Osher and Paragios 2003; Sethian 1999). This
paper uses LSM for the model creation in surveying where the
unorganized set of points is obtained by laser or optical scanning
or photogrammetry. This method is called level set method for
surface reconstruction (LSMSR), and it consists of the solution of
two PDEs. Solution of the first PDE gives the distance function to
point cloud, whereas the second one gives the function that repre-
sents the final 3D model. The whole solution is performed on a
simple rectangular grid in a chosen computational domain (X).
The set of points (X0) obtained by 3D scanning or photogrammet-
ric methods is a subset of X. The LSM is used as a numerical tool
to deform an initial guess to its final form. The 3D model is cre-
ated as an isosurface of the final level set function given on a
fixed rectangular grid. This work is based on an idea presented by
Zhao et al. (2000, 2001), but opposite to that approach, the
authors do not follow just one isosurface of the evolving level set
function, as it is standard in the classical LSM. Instead, an idea of
the subjective surface method is used (Sarti et al. 2000), and the
final 3D model is detected as one of the isosurfaces of a shock-
like profile in the final shape of the level set function (see also
Corsaro et al. 2006; Mikula and Sarti 2007). This makes the
method robust with respect to the isosurface choice and represents
the novelty in comparison to Zhao et al. (2000, 2001).

The paper is organized as follows: “Mathematical Formulation
of LSMSR” describes the formulation of the authors’ approach.
“Numerical Solution of LSMSR” proposes a numerical solution to
this mathematical model. In “Quantitative Tests of the Algorithm”

the proposed procedure is tested on the specific representative
examples, and in “Practical Examples of 3D Model Creation
Using LSMSR,” some real examples of model creation from data
obtained by 3D scanning and photogrammetry are presented.

Mathematical Formulation of LSMSR

As already mentioned in the introduction, this method of the model
creation is based on the solution of two PDEs. The distance function
to the 3D point cloud is given as the stationary solution of the so-
called time-relaxed eikonal equation

dt þ jrdj ¼ 1 (1)

coupled with a Dirichlet-type condition
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dðxÞ ¼ 0 for x 2 X0 � X (2)

where X = computational domain; and X0 = set of measured point
clouds. The second partial differential equation is the advection
equation with the curvature term

ut �rd � ruþ d jrujr � ru
jruj

� �
¼ 0 (3)

where ðx; tÞ 2 X� ½0; TS� and v ¼ �rd = advective velocity given
by the gradient of the computed distance function taken with the
minus sign. The parameter d 2 ½0; 1� in the last term determines the
influence of curvature on the final shape of the created object.
Eq. (3) is accompanied by the Dirichlet boundary conditions and an
initial condition that will be discussed in the section “Finding an
Initial Surface.”

Numerical Solution of LSMSR

The numerical solution for this mathematical model [Eqs. (1)–(3)]
consists of three steps:
• finding a distance function to the point cloud by solving Eqs.

(1) and (2),
• finding an initial surface for the evolution Eq. (3), and
• generating a final model by solving the level set Eq. (3).

Fig. 1. Influence of parameter b on the shape of the initial guess: (a)
right choice; (b) a wrong choice

Fig. 2. Object models created for different values of hD from the input data set with point densities of (a) 1 mm; (b) 2 mm; and (c) 3 mm
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Finding a Distance Function

For the numerical solution of the time-relaxed eikonal Eq. (1) with
the condition Eq. (2), the relaxationmethod with fixing described by
Bourgine et al. (2009) is used. The method is simply implemented
and efficient for 3D computations. It is based on explicit time discre-
tizationwith time step (tD) and on the spatial discretization based on
the Rouy-Tourin scheme (Rouy and Tourin 1992). A discretization
of the computational domain X in the form of a uniform 3D grid of
cubic elements with the edge size hD is assumed, and the element of
such grid is called a voxel. The choice of parameter hD depends on

the density of the measured points. A position of every grid point is
defined by three indices (i; j; k). After discretization of X, the exact
distance is assigned to the grid points that are close to the measured
data points. These values are fixed in further computations. A small
positive value is assigned to all other grid points in the initialization
step. The values of these nonfixed grid points are subsequently
updated by the following algorithm.

Let dni;j;k represent the value of the numerical solution of Eqs.
(1)–(2) in a grid point i; j; k at time step n. The value at new
time step nþ 1 in any nonfixed point is given by

Table 1. Values of HD(A,B) for Data Sets ch1, ch2, and ch3, Depending on the Mesh Density Parameter (hD)

HD(A,B)

Grid size hD

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

HD(A,B) for input points ch1 with density 1 mm 0.0154 0.0279 0.0445 0.0643 0.0741 0.0883 0.1070 0.1235 0.1396 0.1504
HD(A,B) for input points ch2 with density 2 mm 0.0161 0.0296 0.0453 0.0689 0.0757 0.0846 0.1133 0.1196 0.1395 0.1458
HD(A,B) for input points ch3 with density 3 mm 0.0153 0.0297 0.0441 0.0676 0.0716 0.0902 0.1105 0.1224 0.1465 0.1509

Note: Bold values indicate the optimal (smallest) value or a range of optimal values in a row.

Table 2. Values of HD(B,A) for Data Sets ch1, ch2, and ch3, Depending on the Mesh Density Parameter (hD)

HD(B,A)

Grid size hD

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

HD(B,A) for input points ch1 with density 1 mm 0.2427 0.2420 0.2427 0.2420 0.2421 0.2452 0.2500 0.2527 0.2579 0.2704
HD(B,A) for input points ch2 with density 2 mm 0.4740 0.4747 0.4730 0.4707 0.4717 0.4707 0.4742 0.4725 0.4749 0.4798
HD(B,A) for input points ch3 with density 3 mm 0.6598 0.6621 0.6615 0.6586 0.6575 0.6586 0.6603 0.6595 0.6678 0.6651

Note: Bold values indicate the optimal (smallest) value or a range of optimal values in a row.

Fig. 3. Influence of parameter d on the final model for the data set with point density 1 mm

© ASCE 04016007-3 J. Surv. Eng.
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Table 3. Values of HD(A,B) for Data Set ch3 Depending on the Mesh Density Parameter (hD) and the Curvature Parameter (d )

HD(A,B) (mm)

Parameter d

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

HD(A,B) for hD = 0.5 0.1509 0.1460 0.1448 0.1470 0.1487 0.1519 0.1561 0.1601 0.1641
HD(A,B) for hD = 0.4 0.1238 0.1174 0.1158 0.1173 0.1198 0.1230 0.1263 0.1298 0.1335
HD(A,B) for hD = 0.3 0.0902 0.0879 0.0880 0.0893 0.0920 0.0946 0.0974 0.1003 0.1033

Note: Bold values indicate the optimal (smallest) value or a range of optimal values in a row.

Table 4. Values of HD(B,A) for Data Set ch3 Depending on the Mesh Density Parameter (hD) and the curvature parameter (d )

HD(A,B) (mm)

Parameter d

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

HD(B,A) for hD = 0.5 0.6651 0.6638 0.6637 0.6639 0.6644 0.6654 0.6695 0.6703 0.6712
HD(B,A) for hD = 0.4 0.6603 0.6582 0.6571 0.6585 0.6584 0.6586 0.6589 0.6615 0.6621
HD(B,A) for hD = 0.3 0.6586 0.6588 0.6599 0.6600 0.6634 0.6639 0.6645 0.6652 0.6658

Note: Bold values indicate the optimal (smallest) value or a range of optimal values in a row.

Table 5. Values of HD(A,B) for Data Set ch2 Depending on the Mesh Density Parameter (hD) and the Curvature Parameter (d )

HD(A,B) (mm)

Parameter d

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

HD(A,B) for hD = 0.4 0.1204 0.1119 0.1113 0.1133 0.1158 0.1181 0.1204 0.1224 0.1246
HD(A,B) for hD = 0.3 0.0846 0.0806 0.0797 0.0809 0.0829 0.0851 0.0875 0.0904 0.0936
HD(A,B) for hD = 0.2 0.0689 0.0643 0.0641 0.0649 0.0663 0.0680 0.0698 0.0715 0.0730

Note: Bold values indicate the optimal (smallest) value or a range of optimal values in a row.

Table 6. Values of HD(B,A) for Data Set ch2 Depending on the Mesh Density Parameter (hD) and the Curvature Parameter (d )

HD(B,A) (mm)

Parameter d

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

HD(B,A) for hD = 0.4 0.4731 0.4699 0.4704 0.4733 0.4731 0.4745 0.4751 0.4759 0.4783
HD(B,A) for hD = 0.3 0.4707 0.4694 0.4695 0.4695 0.4698 0.4702 0.4707 0.4713 0.4730
HD(B,A) for hD = 0.2 0.4707 0.4707 0.4706 0.4706 0.4707 0.4720 0.4722 0.4731 0.4734

Note: Bold values indicate the optimal (smallest) value or a range of optimal values in a row.

Table 7. Values of HD(A,B) for Data Set ch1 Depending on the Mesh Density Parameter (hD) and the Curvature Parameter (d )

HD(A,B) (mm)

Parameter d

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

HD(A,B) for hD = 0.3 0.0883 0.0839 0.0821 0.0819 0.0824 0.0835 0.0850 0.0865 0.0880
HD(A,B) for hD = 0.2 0.0643 0.0606 0.0604 0.0608 0.0615 0.0622 0.0633 0.0647 0.0661
HD(A,B) for hD = 0.1 0.0279 0.0242 0.0243 0.0247 0.0253 0.0259 0.0265 0.0273 0.0281

Note: Bold values indicate the optimal (smallest) value or a range of optimal values in a row.

Table 8. Values of HD(B,A) for Data Set ch1 Depending on the Mesh Density Parameter (hD) and the Curvature Parameter d

HD(A,B) (mm)

Parameter d

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

HD(B,A) for hD = 0.3 0.2452 0.2427 0.2421 0.2421 0.2425 0.2430 0.2436 0.2444 0.2453
HD(B,A) for hD = 0.2 0.2420 0.2410 0.2414 0.2419 0.2423 0.2426 0.2430 0.2434 0.2443
HD(B,A) for hD = 0.1 0.2420 0.2418 0.2418 0.2421 0.2424 0.2427 0.2429 0.2431 0.2433

Note: Bold values indicate the optimal (smallest) value or a range of optimal values in a row.

© ASCE 04016007-4 J. Surv. Eng.
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dnþ1
i;j;k ¼ dni;j;k þ tD � tD

hD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðM�1;0;0

i;j;k ; M1;0;0
i;j;k Þ þmaxðM0;�1;0

i;j;k ; M0;1;0
i;j;k Þ þmaxðM0;0;�1

i;j;k ; M0;0;1
i;j;k Þ

q
(4)

where Mp;q;r
i;j;k ¼ ðminðdniþp;jþq;kþr � dni;j;k; 0ÞÞ2, p; q; r 2 f�1; 0; 1g;

jpj þ jqj þ jrj ¼ 1. Eq. (4) is stable for tD � hD=2 and gives values
gradually approaching the approximate distance function. This prop-
erty allows one to utilize a fixing strategy. An index set (F) is intro-
duced that contains the indices fi; j; kg of grid points, which already
reached the steady state (i.e., difference between dnþ1

i;j;k and dni;j;k is
smaller than a prescribed tolerance. Such points are fixed and
removed from further computations. The distance function computa-
tion is finished when all grid points are fixed.

Finding an Initial Surface

Because an initial surface is deformed to the final shape by solving the
level set Eq. (3), it is very important to find a good initial guess [i.e.,
the initial condition (u0) for the evolution Eq. (3)]. Although any initial
surface that contains the measured data set can be used, the suitable
choice of the initial condition is crucial for the efficiency of LSMSR.

To find the proper initial guess, the following tagging algo-
rithm is used. First, an initial exterior region is created, which
should be a subset of the true exterior domain. It contains vox-
els outside of the measured data points (e.g., only the voxels
along the borders of the computational domain X). The set of
all of these exterior voxels is denoted by F. A parameter (b )
representing a certain value of the distance function is chosen.
Then, a first voxel in the set F is taken, and whether it has a
nonexterior neighbor with a value of distance function greater
than b is determined. If such a neighbor exists, this point is
tagged as exterior and added to the set F. Then, a next exterior
point from the set F is taken, and the procedure is repeated.
The tagging algorithm is applied to any point only once, and it
is finished when the last exterior point in the set F is checked.

The right choice of parameter b is very important. In the contin-
uous limit, if dðxÞ is the distance function to a smooth surface, the
zero level set [i.e., the set fx : dðxÞ ¼ b ¼ 0g] is the true surface.
From this point of view, one would like to choose a value of b as

Fig. 4. Plots of (a)HD(A,B) and (b)HD(B,A) for the data set ch3 depending on the mesh density parameter hD and the curvature parameter d
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small as possible. However, in the point clouds discrete case, if a b
value is too small, the contour may consist of separated small
spheres around data points. Fig. 1 presents an example of the right
and wrong choice of b . On the left, the contour dðxÞ ¼ b (thicker
line) is the continuous line, and on the right, the contour consists of
more discontinuous objects. The correct choice of b also depends
on the sampling density of data.

Generating the Final Model

Numerical Solution of Level Set Equation
without Curvature Term
If one does not want to include the influence of curvature on the final
object shape, it is possible to use only the advective part of Eq. (3)

ut �rd � ru ¼ 0 (5)

Then, the explicit time discretization with the time step (t S)
and the space discretization based on the upwind principle can be
used. If the spatial grid size is hD, and the central differences for
the function d in coordinate directions Dx

i;j;kd; D
y
i;j;kd; and Dz

i;j;kd
are defined as

Dx
i;j;kd ¼ ðdiþ1;j;k � di�1;j;kÞ=ð2hDÞ

Dy
i;j;kd ¼ ðdi;jþ1;k � di;j�1;kÞ=ð2hDÞ

Dz
i;j;kd ¼ ðdi;j;kþ1 � di;j;k�1Þ=ð2hDÞ

(6)

then the numerical approximation of Eq. (5) is obtained in the
form

unþ1
i;j;k ¼ uni;j;k �

t S
hD

maxð�Dx
i;j;kd; 0Þ ðuni;j;k � uni�1;j;kÞ þminð�Dx

i;j;kd; 0Þ ðuniþ1;j;k � uni;j;kÞþ
þmaxð�Dy

i;j;kd; 0Þ ðuni;j;k � uni;j�1;kÞ þminð�Dy
i;j;kd; 0Þ ðuni;jþ1;k � uni;j;kÞþ

þmaxð�Dz
i;j;kd; 0Þ ðuni;j;k � uni;k;k�1Þ þminð�Dz

i;j;kd; 0Þ ðuni;j;kþ1 � uni;j;kÞ

2
6664

3
7775 (7)

which is stable for t S � hD=2.

Fig. 5. Plots of (a)HD(A,B) and (b)HD(B,A) for the data set ch2 depending on the mesh density parameter hD and the curvature parameter d
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Numerical Solution ofLevel SetEquation
IncludingCurvatureTerm
As is shown in the next sections, the curvature term in Eq. (3) may
have an important impact on the final 3D model created. This sec-
tion presents its numerical discretization and thus the final numeri-
cal scheme for solving Eq. (3). The level set formulation of the
mean curvature flow was suggested by Osher and Sethian (1998).
The corresponding nonlinear partial differential equation has the
following form:

ut � jrujr � ru
jruj

� �
¼ 0 (8)

where uðx; tÞ = unknown level set function, ðx; tÞ 2 X� ð0; TÞ;X =
computational domain; and ð0; TÞ = time interval. The level set Eq.
(8) is accompanied by the initial condition

uðx; 0Þ ¼ u0ðxÞ; x 2 X (9)

Because of a possibly vanishing gradient in the case of arising
flat areas, Eq. (8) is regularized by the so-called Evans-Spruck
approach (Evans and Spruck 1991), leading to the equation

ut � jrujɛr � ru
jrujɛ

� �
¼ 0 (10)

Fig. 6. Plots of (a)HD(A,B) and (b)HD(B,A) for the data set ch1 depending on the mesh density parameter hD and the curvature parameter d

Table 9. List of Objects, Their Size, Scanning Resolution, and Mesh Parameters

Object Size of object (m) Number of measured points Resolution of scanning (mm) Grid size hD (mm) Number of cells

Human vertebrae 0.09� 0.08� 0.05 1,133 3 0.5 160� 150� 140
Human vertebrae 0.09� 0.08� 0.05 2,424 2 0.4 200� 200� 140
Pillar in Gerulata 1.2� 1.0� 0.9 2,199 50 10 175� 180� 130
Well in Gerulata 2.8� 2.8� 1.1 3,704 50 10 285� 285� 110
Well in Gerulata 2.8� 2.8� 1.1 11,441 30 10 285� 285� 110
Part of generator 2.5� 2.5� 1.0 49,471 15 10 250� 250� 100
Part of statue 1.8� 1.2� 0.3 20,137 10 5 360� 240� 60
Church 16.5� 5.5� 13 421,067 70 50 360� 260� 280

© ASCE 04016007-7 J. Surv. Eng.
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where jrujɛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ɛ2 þ jruj2

q
; and ɛ = small regularization

parameter.
The explicit finite-difference scheme for solving the regularized

mean curvature flow level set Eq. (10), with time step (tS) and spa-
tial grid size (hD), is then given by

unþ1
i;j;k ¼ uni;j;k þ tS

�
ɛ2 þ ðunyi;j;kÞ2 þ ðunzi;j;kÞ2

�
unxxi;j;k þ

�
ɛ2 þ ðunxi;j;kÞ2 þ ðunzi;j;kÞ2

�
unyyi;j;k

þðɛ2 þ unxi;j;k þ unyi;j;kÞ unzzi;j;k � 2unxi;j;ku
n
yi;j;k u

n
xyi;j;k

� 2unxi;j;k u
n
zi;j;ku

n
xzi;j;k � 2unyi;j;ku

n
zi;j;k u

n
yzi;j;k

0
BBBB@

1
CCCCA

ɛ2 þ ðunxi;j;kÞ2 þ ðunyi;j;kÞ2 þ ðunzi;j;kÞ2
(11)

where the expressions unxi;j;k , u
n
yi;j;k , u

n
zi;j;k , u

n
xxi;j;k , u

n
yyi;j;k , u

n
zzi;j;k , u

n
xyi;j;k ,

unxzi;j;k , and u
n
yzi;j;k = central difference approximations of the first and

second derivatives and are given by

unxi;j;k ¼
uniþ1;j;k�uni�1;j;k

2hD
; unyi;j;k ¼

uni;jþ1;k�uni;j�1;k

2hD
;

unzi;j;k ¼
uni;j;kþ1�uni;j;k�1

2hD
;

unxxi;j;k ¼
uniþ1;j;k�2uni;j;kþuni�1;j;k

h2D
;

unyyi;j;k ¼
uni;jþ1;k�2uni;j;kþuni;j�1;k

h2D
; unzzi;j;k ¼

uni;j;kþ1�2uni;j;kþuni;j;k�1

h2D

unxyi;j;k ¼
uniþ1;jþ1;k þ uni�1;j�1;k � uni�1;jþ1;k � uniþ1;j�1;k

4hD
2 ;

unxzi;j;k ¼
uniþ1;j;kþ1 þ uni�1;j;k�1 � uni�1;j;kþ1 � uniþ1;j;k�1

4hD
2 ;

unyzi;j;k ¼
uni;jþ1;kþ1 þ uni;j�1;k�1 � uni;jþ1;k�1 � uni;j�1;kþ1

4hD2

The previous numerical scheme is explicit in time and thus not
unconditionally stable; in practice, it is sufficient to use tS ¼ h2D=4
to keep stability of computations. If discretization Eqs. (7) and (11)
are put together, the final numerical method for solving Eq. (3) con-
taining both the advective and curvature terms is obtained

unþ1
i;j;k ¼ uni;j;k �

tS
hD

maxð�Dx
i;j;kd; 0Þ ðuni;j;k � uni�1;j;kÞ þminð�Dx

i;j;kd; 0Þ ðuniþ1;j;k � uni;j;kÞ
þmaxð�Dy

i;j;kd; 0Þ ðuni;j;k � uni;j�1;kÞ þminð�Dy
i;j;kd; 0Þ ðuni;jþ1;k � uni;j;kÞ

þmaxð�Dz
i;j;kd; 0Þ ðuni;j;k � uni;k;k�1Þ þminð�Dz

i;j;kd; 0Þ ðuni;j;kþ1 � uni;j;kÞ

2
64

3
75

þ d tS

ɛ2 þ ðunxi;j;kÞ2 þ ðunyi;j;kÞ2 þ ðunzi;j;kÞ2

�
ɛ2 þ ðunyi;j;kÞ2 þ ðunzi;j;kÞ2

�
unxxi;j;k þ

�
ɛ2 þ ðunxi;j;kÞ2 þ ðunzi;j;kÞ2

�
unyyi;j;k

þðɛ2 þ unxi;j;k þ unyi;j;kÞ unzzi;j;k � 2unxi;j;k u
n
yi;j;ku

n
xyi;j;k

� 2unxi;j;k u
n
zi;j;k u

n
xzi;j;k � 2unyi;j;k u

n
zi;j;k u

n
yzi;j;k

0
BB@

1
CCA

(12)

Quantitative Tests of the Algorithm

Choice of Grid Size

One important factor for model creation using LSMSR is a suitable
choice of the grid size (hD). Namely, it is important to choose an
optimal size of hD relative to a density of the input data points. If a
very coarse grid is chosen, the final model will be rough and inaccu-
rate. In contrast, if a very dense grid is chosen, the computation can
take longer. To test the influence of the grid size, a smooth two-
dimensional (2D) object with rounded tips was created (see Fig.
2). Three data sets with different densities of input points on the
object boundary were considered (densities of 1, 2, and 3 mm).
They are referred to as ch1, ch2, and ch3. Then, various grid sizes
were chosen varying from 0.05 to 0.5 mm with the step 0.05. First,
the authors set d ¼ 0, which means any curvature influence was
excluded. In the top row of Fig. 2, testing data sets ch1, ch2, and
ch3 are plotted, and below (in columns a, b, and c), the models
generated by LSMSR are plotted with hD = 0.05, 0.1, 0.2, 0.3, and
0.5 mm.

By a visual comparison, one can see that models created by
using the grid size hD ¼ 0:5 are too rough and unsmooth in all
three cases. The best results were obtained by using hD ¼ 0:1 and

Fig. 7. Picture of the human vertebrae

© ASCE 04016007-8 J. Surv. Eng.
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hD ¼ 0:05. However, for hD ¼ 0:05, the overall computations
took several times longer than for hD ¼ 0:1. In contrast, both
results were visually comparable and smooth. One can also see
that, for the coarser data sets ch2 and ch3, the coarser grid sizes
hD ¼ 0:2 and hD ¼ 0:3 give visually good results, almost compa-
rable regarding smoothness with hD ¼ 0:1. Such visual compari-
sons clearly indicate that the choice of grid size hD has a relation
with density of input points and influences the quality of the final
model created by LSMSR. To get a quantitative insight into this
fact, the authors computed the directed Hausdorff distance
between points of input data sets ch1, ch2, and ch3 and the points
generated as an intersection of the level set (isoline in this 2D test-
ing example), representing the final model, with the grid lines of
the mesh.

LetA= {a1, a2,…, ap} be a set of input points andB= {b1, b2,…,
bq} be a set of points of the level set representing the final model

Fig. 9. Pillar in Gerulata: (a) picture; (b) point cloud with scanning resolution of 3 cm; (c) model created by LSMSR

Fig. 8. Human vertebrae: (a) point cloud with scanning resolution of 3
mm; (b) model created by LSMSR; (c) point cloud with scanning reso-
lution of 2 mm; (d) model created by LSMSR

Fig. 10. Picture of the well in Gerulata

Fig. 11. Well in Gerulata: (a) point cloud reduced to point density 5
cm; (b) model created by LSMSR

© ASCE 04016007-9 J. Surv. Eng.
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generated as described earlier. The directed averaged Hausdorff dis-
tances are then definedas follows:

HDðA;BÞ ¼ 1
p

Xp
i¼1

min
b2B

kai � bk

HDðB;AÞ ¼ 1
q

Xq
i¼1

min
a2A

kbi � ak

where ||…|| = Euclidean distance. For every model ch1, ch2, and
ch3, HD(A,B) and HD(B,A) were computed. In the first case, for
every input point of data set, the authors looked for the closest
interpolated point of the isoline representing the final model, and
then the average of these closest distances was obtained. In the
second case, for every interpolated point, the authors looked for
the nearest point in the input data set and averaged these distan-
ces. As expected, in the first case, the HD(A,B) decreases with
increasing mesh density (see Table 1), because there are more
interpolated points in the vicinity of any data point when refining
the mesh. This table also shows correct behavior of LSMSR; by
increasing the mesh density, the final model is always closer to
the data points. A further important observation is presented in
Table 2, which shows quantitatively the fact that there exists an
optimal hD for every data set ch1, ch2, and ch3. It clearly shows
that the optimal isoline (with the smallest Hausdorff distance to
the set of input points) is obtained by using hD approximately
equal to 1/5 to 1/10 of the input data set density. A further mesh
refinement does not bring any improvement in the Hausdorff dis-
tance HD(B,A).

Fig. 12. Well in Gerulata: (a) original point cloud; (b) model created
by LSMSR

Fig. 13. 2D slices of the model created by LSMSR from the original
point cloud (gray) and the reduced point cloud (black): (a) top view; (b)
side view

Fig. 14. Part of the turbine generator in Gab�cíkovo: (a) point cloud;
(b) model created by LSMSR

© ASCE 04016007-10 J. Surv. Eng.
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Influence of Curvature

In the case of the curvature term included in the model [Eq. (3)],
the shape of reconstructed surface is influenced by the choice of
parameter (d ). To test the influence of this parameter, a similar
strategy as described earlier and the same input data sets ch1, ch2,
and ch3 were used. Again, various mesh densities (hD = 0.1, 0.2,
0.3, and 0.5 mm) were used, and the authors set d ¼ 0:0, 0.25,
0.5, 0.75, and 1.0. Fig. 3 explores obtained results visually, consid-
ering the input data set ch1. Clearly, a too-high value of d may
lead to undesired smoothing of the final model, especially when
using coarser meshes (hD ¼ 0:3 and hD ¼ 0:5). In concave parts

of the desired object, the final curve moved too much inside the
object, and in a convex part, it does not move sufficiently close to
the given data points. In contrast, when using these coarse meshes,
one can see that with d ¼ 0:0, the final shape is too rough, and
some smoothing would be desirable. Thanks to this visual inspec-
tion, the authors decided to study the influence of the curvature pa-
rameter (d ) in more detail, using a smaller range of 0.0–0.2 and a
smaller step of 0.025. The results are reported in Tables 3–8 and
Figs. 4–6.

The results show that by using a nonzero d , a smaller HD(A,B)
can be obtained, as with d ¼ 0:0, and d ¼ 0:05 seems to be an opti-
mal choice in all cases [see Tables 3, 5, and 7 and Figs. 4–6(a)].

Fig. 15. Part of the statue: (a) point cloud; (b) model created by LSMSR

Fig. 16. Wooden Greek Catholic Church of the Nativity of St. John the Baptist in Kalná Roztoka: (a) picture (image by Jana Hali�cková); (b) model
created by LSMSR; (c) detail of the model

© ASCE 04016007-11 J. Surv. Eng.
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Tables 4, 6, and 8 and Figs. 4–6(b) show that, for the choice of d in
the range of 0.025–0.075, the values of HD(B,A) are almost nonal-
tered when hD is equal to 1/10 of the density of the input data set. In
contrast, in the case of coarser grids (i.e., with a higherhD), thevalues
of HD(B,A) are significantly lower for d from that range of values.

The results also show that, by using nonzero d , better results can be
obtained with coarser meshes than with d ¼ 0:0 on finer meshes.
Usage of the coarsermesh saves thememory and computational time
requirements of the LSMSR algorithm, and thus it is reasonable to
used around0.05whenapplying themethod inpractical examples.

Fig. 17. Plots of « depending on the number of time steps

© ASCE 04016007-12 J. Surv. Eng.

 J. Surv. Eng., 04016007 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

SL
O

V
E

N
SK

A
 T

E
C

H
N

IC
K

A
 U

N
IV

E
R

Z
IT

A
 V

 B
R

 o
n 

02
/1

2/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Practical Examples of 3DModel
Creation Using LSMSR

This section presents some numerical examples of model creation
that illustrate the quality of the surface reconstruction. Data points
of human vertebrae were obtained by optical scanning using a
COMET system (Steinbichler , Neubeuern, Germany). The data
points of objects in the archaeological site Gerulata, the turbine
generator in the Gab�cíkovo hydroelectric power plant, and the
wooden Greek Catholic Church of the Nativity of St. John the
Baptist in Kalná Roztoka were obtained by laser scanning using
Leica ScanStation (Leica Geosystems AG, Heerbrugg,
Switzerland), and part of the statue was obtained by photogramme-
try using a Nikon D200 camera (Nikon, Tokyo). Information about
objects, such as the size, the resolution of scanning, and the chosen
parameters for model creation, is presented in Table 9.

Fig. 7 shows thepicture of humanvertebrae. Figs. 8(a andc) show
the data points in two resolutions, and Figs. 8(b and d) showmodels
created by LSMSR. In these two cases, the data sets are quite uni-
form. The model created from the higher-resolution data set is very
detailed, and thedifference between these twomodels is very small.

Fig. 9 shows the reconstruction of the pillar in Gerulata from the
low-resolution data set. In this case, the algorithm easily handles
this type of data points, and the model is smooth and captures the to-
pology of the object surface very well.

Next, the reconstruction of the well in Gerulata is shown,
plotted in Fig. 10, by using two different resolutions of the data.
Figs. 11(a and b) show the reduced data points with a resolution
of 5 cm and the model created from this data set. Figs. 12(a and
b) show the original data points with a resolution higher than 3
cm and the model created from this data set. Fig. 13 shows
selected 2D slices of both created models to see quantitatively a
difference in reconstructions. Only small differences are
observed; the model created from the original data set is more
detailed and smoother.

Figs. 14–16 show other applications of model creation using
LSMSR. Fig. 14 shows the possibility of using LSMSR for
model creation from a quite nonuniform data set in an industrial
application, and Fig. 15 shows nonuniform data points of part of
a statue and the model created from this data set. Fig. 16 shows
a picture of the wooden Greek Catholic Church of the Nativity
of St. John the Baptist built in 1750, the created model together
with the scanned point cloud and details of the reconstructed
surface.

In all presented numerical experiments, finding an initial guess
was extremely fast, taking only a few seconds. After finding the ini-
tial guess, the numerical model was first used without the curvature
term (100–150 time steps), and then the model was used with the
curvature term with a small d to finish the surface reconstruction
(5–10 time steps). Because the values of evolving level set function
are within the interval [0,1], the final reconstructed shape is
obtained as the isosurface 0.5 (i.e., middle value) of the final shock-
like profile of the level set function.

To get a right choice of the number of time steps for the model
creation, a change in the level set function (u) after each time step
was tested. The mean of squared differences of two subsequent time
steps was computed

ɛ ¼ 1
N

X
i;j;k

ðunþ1
i;j;k � uni;j;kÞ2

where N = number of all grid points. The evolution of ɛ with
respect to time is reported in Fig. 17. In all presented

experiments, after approximately 100 time steps, ɛ drops below
1/10 to 1/100 of the grid size, which indicates a possibility to
stop the evolution.

To get a quantitative insight into the quality of the reconstruction
of real objects, the authors computed the directed Hausdorff dis-
tance between points of the point cloud of all objects and points
generated as the intersection of the 0.5 isosurface, representing the
final model, with the grid lines of the mesh. The results are reported
in Table 10.

Conclusions

This paper presents a new LSMSR and its application to 3D
model creation from data sets obtained by laser scanning and
photogrammetry. The mathematical models and numerical
methods used in LSMSR are described. The authors also stud-
ied the influence of method parameters on the final recon-
structed shape and presented real examples of LSMSR applica-
tion in surveying. In all cases, the obtained results show good
behavior of the new method with respect to efficiency and
quality of reconstruction.

The final reconstructed shape is obtained as an isosurface of the
equilibrium state (shock profile, similar to the subjective surface
method) of the evolving level set function. The quality of recon-
struction was tested by using the directed mean Hausdorff distance
between such isosurface and the given data point cloud. Such tests
show that it is optimal to choose a computational mesh density of
approximately 1/5 to 1/10 of the data point density, and that usage
of a small curvature parameter helps in getting smoothness of the
shape without its distortion. By using curvature regularization,
good quality results can be obtained on coarser computational grids,
thus saving the memory, which can be critical in large-scale
applications.
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