
DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2020381
DYNAMICAL SYSTEMS SERIES S

COMPUTATIONAL OPTIMIZATION IN SOLVING THE

GEODETIC BOUNDARY VALUE PROBLEMS

Marek Macák∗, Róbert Čunderĺık
Karol Mikula and Zuzana Minarechová

Slovak University of Technology in Bratislava

Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry

Radlinskeho 11, Bratislava 810 05, Slovakia

Abstract. The finite volume method (FVM) as a numerical method can be

straightforwardly applied for global as well as local gravity field modelling.
However, to obtain precise numerical solutions it requires very refined dis-

cretization which leads to large-scale parallel computations. To optimize such

computations, we present a special class of numerical techniques that are based
on a physical decomposition of the computational domain. The domain decom-

position (DD) methods like the Additive Schwarz Method are very efficient

methods for solving partial differential equations. We briefly present their
mathematical formulations, and we test their efficiency in numerical experi-

ments dealing with gravity field modelling. Since there is no need to solve
special interface problems between neighbouring subdomains, in our applica-

tions we use the overlapping DD methods. Finally, we present the numerical

experiment using the FVM approach with 93 312 000 000 unknowns that would
not be possible to perform using available computing facilities without afore-

mentioned methods that can efficiently reduce a numerical complexity of the

problem.

1. Introduction. A determination of the Earth’s gravity field is usually formu-
lated in terms of the geodetic boundary-value problems (BVPs). There exist various
numerical approaches to solve such potential problems. In geodesy, the spherical
harmonics-based methods are usually used for global gravity field modelling. They
solve the problem in a frequency domain and nowadays they have become a very effi-
cient and sophisticated tool. On the other hand, a development of high-performance
computing facilities has also brought new opportunities for numerical solutions of
the geodetic BVPs (GBVPs). Efficient numerical methods such as the boundary
element method (BEM), finite element method (FEM) or finite volume method
(FVM) can be also applied for global as well as local gravity field modelling. These
discretization methods solve GBVPs in a space domain. In order to obtain pre-
cise numerical solutions, they require very refined discretizations that consequently
leads to large-scale computations. Nonetheless, parallel implementations of algo-
rithms and high-performance computations on clusters with distributed memory
provide strong opportunities for high-resolution gravity field modelling.

2010 Mathematics Subject Classification. Primary: 65K05; Secondary: 49M27.
Key words and phrases. Geodetic boundary-value problem, finite volume method, MPI,

OpenMP, domain decomposition methods, additive Schwarz method.
∗ Corresponding author: Marek Macák.

1

http://dx.doi.org/10.3934/dcdss.2020381

2 M. MACÁK, R. ČUNDERLÍK, K. MIKULA AND Z. MINARECHOVÁ

A numerical solution of GBVP and its precision is naturally depended on a level
of the discretization of a computational domain. In this paper we present a possi-
bility to increase such a level of the discretization by applying the domain decom-
position (DD) method and parallelization. Consequently, we are able to perform
computations on more detailed grids whose memory requirements would be much
higher than a capacity of our available computational facilities. Namely, in our final
numerical experiment we will perform large-scale parallel computations using the
FVM approach with the horizontal resolution 1× 1 arc min and 400 layers in the
radial direction. Such a detailed grid yields 93 312 000 000 unknowns requiring 4.5
TB of distributed memory, however, our cluster consists of 1.7 TB.

The paper is organized as follows. In Section 2, we formulate the geodetic BVP.
In Section 3, we summarize mathematical approaches to its solution and discuss the
optimal linear solver for our approach. In Section 4, we deal with the speed-up of
the solution by employing a parallelization and the DD method. In Section 5, we
present numerical experiments.

2. Fixed gravimetric boundary-value problem. To present the computational
methods, we outline numerical solutions to the linearized fixed gravimetric BVP
introduced and discussed e.g. in [15, 10, 6, 9, 18]:

∆T (x) = 0, x ∈ R3 − S, (1)

〈∇T (x), ~s(x)〉 = −δg(x), x ∈ ∂S, (2)

T (x) → 0, as |x| → ∞, (3)

where ∆ is the Laplace operator, T (x) is the disturbing potential defined as the
difference between the real W (x) and the normal U(x) gravity potential at any
point x, S denotes the Earth body, 〈, 〉 represents the inner product of vectors, ∇
is the gradient operator, ~s(x) = −∇U(x)/|∇U(x)| is the unit vector normal to the
equipotential surface of the normal potential U at point x, and δg(x) is the so-called
gravity disturbance.

Eqs. (1) - (3) represent an exterior BVP for the Laplace equation, i.e. the com-
putational domain (outside the Earth) is infinite. So to apply FVM, we construct a
computational domain Ω in the external space above the Earth, see [9]. The com-
putational domain Ω is bounded by the bottom surface Γ ⊂ ∂Ω representing the
approximation of the Earth’s surface and the upper surface at the level of chosen
satellite mission, where the Dirichlet-type boundary conditions (BC) for disturbing
potential are generated from some satellite-only geopotential model. For our nu-
merical experiments we will choose as Γ the surface area of the reference ellipsoid
WGS84 and the upper boundary will be at the constant altitude 240 km above it,
i.e., the computational domain Ω will be the space between two ellipsoids.

In the bounded domain Ω, we consider the fixed gravimetric BVP in the following
form:

∆T (x) = 0, x ∈ Ω, (4)

〈∇T (x), ~s(x)〉 = −δg(x), x ∈ Γ, (5)

T (x) = TSAT (x), x ∈ ∂Ω− Γ, (6)

where TSAT represents the disturbing potential generated from the satellite-only
geopotential model. Since in this case we deal with the solution in the bounded
domain Ω, we do not prescribe regularity condition at infinity.

COMPUTATIONAL OPTIMIZATION IN SOLVING THE GVBP 3

The boundary condition given by Eq. (2) or (5) represents the oblique derivative
BC because the vector ~s does not coincide with the normal to the Earth’s surface.
For the sake of simplicity, we will consider it as the Neumann BC. It is because in
all presented numerical experiments we use ellipsoidal approximation of the Earth’s
surface. Hence, the problem of oblique derivatives vanishes since ~s = ~nΓ, where ~nΓ

is the normal to the computational domain Ω.
In all our numerical experiments, the bottom boundary Γ will be represented by

the WGS84 reference ellipsoid and where the gravity disturbances transformed form
the free-air gravity anomalies interpolated from the DTU10-GRAV [1] dataset will
be prescribed. The upper boundary will be at the constant altitude 240 km above
the reference ellipsoid where the Dirichlet BCs in form of the disturbing potential
generated from the GOCO03S satellite-only geopotential model up to degree 250
[16] are applied.

3. Numerical solution of GBVP and optimal linear solver.

3.1. Numerical approaches for solving GBVP. There exist various numerical
approaches to solve such potential problems. The spherical harmonics based meth-
ods are usually used for the global gravity field modelling, c.f. [16, 20]. Recently,
numerical methods like the BEM, the FEM, the finite difference method (FDM),
FVM and others have been also applied for gravity field modelling. The BEM was
innovatively applied by Klees in [13] and later developed using sophisticated tools
to reduce its numerical complexity [14]. Later Čunderĺık et al. [6, 7] presented the
direct BEM formulation based on the collocation method for solving the linearized
fixed gravimetric BVP. In case of the FEM, the pioneering work has been done by
[17] and [21]. Later, the finite element technique for the solution of gravimetric
BVPs with mixed BCs in 3D domains above the Earth’s surface was studied in
[9]. The FDM was applied by Keller in [12]. Other numerical approaches based on
a weak formulation of the BVP and minimization of a quadratic functional were
developed in [11] and [19].

The FVM aproach was recently applied in [18], where the horizontal resolution
5 × 5 arc min corresponding to 12 × 360 × 12 × 180 = 9 331 200 unknowns on
the Earth’s surface was presented. In this paper we present a similar FVM-based
numerical experiment, where the horizontal resolution is increased into 1×1 arc min
(60 × 360 × 60 × 180 = 233 280 000 unknowns on the Earth’s surface), because
the available input data are provided in such detailed grids. To obtain numerical
solutions as precise as possible, a discretization in the radial direction should be
increased as well. This leads to large-scale parallel computations whose memory
requirements are higher than the distributed memory of our cluster and needs to
be reduced using the DD methods.

3.2. Choice of the optimal linear solver. Solution to the GBVP (4)-(6) by
FVM leads to a large-scale linear system with a matrix that is nonsymmetric due
to BC (5). In general, there does not exist an optimal solver for all types of matri-
ces obtained by numerical discretization. Finding the solver with optimal compu-
tational time and memory requirements needs a detailed analysis. We can choose
from two types of solvers:

• Stationary methods: Jacobi, Gauss - Seidel (GS) and Successive over-relaxa-
tion (SOR)

4 M. MACÁK, R. ČUNDERLÍK, K. MIKULA AND Z. MINARECHOVÁ

• Nonstationary methods: Conjugate Gradient, Generalized Minimal RESid-
ual, Biconjugate Gradient Method (BiCG), Biconjugate gradient stabilized
method (Bi-CGSTAB)

and their modifications. In a comparison to the nonstationary methods, a drawback
of the stationary methods is a slow convergence, and advantage is small memory
requirements since nonstationary methods need additional memory in addition to
storage matrix coefficients and a right-hand side vector. A comparison of methods
is shown in Table 1. As we can see, the most efficient method is Bi-CGSTAB.

Solver
CPU time Number of

[s] iterations
GS 703 10000
SOR 92 1136
BiCG 68 568
Bi-CGSTAB 41 348

Table 1. Efficiency comparison of the stationary and nonstation-
ary methods in the experiment with 259 200 unknowns, tested on
one CPU core.

In [22], the restarted BiCGstab(l) was introduced. It was designed to improve
a convergence and stability of the solution. From Table 2, we can see that the
modified solver decreases the number of iterations but increases the time and mem-
ory requirements for computing facilities. Size of the memory to store the matrix
(stored in the Compressed Diagonal Storage format) and the right hand-side vector
for the experiment with 4 374 000 unknowns was 52.84 MB.

Solver
Number of CPU time Additional memory
iterations [s] for solver [MB]

Bi-CGSTAB 1053 403.82 184.26
BiCGstab(2) 554 494.14 258.02
BiCGstab(4) 272 629.01 405.46
BiCGstab(8) 130 860.86 700.34

Table 2. Efficiency comparison for various Bi-CGSTAB linear
solvers in the experiment with 4 374 000 unknowns, tested on one
CPU core.

Due to the minimal memory consumption, see Table 2, we use the Bi-CGSTAB
as a linear solver in all following experiments.

4. Speed-up of solution.

4.1. Parallelization. The speed up of numerical algorithms can be performed by
a distribution of computations into several processes using the so-called Massively
Parallel Processors’ architecture together with the Message Passing Interface (MPI)
[2] and Open Multi-Processing (OpenMP) programming framework [5].

COMPUTATIONAL OPTIMIZATION IN SOLVING THE GVBP 5

The detailed study of the possibilities of the data management and communica-
tion between processes using MPI functions has been presented in [18]. MPI is a
way to program on distributed memory devices. This means that the parallelism
occurs where every parallel process is working in its own memory space in isolation
from the others. OpenMP is a way to program on shared memory devices. This
means that the parallelism occurs where every parallel thread has access to all the
data. The OpenMP approach is very suitable for the multi-core CPU (multi-thread
CPU), and, opposite to MPI, it is easy to implement and user does not need to
manage a multiprocessor communication.

In Table 3, we present a comparison of the parallelization using MPI and OpenMP.
In the case of MPI, we have increased the number of processes therefore increased
the memory consumption due to parallelization with one layer overlapping. In case
of OpenMP, the increased number of threads has not changed the memory con-
sumption. Balancing between the numbers of MPI Processes and OpenMP Thread
configurations is based on a real configuration of computing resources. In our case,
we have 4 quad-core CPUs in one computing node.

MPI OpenMP CPU time Speedup RAM Memory
Processes Threads [s] ratio [MB] increase

1

1 403.82 -

237.108 -
2 232.40 1.73
4 191.36 2.11
8 87.31 4.63
16 57.51 7.02

2
1 216.84 1.86

245.868 +3.7%
2 126.17 3.20
4 98.46 4.10
8 85.88 4.70

4
1 114.01 3.54

266.040 +12.2%2 79.72 5.06
4 55.56 7.26

8
1 79.34 5.09

308.456 +30.0%
2 70.81 5.70

16 1 59.51 6.78 390.068 +64.5%

Table 3. Comparison of Processes/Threads parallelization in the
experiment with 4 374 000 unknowns, tested on 4 quad-core CPUs.

Due to the minimal CPU time 55.56 [s], see Table 3, we use the configuration 4
MPI Processes and 4 OpenMP threads in all following parallel computations.

4.2. Domain decomposition. To reduce large memory requirements of the prob-
lem, we apply the domain decomposition (DD) methods that are very efficient
numerical methods for solving partial differential equations (PDEs) based on a
physical decomposition of a global solution domain, see e.g. [4, 8]. In our study,
we use the overlapping DD method because we use parallelization with overlapping
and because there is no need to solve special interface problems between neigh-
boring subdomains. For more details about the mathematical formulations of the
overlapping DD methods, see [3, 4, 8].

6 M. MACÁK, R. ČUNDERLÍK, K. MIKULA AND Z. MINARECHOVÁ

In the DD method, we decompose the global solution domain? into a set of M

subdomains such that? Ω =
M⋃
i=1

Ωi, and we require an explicit overlap between each

pair of neighboring subdomains. Then we denote common boundaries of neigh-

bouring subdomains by Γ̂i. We run an iterative solution procedure that starts with
an initial guess T 0 (in our case we set T 0 = 0). One DD iteration consists of M
sub-steps that have to be carried out in the sequence i = 1, 2, ...,M . For the sub-step
number i we solve (4-6) restricted to subdomain Ωi:

∆Tn
i (x) = 0, x ∈ Ωi, (7)

〈∇Tn
i (x), ~s(x)〉 = −δg(x), x ∈ Γi, (8)

Tn
i (x) = TSAT (x), x ∈ ∂Ωi − Γi − Γ̂i, (9)

Tn
i (x) = T ∗(x), x ∈ Γ̂i. (10)

Here, the linear operator ∆ has exactly the same form as in domain Ω. The artificial

Dirichlet BC T ∗ in eq. (10) is updated by exchanging some data on Γ̂i from the

neighboring subdomains. It is obvious that the solution Tn
i on Γ̂i is changing from

iteration to iteration, while converging towards the true solution.
The Schwarz Method, which is suitable for solving subdomains one by one, is

called the additive Schwarz method, see [3, 4, 8]. In the additive Schwarz method,
the artificial Dirichlet BC is updated by using

Tn
i (x) = Tn−1(x), x ∈ Γ̂i, (11)

It means that the artificial Dirichlet BC is updated using solutions from all the
relevant neighboring subdomains from the previous DD iteration. Therefore, the
subdomain solution in the additive Schwarz method can be carried out completely
independently.

In Table 4, we present a saving on memory costs by dividing the computational
domain into a different number of subdomains solved on one CPU core. All com-
parisons are related to the solution obtained using one domain. Due to initialization
of arrays, the CPU time oscillates since we use the different number of subdomains.
As we can observe, the main advantage of this method is a saving on memory costs
because the linear solver is handling a smaller domain, namely it is applied on one
subdomain after another. So vectors, it is working with, have fewer elements and
the whole solution is in RAM. We can also observe that there is no saving on com-
putation time. If we partially saved solution on the disk, the computation time
would be increased due to reading and writing to the file. Hence, we propose a
small modification that is discussed below.

Number of CPU time Speedup RAM Memory
subdomains [s] ratio [MB] saving

1 403.82 - 237.108 -
5 1651.68 0.24 89.868 -62.1%
10 907.99 0.44 71.308 -69.9%
15 856.04 0.46 65.248 -72.5%
30 854.24 0.47 57.816 -75.6%

Table 4. Efficiency comparison for the different number of sub-
domains in the DD experiment with 4 374 000 unknowns, tested
on one CPU core.

COMPUTATIONAL OPTIMIZATION IN SOLVING THE GVBP 7

For the case of 30 subdomains, we present the behaviour of the additive Schwarz
method, where we have modified the number of iterations η, η ∈ N , of the linear
solver in one DD iteration (see Table 5). On the contrary, in the Table 4 there
is only one iteration of the linear solver in subdomain solutions. It means that
the artificial Dirichlet BC is updated using solutions from all relevant neighbouring
subdomains in every η iteration of the linear solver. As we can see in Table 5, it
can bring a significant saving on CPU time. However, there arises a problem when
the number of η is too big and solution in subdomains is solved with old (wrong)

values on Γ̂i. There is also another explanation of the optimality of the parameter
η, i.e., by increasing number η ∈ N . Then the local problem will be solved more
accurately and the number of global iterations will be decreasing. However, at some
point of η, when the local solution will be enough accurate, the number of global
iterations will be stagnated. This can explain an existence of an optimal point of
η in terms of the computational time. Hence, in all following computations we will
use the parameter η = 15.

In Figure 1a) we can see the solution after one DD iteration where η = 15.
Figure 1b) depicts solution after 10th DD iteration. We can observe that the initial
boundaries between subdomains have vanished.

η
CPU time Speedup

[s] ratio
1 854.24 -
5 308.02 2.77
10 252.33 3.38
15 224.65 3.80
20 236.56 3.61
25 265.73 3.21

Table 5. Efficiency comparison for the different number η in the
experiment with 4 374 000 unknowns for case of 30 subdomains,
tested on one CPU core.

4.3. Parallelization of the domain decomposition method. Both, the par-
allelization and DD method have shown a significant contribution how to reduce
computation time or memory costs. However, in the case when both methods are
used together, it has to be explained how to cooperate the multi-processors with
subdomains communication.

Based on our experiences in [18] and with respect to the size and shape of the
Earth, an optimal and natural choice for data managements on multi-core proces-
sors with focus on communication, memory and time costs, is to split the computa-
tional domain in the latitudal direction. To speed-up computation on the multiple
CPU, it is recommended to use OpenMP threads on one CPU core. To split the
computational domain, we use the longitudal direction where the computational
domain for each processor is split into multiple subdomains. For illustration of data
management, see Figure 2.

In case of the parallel DD, we have the whole solution in RAM and we update
it using partial solutions on subdomains. As the linear solver is handling a smaller
domain, vectors, it is working with, have fewer elements, and a saving on memory
costs is gained.

8 M. MACÁK, R. ČUNDERLÍK, K. MIKULA AND Z. MINARECHOVÁ

a)

b)

Figure 1. Illustration of solution after: a) 1st iteration of domain
decomposition with η = 15, b) 10th iteration of domain decompo-
sition with η = 15.

In Table 6, we present a saving on computation time and memory costs for the
different number of subdomains when comparing with the solution obtained with
parallel computation using 4 MPI processes, each with 4 OpenMP threads. All
comparisons are related to the solution obtained using one domain. Based on the
previous results (see Table 5), we choose η = 15 as an optimal parameter. One can
observe that the increasing number of subdomains is saving the computation time
until it reaches a specific number of subdomains when this trend changes. It is a
consequence of increasing communication between processes.

In Table 7, we present a comparison of all discussed methods. When we compare
the serial and parallel computations using 4 MPI processes with 4 OpenMP threads
(see Table 3), we observe a significant speed-up of the computation time, however,
11% increase of memory. When we compare the serial computation and the serial
computation using the DD method, we observe a saving of approximately 44% of the
computation time. Using a parallel version of the DD method, it is possible to save
up to 95% of the computation time in comparison to serial computations. When
we compare the parallel and serial versions of the DD method, we can observe
that the parallel version has 92% less computation time, however, it needs 45%
more of memory. To make a compromise between computation time and memory

COMPUTATIONAL OPTIMIZATION IN SOLVING THE GVBP 9

Number of CPU time Speedup RAM Memory
subdomains [s] ratio [MB] saving

1 55.56 - 266.040 -
5 55.52 1.00 115.508 -56.6%
10 28.47 1.95 97.568 -63.3%
15 17.44 3.18 91.156 -65.7%
30 18.67 2.97 84.128 -68.3%

Table 6. Comparison for the different number of subdomains us-
ing parallel DD method in the experiment with 4 374 000 unknowns
with η = 15, tested on 4 quad-core CPUs.

Figure 2. Illustration of data management in parallel DD imple-
mentations where blue color illustrate subdomains and yellow color
illustrate parallelization.

costs, the parallel version of DD method is the most suitable method for large-scale
computations.

Computation CPU time Speedup RAM Memory
strategies [s] ratio [MB] saving
Serial without DD 403.82 - 237.108 -
Serial with DD 224.65 1.79 57.816 -75.6%
Parallel without DD 55.56 7.26 266.040 +10.8%
Parallel with DD 18.67 21.6 84.128 -64.5%

Table 7. Efficiency comparison for different computation strate-
gies in the experiment with 4 374 000 unknowns where we use 30
subdomains and η = 15.

5. Final numerical experiments. The final experiments aim to demonstrate
that we are able to solve GBVP on very detailed computational grids while reducing
a numerical complexity of the problem using the DD method.

10 M. MACÁK, R. ČUNDERLÍK, K. MIKULA AND Z. MINARECHOVÁ

In the first experiment, the horizontal resolution has been 1 × 1 arc min that
corresponds to 233 280 000 unknowns on the Earth’s surface. The number of di-
visions in the radial direction has been determined by the available distributed
memory of our cluster (1.7 TB). Hence, it has been set to 150, which has lead to
34 992 000 000 unknowns in the whole computational domain. The large-scale par-
allel computations were performed on 7 nodes with the following parameters: four
8-core CPUs with 256 GB RAM for each node. According to the NUMA archi-
tecture of the nodes, in our computations we used 56 MPI processes, each with 4
OpenMP threads.

In Table 8, we show a saving of the computation time and memory for the
different number of subdomains solved with the parallel DD method. Due to the
high time consumption, we present the computation time only for one DD iteration
with parameter η = 15. In case of one subdomain, we present computation time for
15 iterations of the linear solver. One can see that this method brings a significant
saving on memory but a slight increase in time due to increased communications
between processes. The total number of DD iterations in the case of 10 subdomains
was 86 and computation time was 5.925 104 [s] ≈ 17 hours.

No. sub. CPU time CPU time RAM Memory
domains [s] saving [GB] saving

1 706.8 - 1 652 -
2 683.6 1.03 968 -41.4%
5 703.5 1.00 557 -66.3%
10 700.9 1.01 420 -74.5%
15 710.0 0.99 375 -77.3%
30 718.5 0.98 329 -80.0%

Table 8. Comparison for the different number of subdomains us-
ing Parallel-Domain decomposition method in the experiment with
34 992 000 000 unknowns, tested on 28 octo-core CPUs.

Figure 3. Global gravity field model with the resolution 1 ×
1 arc min on the Earth’s surface, [m2s−2].

COMPUTATIONAL OPTIMIZATION IN SOLVING THE GVBP 11

Finally, in the second numerical experiment we have tried to increase a division in
the radial direction as much as possible. Based on our experiences from the previous
experiment, especially memory savings (Table 8, the last column), the number of
divisions in the radial direction has increased to 400. The horizontal resolution has
been the same, i.e., 1 × 1 arc min. Such a grid has consisted of 93 312 000 000
unknowns in the whole computational domain. To solve such a problem, it would
require 4.5 TB of memory. By applying the DD method with 30 subdomains, it
has allowed us to perform large-scale parallel computations using only 1 TB of the
distributed memory of our cluster. Based on the NUMA architecture of the nodes,
in our computations we used 56 MPI processes, each with 4 OpenMP threads. The
computation time for 15 iterations was 2428 [s] which is much higher than in the
previous experiment. It is due to 2.6 higher communications between processes.
The total number of DD iterations was 236 and computation time was 5.7301 105

[s] ≈ 159 hours. The obtained numerical solution of GBVP on the Earth’s surface
is depicted in Figure 3.

Conclusions. In this paper we have presented a possibility to solve the geodetic
BVP using the FVM approach on very detailed computational grids. We have
demonstrated that applications of the domain decomposition (DD) method and
their parallelization have allowed increasing a level of the discretization signifi-
cantly. Consequently, we have been able to perform computations on more detailed
grids. Namely, in our final numerical experiment we performed large-scale parallel
computations with 93 312 000 000 unknowns in the whole computational domain.
To solve such a problem, it would require 4.5 TB of memory. By applying the DD
method with 30 subdomains, it required only 1 TB of the distributed memory of
our cluster.

To reach such a level of the discretization, the FVM-approach is more efficient
than the FEM approach. It is due to fact that FVM for such 3D problems results in
a 7-point stencil while FEM in a 27-point stencil. It means that the FEM approach
would require 17.3 TB of memory.

As a linear solver, the BiCGSTAB seams to be optimal for solving such kind
of potential problems. Testing of the restarted BiCGSTAB has shown that the
solver decreases the number of iterations, however, increases the time and memory
requirements. Therefore, we recommend using the BiCGSTAB without restarting
(Section 3.2).

In the case of the Additive Schwarz Method, the optimal choice of the parameter η
for updating boundary conditions obtained from neighbouring solutions has been
tested. Numerical experiments has shown that its optimal value is 15 (Section 4.2).

A parallel version of the DD method performed on our cluster has indicated that
balancing between the numbers of the MPI Processes and OpenMP Thread config-
urations is based on a real configuration of the nodes with the NUMA architecture.
Therefore, we used 4 OpenMP threads for every MPI process which resulted in the
highest speed-up. To make a compromise between computation time and memory
costs, the parallel version of DD method has been shown as the most suitable choice
(Section 4.3).

All these findings have contributed to our effort to solve GBVP numerically using
the FVM approach and to achieve its numerical solution as precise as possible.

Acknowledgments. Funded by the Government of Slovakia through an ESA Con-
tract under the PECS (Plan for European Cooperating States), namely through the

12 M. MACÁK, R. ČUNDERLÍK, K. MIKULA AND Z. MINARECHOVÁ

PECS contract SK2-08: “GOCE-based high-resolution gravity field modelling in a
space domain (GOCE-numerics)”. The view expressed herein can in no way be
taken to reflect the official opinion of the European Space Agency. This work was
also supported by Grants APVV-15-0522 and VEGA 1/0486/20. We would like to
also thank to the anonymous reviewers whose comments have greatly improved this
manuscript.

REFERENCES

[1] O. B. Andersen, The DTU10 Gravity field and Mean sea surface, Second International Sym-
posium of the Gravity Field of the Earth (IGFS2), Fairbanks, Alaska, (2010).

[2] Y. Aoyama and J. Nakano, RS/6000 SP: Practical MPI programming, IBM., (1999), http:

//www.redbooks.ibm.com.
[3] X. Cai, Overlapping domain decomposition methods, Advanced Topics in Computational

Partial Differential Equations, (2003), 57–95.

[4] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, Acta Numerica, 3 (1994),
61–143.

[5] B. Chapman, G. Jost and R. Pas, Using OpenMP: Portable shared memory parallel program-
ming, The MIT Press, Scientific and Engin Edition, (2007).

[6] R. Čunderĺık, K. Mikula and M. Mojzeš, Numerical solution of the linearized fixed gravimetric

boundary-value problem, Journal of Geodesy, 82 (2008), 15–29.

[7] R. Čunderĺık and K. Mikula Direct BEM for high-resolution global gravity field modelling,

Studia Geophysica et Geodaetica, 54 (2010), 219–238.
[8] V. Dolean, P. Jolvet and F. Nataf, An Introduction to Domain Decomposition Methods. Algo-

rithms, Theory, and Parallel Implementation, Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 2015.

[9] Z. Fašková, R. Čunderĺık and K. Mikula, Finite element method for solving geodetic boundary

value problems, Journal of Geodesy, 84 (2010), 135–144.
[10] P. Holota, Coerciveness of the linear gravimetric boundary-value problem and a geometrical

interpretation, Journal of Geodesy, 71 (1997), 640–651.

[11] P. Holota, Neumann’s boundary-value problem in studies on Earth gravity field: Weak so-
lution, 50 years of Research Institute of Geodesy, Topography and Cartography, 50 (2005),

49–69.

[12] W. Keller, Finite differences schemes for elliptic boundary value problems, Bulletin IAEG, 1
(1995), Section IV.

[13] R. Klees, Loesung des Fixen Geodaetischen Randwertprolems mit Hilfe der Randelement-

methode, Ph.D thesis, Muenchen, 1992,
[14] R. Klees, M. van Gelderen, C. Lage and C. Schwab, Fast numerical solution of the linearized

Molodensky problem, Journal of Geodesy, 75 (2001), 349–362.
[15] K. R. Koch and A. J. Pope, Uniqueness and existence for the geodetic boundary value problem

using the known surface of the earth, Bulletin Géodésique (N.S.), 46 (1972), 467–476.

[16] T. Mayer-Gürr and et al., The new combined satellite only model GOCO03s, International
Symposium on Gravity, Geoid and Height Systems GGHS 2012, (2012).

[17] P. Meissl, The Use of Finite Elements in Physical Geodesy, Geodetic Science and Survey-
ing,Report 313, The Ohio State University, 1981.

[18] Z. Minarechová, M. Macák, R. Čunderĺık and K. Mikula, High-resolution global gravity field

modelling by the finite volume method, Studia Geophysica et Geodaetica, 59 (2015), 1–20.

[19] O. Nesvadba, P. Holota and R. Klees, A direct method and its numerical interpretation in
the determination of the gravity field of the Earth from terrestrial data, Proceedings Dy-

namic Planet 2005, Monitoring and Understanding a Dynamic Planet with Geodetic and
Oceanographic Tools, 130 (2007), 370–376.

[20] N. K. Pavlis, S. A. Holmes, S. C. Kenyon and J. K. Factor, The development and evaluation

of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research: Solid
Earth, 117 (2012), 1–38.

[21] B. Shaofeng and B. Dingbo, The finite element method for the geodetic boundary value

problem, Manuscripta Geodetica, 16 (1991), 353–359.
[22] G. L. G. Sleijpen and D. R. Fokkema, BiCGstab(l) for linear equations involving unsymmetric

matrices with complex spectrum, Electron. Trans. Numer. Anal., 1 (1993), 11–32.

http://www.redbooks.ibm.com
http://www.redbooks.ibm.com
http://dx.doi.org/10.1007/978-3-642-18237-2_2
http://dx.doi.org/10.1017/S0962492900002427
http://www.ams.org/mathscinet-getitem?mr=MR3450068&return=pdf
http://dx.doi.org/10.1137/1.9781611974065.ch1
http://dx.doi.org/10.1137/1.9781611974065.ch1
http://dx.doi.org/10.1007/s001900050131
http://dx.doi.org/10.1007/s001900050131
http://dx.doi.org/10.1007/s001900100183
http://dx.doi.org/10.1007/s001900100183
http://www.ams.org/mathscinet-getitem?mr=MR0334866&return=pdf
http://dx.doi.org/10.1029/2011JB008916
http://dx.doi.org/10.1029/2011JB008916
http://www.ams.org/mathscinet-getitem?mr=MR1234354&return=pdf

COMPUTATIONAL OPTIMIZATION IN SOLVING THE GVBP 13

[23] M. Šprlák, Z. Fašková and K. Mikula, On the application of the coupled finite-infinite element
method to geodetic boundary-value problem, Studia Geophysica et Geodaetica, 55 (2011),

479–487.

Received December 2018; 1st revision October 2019; final revision March 2020.

E-mail address: macak@math.sk

E-mail address: cunderli@svf.stuba.sk

E-mail address: mikula@math.sk

E-mail address: minarechova@math.sk

mailto:macak@math.sk
mailto:cunderli@svf.stuba.sk
mailto:mikula@math.sk
mailto:minarechova@math.sk

	1. Introduction
	2. Fixed gravimetric boundary-value problem
	3. Numerical solution of GBVP and optimal linear solver
	3.1. Numerical approaches for solving GBVP
	3.2. Choice of the optimal linear solver

	4. Speed-up of solution
	4.1. Parallelization
	4.2. Domain decomposition
	4.3. Parallelization of the domain decomposition method

	5. Final numerical experiments
	Conclusions
	Acknowledgments
	REFERENCES

