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Abstract—We present new numerical scheme for solving reg-
ularised mean curvature flow level set equation and show its
behavior in image filtering examples. The scheme is based
on finite volume space discretization and semi-implicit time
discretization [9], it is unconditionally stable and very weakly
diffusive. Such properties are important in image filtering where
they guarantee correct reconstruction of shapes deteriorated by
high level of noise in stable and computationally efficient way.
We compare the filtering capabilities of our new scheme with
the standard explicit finite difference approximation of the mean
curvature level set equation [15] and show appropriate behavior
of the new method.

I. LEVEL SET FORMULATION OF THE MEAN CURVATURE
FLOW IN IMAGE FILTERING

The level set formulation of the mean curvature flow
problem was suggested by Osher and Sethian in [13]. The
corresponding nonlinear partial differential equation (PDE) has
the following form

ut − |∇u|div
(

∇u

|∇u|

)
= 0, (1)

where u(x, t) is an unknown level set function, (x, t) ∈
Ω × (0, T ), Ω ⊂ Rd is an open bounded space domain (in
image processing usually rectangular) and (0, T ) is a time
interval. The level set equation (1) is accompanied by an initial
condition

u(x, 0) = u0(x), x ∈ Ω, (2)

representing in image filtering a given noisy image, and by the
boundary conditions which can be either zero Dirichlet or zero
Neumann type. The mean curvature flow level set equation (1)
and its generalizations have numerous applications in science,
engineering and technology, ranging from free boundary prob-
lems in material sciences and computational fluid dynamics to
filtering and segmentation algorithms in image processing and
computer vision [15], [1]. In image processing applications,
the equation (1) is called the curvature filter, it fulfills so-called
morphological principle and represents an image smoothing
by an intrinsic diffusion of image isophotes [1]. It has been
generalized and used in various applications as edge enhancing
image filtering [4], image segmentation by the geodesic active
contours [3], [11] and by the (generalized) subjective surface
methods [14], [5], [2]. Due to possibility of vanishing gradient

(corresponding to flat image areas) the equation (1) is in
practice regularized by the Evans-Spruck approach [7] leading
to equation

ut − |∇u|εdiv
(

∇u

|∇u|ε

)
= 0, (3)

where |∇u|ε =
√

|∇u|2 + ε2 and ε is a small regularization
parameter.

The important analytical properties of the mean curvature
flow such as a smoothing of image object boundaries (given by
level sets of image intensity) in tangential direction only and a
disappearing of small noisy spots due to their high curvature
should be respected also by numerical schemes for solving
(1) and its regularized version (3). Fulfilling such properties
is related to non-diffusive behavior of a numerical scheme in
direction normal to the image level sets.

There exist several approaches based on finite difference
[13], [15], [12], finite element [6] and finite volume dis-
cretizations [10], [5], [9] of equation (3) which are used in
practice and which has been studied also theoretically. The
numerical analysis in this context is a nontrivial task due to
nonlinear character and non-divergent form of (1) and (3). The
numerical scheme presented in this paper was derived in [9]
where stability and convergence of the numerical solution to a
weak solution was proved considering more general nonlinear
diffusion equations given in any open polyhedral subset Ω of
Rd, d ∈ N, and for a general finite volume space discretization.
In this paper we concentrate on application of the method
in image processing, namely in image filtering by the mean
curvature flow level set model. To that goal we present
an efficient semi-implicit variant of the scheme on squared
uniform grid corresponding to a pixel structure of an image.
We compare our results with the widely used classical explicit
finite difference scheme and show non-diffusive behavior of
the new scheme in practical examples.

II. STANDARD EXPLICIT FINITE DIFFERENCE SCHEME

First numerical method for solving mean curvature level set
equation was proposed by Osher and Sethian in [13] and can
be found e.g. in [15], Chapter 6. It became soon a standard due
to its simplicity and straightforward computer implementation.



As an explicit scheme, it is not unconditionally stable and a
relation between time step and grid size must be provided.

In two-dimensional case the equation (3) can be expressed
in the following form

ut −
uxx(u

2
y + ε2) + uyy(u

2
x + ε2)− 2uxuyuxy

u2
x + u2

y + ε2
= 0 (4)

which is a basis for the numerical finite difference discretiza-
tion. It uses forward Euler approximation of time derivative,
second order central finite differences for the first and second
order derivative terms.

Let Ω be a rectangle in R2 and T > 0 be given. The
discretization is done by dividing domain Ω to a set of squares
with the side of the length h and using uniform discrete time
step τ . We denote a vector of unknowns at the n-th time
step by un

i,j , where the indices i = 1, . . . N1, j = 1, . . . N2

represent numbering of grid points (corresponding to pixel
centers) in x and y direction. Let us denote

ux
n
i,j =

un
i+1,j − un

i−1,j

2h
, uy

n
i,j =

un
i,j+1 − un

i,j−1

2h
,

uxx
n
i,j =

un
i+1,j − 2un

i,j + un
i−1,j

h2
,

uyy
n
i,j =

un
i+1,j − 2un

i,j + un
i−1,j

h2
,

uxy
n
i,j =

un
i+1,j+1 + un

i−1,j−1 − un
i−1,j+1 − un

i+1,j−1

4h2
,

and further

un,ε
xi,j

=
(
ε2 + (ux

n
i,j)

2
)
, un,ε

yi,j
=

(
ε2 + (uy

n
i,j)

2
)
.

Then the explicit finite difference scheme for solving regular-
ized mean curvature flow level set equation is given by

un+1
i,j = un

i,j + τ
uxx

n
i,ju

n,ε
yi,j

+ uyy
n
i,ju

n,ε
xi,j

− 2ux
n
i,juy

n
i,juxy

n
i,j

ε2 + (ux
n
i,j)

2 + (uy
n
i,j)

2

III. NEW FINITE VOLUME SCHEME

Unlike the finite difference scheme where the form of
equation (4) is discretized, the finite volume method uses
the basic form (3). Being semi-implicit, it is unconditionally
stable. Its further advantage, in comparison with previous finite
volume schemes [10], [5], is that not only solution values
in centers of pixels but also the values at centers of pixel
boundaries are used in discretization. Such approach allows a
better approximation of gradients which is necessary for the
problems like the level set equation (3). The finite volume
scheme is derived in [9] and we present it here for the case
of zero Dirichlet boundary condition. The case of Neumann
zero boundary condition is straightforward.

Let Ω be a rectangle in R2, such that there exists N0,M0 ∈
N and h0 > 0 with Ω = (0, N0h0)×(0,M0h0), and let T > 0
be given.

We say that (D, τ), with D = (M, E ,P), is a space-time
discretisation of Ω × (0, T ) if there exist NT ∈ N with T =
(NT + 1)τ and N,M ∈ N and h > 0 with Ω = (0, Nh) ×
(0,Mh). We then define the following sets:

M = { pi,j = ((i− 1)h, ih)× ((j − 1)h, jh),
i = 1, . . . , N, j = 1, . . . ,M},

E = { σi,j+ 1
2
= ((i− 1)h, ih)× {jh},

i = 1, . . . , N, j = 0, . . . ,M}
∪ { σi+ 1

2 ,j
= {ih} × ((j − 1)h, jh),

i = 0, . . . , N, j = 1, . . . ,M},
Eint (resp. Eext) is the subset of all σ ∈ E such that σ ⊂ Ω
(resp. σ ⊂ ∂Ω), for all p ∈ M, Ep is the subset of all σ ∈ E
such that σ ⊂ ∂p, Np is the subset of all q ∈ M neighboring
to p, and for all σ ∈ E , Mσ is the subset of p ∈ M such that
σ ∈ Ep,

P = { xi,j = ((i− 1
2 )h, (j −

1
2 )h),

i = 1, . . . , N, j = 1, . . . ,M}.
Let (D, τ) be a space-time discretisation of Ω × (0, T ). We
define the set HD ⊂ RM × RE such that uσ = 0 for all
σ ∈ Eext.

Let us define the approximation of initial condition by

u0
p =

1

|p|

∫
p

u0(x)dx, ∀p ∈ M, (5)

and approximation of the gradient squared in finite volume by

Np(u)
2 =

2

h2

∑
σ∈Ep

(uσ − up)
2, ∀p ∈ M, ∀u ∈ HD (6)

and denote by
fn
p =

√
Np(un)2 + ε2. (7)

Integrating equation (3) in every finite volume p and using
divergence theorem [8] we obtain system of equations

h2 (un+1
p − un

p )

τ fn
p

− 2

fn
p

∑
σ∈Ep

(un+1
σ − un+1

p ) = 0, (8)

∀p ∈ M, ∀n ∈ N,

where the following relation is given

un+1
σ − un+1

p

fn
p

+
un+1
σ − un+1

q

fn
q

= 0, (9)

∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N.

The following relation, deduced from (9),

un+1
σ =

un+1
p fn

q + un+1
q fn

p

fn
p + fn

q

, (10)

and plugged in (8), provides the system of equations repre-
senting the semi-implicit scheme at the (n+ 1)-th time step:

h2

τ

un+1
p

fn
p

+
∑
q∈Np

2
un+1
p − un+1

q

fn
p + fn

q

+
∑

σ∈Ep∩Eext

2
un+1
p

fn
p

=
h2

τ

un
p

fn
p

.

(11)



Let us develop the system of equations issued from (11),
denoting for short un

i,j instead of un
pi,j

, un
i+ 1

2 ,j
instead of

un
σ
i+1

2
,j

and un
i,j+ 1

2

instead of un
σ
i,j+1

2

. First, the values u0
i,j ,

u0
i+ 1

2 ,j
, and u0

i,j+ 1
2

are computed from the initial condition,
namely u0

i,j is given by the value of initial condition at
point xi,j , u0

i,j+ 1
2

at point ((i− 1
2 )h, jh) and u0

i+ 1
2 ,j

at point
(ih, (j − 1

2 )h).
Then in every discrete time step n+1, n = 0, ... we compute

Np(u
n) which is present in fn

p and form the linear system to
be solved. To that goal we compute, in accordance with (6),

2(Nn
i,j)

2 =

(
un
i,j−un

i,j+1
2

h
2

)2

+

(
un
i,j−un

i+1
2
,j

h
2

)2

+

(
un
i,j−un

i,j− 1
2

h
2

)2

+

(
un
i,j−un

i− 1
2
,j

h
2

)2

,

and its regularization is computed by

fn
i,j =

√
(Nn

i,j)
2 + ε2.

Then we can construct coefficients of the linear system (11)
(taking the example of a control volumes which has no edges
at the boundary of the domain) by the formulas

ai+ 1
2 ,j

=
2

fn
i,j + fn

i+1,j

, ai,j+ 1
2
=

2

fn
i,j + fn

i,j+1

,

ai,j = ai+ 1
2 ,j

+ ai− 1
2 ,j

+ ai,j+ 1
2
+ ai,j− 1

2
+

h2

τ

1

fn
i,j

,

bi,j =
h2

τ

un−1
i,j

fn
i,j

and solve the linear system

ai,jui,j − ai+ 1
2 ,j

ui+1,j − ai− 1
2 ,j

ui−1,j

−ai,j− 1
2
ui,j−1 − ani,j+ 1

2
ui,j+1 = bi,j , (12)

e.g. by the successive-over-relaxation (SOR) iterative linear
solver in order to obtain the solution un+1

i,j at the new time
step. Finally from the relation (10) we compute un+1

i± 1
2 ,j

and

un+1
i,j± 1

2

by the formulas

un+1
i− 1

2 ,j
=

fn
i,ju

n+1
i−1,j + fn

i−1,ju
n+1
i,j

fn
i,j + fn

i−1,j

,

un+1
i,j− 1

2

=
fn
i,ju

n+1
i,j−1 + fn

i,j−1u
n+1
i,j

fn
i,j + fn

i,j−1

.

Lemma (L∞ stability of the scheme) We denote by

|u0|D,∞ = max
p∈M

|u0
p|, (13)

(note that, if u0 ∈ L∞(Ω) then |u0|D,∞ ≤ ∥u0∥L∞(Ω) ). Let
(un

p )p∈M,n∈N be a solution of (8), (9). Then it holds:

|un
p | ≤ |u0|D,∞∀p ∈ M, ∀n = 0, . . . , NT .

Proof. Suppose that for fixed time step (n+1) the maximum
of all un+1

p is achieved at the finite volume p. Let us write (8)
in the following way:

un+1
p +

τ

h2

∑
σ∈Ep

2(un+1
p − un+1

σ ) = un
p , (14)

Since the value un+1
σ satisfies the equality (9) which is a

convex linear combination of values un+1
p , un+1

q , we obtain

un+1
p − un+1

σ =
fn
p (u

n+1
p − un+1

q )

fn
p + fn

q

,

which is nonnegative. This leads to

un+1
p ≤ un

p . (15)

Then, we recursively get the estimate (15), similarly reasoning
for the minimum values.

IV. COMPARISON OF THE SCHEMES IN IMAGE FILTERING

In this section we present comparison of the schemes in
artificially noised examples and in real image processing tasks
related to filtering of two-photon laser scanning biological
images. For the semi-implicit finite volume scheme we use
natural relation τ = h2 between space and time step, where
h = 1/N1 is the length of space step (pixel size). Due to
stability reasons we had to impose τ = h2/4 for the explicit
finite difference scheme in these examples.

Example 1.
In this example, we consider an image containing black

cinquefoil on white background deteriorated by a 20 % salt-
and-pepper noise. Dimensions of the image are N1 = N2 =
200. Figure 1 shows the results of the filtering by the semi-
implicit finite volume scheme compared with the result of
the explicit finite difference scheme. One can observe that
the black cinquefoil is satisfactory reconstructed by the finite
volume scheme, while diffused image as a filtering result can
be seen for the explicit finite difference scheme. In Figure 2
one can see izolines of images filtered by both schemes in the
last time step. The isolines in the result of the finite volume
scheme are all concentrated along the edge, while the isolines
in the result by the explicit finite difference scheme are spread,
especially in the central image part.

Example 2.
Now we consider an image with black quatrefoil on white

background endowed by a 50 % salt-and-pepper noise. Dimen-
sions of the image are N1 = N2 = 200. Figure 3 shows the
results of filtering by the semi-implicit finite volume scheme
compared with the result of the explicit finite difference
scheme. Again, the black quatrefoil is satisfactory recon-
structed by the finite volume scheme in a few computational
time steps, while with this level of noise it cannot be correctly
filtered by a more diffusive explicit finite difference scheme.

Example 3.
Image used in this example contains black asteroid on white

background deteriorated again by a 50 % salt-and-pepper
noise. Dimensions of the image are N1 = N2 = 400. In
Figure 4 we can see again non-diffusive filtering results by



Fig. 1. Example 1, initial image with 20 % salt-and-pepper noise (top),
filtering by the semi-implicit finite volume scheme after 1 (middle left), 2
(middle middle) and 3 (middle right) time steps, and filtering by the explicit
finite difference scheme after 1 (bottom left), 4 (bottom middle) and 30
(bottom right) time steps.

Fig. 2. Example 1, izolines for values 0.1 (pink) 0.3 (red) 0.5 (magenta),
0.7 (green), 0.9 (blue) of the filtering results by the semi-implicit FV scheme
after 4 time steps (left) and by the explicit FD scheme after 30 time steps
(right).

the semi-implicit finite volume scheme compared with the
results of the explicit finite difference scheme. In Figure 5
you can see izolines of images filtered by both schemes in
the last time step. The finite difference scheme does not keep
corners and for this level of noise spurious structures outside
of astroid appear. Further continuation of the filtering process
would cause more uniform background outside the astroid but
also strong smoothing and blurring of the astroid shape.

In the following examples we present filtering of real images
which come from two-photon laser scanning microscopy. They
represent 2D slices of 3D images of cell membranes and nuclei
chosen from 3D image sequences representing acquisition of

Fig. 3. Example 2, the initial image with 50 % salt-and-pepper noise (top),
filtering by the semi-implicit FV scheme after 1 (middle left), 3 (middle
middle) and 4 time steps (middle right), and filtering by the explicit FD
scheme after 4 (bottom left), 16 (bottom middle), and 50 (bottom right) time
steps.

Fig. 4. Example 3, the initial image with 50 % salt-and-pepper noise (top),
filtering results by the semi-implicit FV scheme after 1 (middle left), 3 (middle
middle) and 4 (middle right) time steps, and filtering by the explicit FD
scheme after 4 (bottom left), 16 (bottom middle), and 200 (bottom right)
time steps.

early stages of zebrafish embryogenesis.
Example 4.
The original image represents cell membranes with high-



Fig. 5. Example 3, izolines for values 0.1 (pink) 0.3 (red) 0.5 (magenta),
0.7 (green), 0.9 (blue) of the filtering results by the semi-implicit FV scheme
after 4 time steps (left) and by the explicit FD scheme after 200 time steps
(right).

Fig. 6. Example 4, the initial noisy image of cell membranes (top). Filtering
by the semi-implicit FV scheme after 1 (bottom left) and 5 (bottom right)
time steps (τ = h2).

level of noise included. The image size is 200 × 200 pixels.
One can observe in Figure 6 that mean curvature flow type
filtering diffuses the image along the intensity isolines and
thus it improves the connectivity of the coherent structures as
cell borders.

In Figures 7 and 8 we show an edge detection of unfiltered
image together with edge detection of filtering results by
semi-implicit finite volume scheme (Fig. 7) and explicit finite
difference scheme (Fig. 8). As one can see, the edge detection
is slightly more sharp for the finite volume scheme which is
a consequence of its less diffusive behaviour.

Example 5.
The image in this example represents cell nuclei which,

although disconnected, forms observable morphogenetic struc-
tures appearing during embryogenesis. The mean curvature
flow type filtering, since diffusing in tangential direction only,

Fig. 7. Example 4, an edge detection of the initial noisy image of cell
membranes (top), and an edge detection of the filtering results obtained by
the semi-implicit FV scheme after 1 (bottom left) and 5 (bottom right) time
steps (τ = h2).

Fig. 8. Example 4, an edge detection of the filtering results obtained by
the explicit finite difference scheme after 4 (left) and 20 (right) time steps
(τ = h2

4
).

again improves the coherency of structure borders as can be
seen in Figure 9. The image size is 300× 300 pixels.

V. CONCLUSION

In this paper we have shown non-diffusive behaviour of the
new numerical scheme based on semi-implicit finite volume
discretization of the mean curvature flow level set equation.
The comparison with the standard explicit finite difference
scheme shows its capability of high quality image and shape
reconstruction also in case of high level of noise. It is shown on
representative examples that new finite volume scheme much
better keeps desired theoretical properties of mean curvature
flow filtering which should diffuse an image in tangential
direction to level sets only and filter out the noisy spots very
quickly. The results were presented both on artificially noised
images and on real images comming from two-photon laser



Fig. 9. Example 5, the initial noisy image of cell nuclei (top). Filtering
results by the semi implicit FV scheme after 1 (bottom left) and 5 (bottom
right) time steps, τ = h2.

microscope acquisition of early stages of zebrafish embryoge-
nesis.
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