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Institute of Botany, Slovak Academy of Sciences
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Abstract. In this paper, we present a mathematical model and numerical
method designed for the segmentation of satellite images, namely to obtain

in an automated way borders of Natura 2000 habitats from Sentinel-2 optical

data. The segmentation model is based on the evolving closed plane curve
approach in the Lagrangian formulation including the efficient treatment of

topological changes. The model contains the term expanding the curve in its

outer normal direction up to the region of habitat boundary edges, the term
attracting the curve accurately to the edges and the smoothing term given by

the influence of local curvature. For the numerical solution, we use the flow-

ing finite volume method discretizing the arising advection-diffusion intrinsic
partial differential equation including the asymptotically uniform tangential

redistribution of curve grid points. We present segmentation results for satel-

lite data from a selected area of Western Slovakia (Záhorie) where the so-called
riparian forests represent the important European Natura 2000 habitat. The

automatic segmentation results are compared with the semi-automatic segmen-
tation performed by the botany expert and with the GPS tracks obtained in

the field. The comparisons show the ability of our numerical model to segment

the habitat areas with the accuracy comparable to the pixel resolution of the
Sentinel-2 optical data.

1. Mathematical model for image segmentation. In this section, we present
the Lagrangian closed plane curve evolution model for the automated segmentation
of Natura 2000 habitat areas from Sentinel-2 optical data (satellite images). Natura
2000 is a network of core breeding and resting sites for rare and threatened species.
It protects 27,312 sites with terrestrial area 787,606 km2 (around 18 percent of
the land of the EU countries) to ensure the long-term survival of Europe’s most
valuable species and habitats. Sentinel-2 is an Earth observation mission operated
by European Space Agency (ESA) that systematically acquires multiband optical
data at high spatial resolution (10 m to 60 m) over land and coastal waters.
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In section 2 we show numerical discretization of the suggested model. In section
3 we present the segmentation examples on real satellite images and compare them
quantitatively with the semi-automatic segmentation performed by the botany ex-
pert and with the GPS tracks obtained in the field. The paper is finished by
Conclusions.

We consider the time evolution of a closed planar segmentation curve driven by
the following general equation

∂x

∂t
= V(x, t) , (1)

where x denotes a point of the evolving curve in the plane (we call it also the curve
position vector), t is the time, ∂x

∂t denotes the time derivative (later denoted also
by xt) of the position vector representing the speed of the curve motion, and

V(x, t) = (1− λ(t))g2(x)N(x, t)− λ(t)∇g1(x)− δ(t)k(x, t)N(x, t) (2)

denotes a suitably designed velocity vector field, ∇ is the gradient operator, N
denotes the outer unit normal vector to the evolving closed curve and k its curva-
ture. The vector field definition contains functions g1 and g2, which are used to
drive the segmentation curve from its initial position through the segmented region
to its border (the term g2N) and to attract the evolving curve accurately to the
border of the segmented region (the term −∇g1). Due to a noise and smoothness
requirement, the curve evolution is regularized by the curvature term −kN. The
time dependent function λ (t) ∈ [0, 1] weights the edge attracting vector field −∇g1

and the expanding in normal direction velocity g2N. It may depend on time t, e.g.
to diminish expansion in a local edge neighbourhood. Similarly, δ(t) may weight
the curvature influence as time is evolving.

For the edge attracting term of (2) we employ function g1 defined as follows

g1(x) = Gσ1
∗ g(s, k1), g(s, k1) =

1

1 + k1s2
, s =

∣∣∇Gσ0
∗ I0

∣∣ (x) , (3)

whereGσ0
∗I0 = Iσ0 represents the Gaussian smoothing (convolution with the Gauss

function with variance σ0) of the original image I0 rescaled to interval 〈0, 1〉 and g
is a so-called edge detector function depending on the squared norm of smoothed
image intensity gradient and empirical parameter k1. As seen from the first equation
in (3), g can be again smoothed by the Gauss kernel with a variance σ1 which
gives us the final form of edge detector g1. The edge attracting velocity −∇g1 is
then constructed at every point x of the image by using the minus gradient of the
edge detector. It drives the evolving curve in a direction towards the edges in the
image what can be seen in the form of arrows in Fig. 1, second row right. The
importance of this edge attracting vector field was emphasized in [3, 7] where the
so-called geodesic active contours were introduced in the level set formulation, and
since then it has been used in many successful image segmentation models, e.g. in
medicine or biology [18, 14, 4].

The third term in (2), a regularization by curvature with the parameter δ, is used
to control the smoothness of the final curve as well as to make the overall curve
evolution more regular with respect to noise. However, if we consider only the second
and the third terms of (2) and place the initial segmentation curve to the region
where the edge attracting vector field is weak, the evolving curve does not move,
or even worse, it can shrink to a point because of the influence of curvature. Such
a phenomenon must be overcome because, in the case of automatic segmentation,
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we used to drive the segmentation curve from inside of the segmented region. To
that goal, let us define a function H(x) describing the similarity of image intensity
evaluated at x with the image intensity evaluated in an initial circle. We may
consider a vector (list) of features ρ and a vector of allowed (relative or absolute, one-
sided or two-sided) deviations from the prescribed feature value which reasonably
characterize a segmented region. In the simplest situation, one can consider as a
feature just a mean value of the image intensity and then ρ is a scalar parameter.
The mean value of image intensity can be defined as the computed average of the
image intensity inside the initial segmentation curve or specified externally by a
user. Then we may define function H by

H(x) =

{
1 if Iσ0(x) ∈ (ρ− ερ, ρ+ ερ)

0 otherwise .
(4)

The function H sets value 1 to the pixels inside the regions with intensity similar
to ρ and value 0 to pixels in other regions. Another simple option is to compute
minimal and maximal image intensity values, ρmin, ρmax, of I0 or Iσ0 inside the
initial segmentation curve and define

H(x) =

{
1 if Iσ0(x) ∈ (ρmin − ε, ρmax + ε)

0 otherwise .
(5)

Of course, it is not necessary to consider just 0 and 1 values in these membership
function definitions. It is possible to smooth them by a convolution or consider
some fuzzy/probabilistic definitions, but we do not follow such approaches in this
paper.

By using definitions (4) or (5), the expanding velocity H would drive the initial
curve in its outer normal direction through the segmented region but we have to stop
the expansion in a neighbourhood of edges. To that goal we utilize the edge detector
g1 defined in (3) which is close to zero along the edges and construct the final form
of the expanding term g2 by smoothed multiplication of H and g1 functions,

g2(x) = Gσ2
∗ (H(x) g1(x)) . (6)

For the illustration of the model inputs (3)-(6) and the model (1)-(2) behaviour,
please, look at Fig. 1.

Since in the continuous Lagrangian curve evolution formulation, only the normal
component of the velocity determines the shape of the evolving curve (the tangential
component just reparametrizes the curve), it is natural to ignore the tangential
component of the velocity (2) in the analytical (continuous) formulation of the
curve evolution. In the case of (2) there is tangential component only in the edge
attracting vector field −∇g1 and to remove it we take its projection to the curve
normal N and redefine the basic curve evolution model (1)-(2) to the form

∂x

∂t
= βN , (7)

where the so-called outer normal velocity β is defined by

β = (1− λ (t))g2 − λ (t)∇g1 ·N− δk . (8)

On the other hand, from the numerical point of view it is necessary to add suitable
velocity of grid points in tangential direction T in order to prevent numerically
evolving curve from selfintersections and other singularities and also to allow fast
detection and solution of topological changes (splitting and merging of curves), see
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[6, 8, 11, 12, 13, 14, 1]. So we enrich equation (7) by the asymptotically uniform
tangential redistribution of points [12] and consider (7) in the new form

∂x

∂t
= βN + αT (9)

with the normal velocity β given by (8) and with the tangential velocity α defined
in section 2.1.

2. Numerical algorithm for evolving curves. Let Γ be a closed plane curve,
Γ : S1 → R2, parametrized by u ∈ S1, where S1 is a circle with unit length, thus
u ∈ [0, 1] and Γ = {x(u), u ∈ S1}, where x(u) = (x1(u),x2(u)) is position vector of
the curve Γ for parameter u. In the sequel, the curve will be discretized to a set
of points. An example of a closed planar curve discretization is displayed in Fig.
2, where x0,x1, ...,xn are discrete curve points which correspond to the uniform
discretization of the unit circle with step h = 1/n and x0 = xn.

Let |xu| > 0, where xu =
(
∂x1

∂u ,
∂x2

∂u

)
and g = |xu| =

√(
∂x1

∂u

)2
+
(
∂x2

∂u

)2
. Let

us denote by s the unit arc-length parametrization of the curve Γ. Then ds =
|xu|du = gdu and du = 1

gds. If the curve Γ is parametrized in a counter-clockwise

direction, the unique definition of the unit tangent T and (outer) normal N vectors
to the curve Γ can be done as follows: T = ∂x

∂s (denoted also by xs), N = x⊥s and
T ∧N = −1, where T ∧N denotes the determinant of the matrix with columns T
and N. If T = (x1s,x2s), then N = (x2s,−x1s). Since we consider outer normal,
from the Frenet-Serret formulas we have Ts = −kN and Ns = kT, where k is the
curvature. From there it follows that −kN = Ts = (xs)s = xss.

In our approach, the curve Γ is given by its position vector x, so its evolution
can be described by the evolution of this vector in time. We consider the general
form of the curve evolution (9) where β = w − δk with

w = (1− λ (t))g2 − λ (t)∇g1 ·N . (10)

Then using the Frenet-Serret formula, mentioned above, we can rewrite (9) into the
form of so-called intrinsic partial differential equation

xt = (w − δk)N + αT = wN− δkN + αT = δxss + αxs + wx⊥s (11)

which is suitable for numerical discretization. Since x = (x1,x2), (11) represents a
system of two partial differential equations for components x1 and x2 of the curve
position vector x. These two equations are coupled together by the derivatives
with respect to the arc-length parametrization s, because both components of the
position vector x occur in the term ds. The curvature term yields the so-called
intrinsic diffusion along the curve (the term xss), the tangential velocity yields the
so-called intrinsic advection along the curve (the term xs) and the external driving
force in the normal direction is given by the third term on the right hand side of
(11).

2.1. Suitable choice of tangential velocity. Although it is well-known that a
tangential motion does not change the shape of the evolving curve, we know that
it is helpful in a stabilization of the numerical algorithms based on Lagrangian
approaches [11, 12]. If we want to redistribute the points along the curve, we have

to study the ratio
g

L
, where g = |xu| represents the local and L the global curve
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Figure 1. First row: the original image I0 and smoothed image
Iσ0 . Second row: the visualization of g(x), smoothed edge detector
g1(x) and a zoom of the vector field −∇g1(x) where we see arrows
pointing towards the edges in I0. Third row: the functions H(x)
using (5) and g2(x) evaluated by using the initial circle plotted in
the Fourth row, left. Fourth row: the initial segmentation curve
placed in I0 and its time evolution until the final segmentation
state (bottom right). In the middle image we see that the evolving
curve undergoes topological changes which are resolved efficiently.
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u=0
x(0)=x(n)

u=0.5

x(n/2)

xi-1

xi

xi+1

Figure 2. Closed planar curve discretization (left) corresponding
to the uniform discretization of the unit circle (right).

lengths. Considering this ratio in a discrete form, we obtain

g

L
≈
|xi−xi−1|

h

L
=
|xi − xi−1|

Lh
=
|xi − xi−1|

L
n

, (12)

where h = 1
n , n is the number of the curve grid points, see Figure 2. The numerator

represents a real distance between two neighbouring points, and the denominator
denotes the uniform distance between neighbouring points. It is clear that one can
get the curve with uniformly distributed discrete grid points, if this ratio tends to 1,

i.e. |xi−xi−1|
L
n

→ 1 for all discrete curve segments. Thus, in continuous formulation

we need to fulfill the condition g
L → 1.

For the time evolution of the curve local length g, by using the Frenet-Serret
formulas, we obtain subsequently

gt = |xu|t =
xu
|xu|

· (xu)t =
gxs
g
· (xt)u = T · (βN + αT)u = T · g (βN + αT)s

= T · g (βsN + βNs + αsT + αTs) = T · g (βsN + βkT + αsT− αkN) (13)

= T · g ((βs − αk)N + (βk + αs)T) = gkβ + gαs = gkβ + αu.

By integrating the previous equation, we obtain the formula for the evolution of the
global curve length L

Lt =

1∫
0

gtdu =

1∫
0

gkβdu+

1∫
0

αudu =

1∫
0

gkβdu+ α (1)− α (0) . (14)

Due to the periodic boundary condition we have α (1) = α (0) and

Lt =

1∫
0

gkβdu =

∫
Γ

kβ ds = L 〈kβ〉Γ , (15)
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where 〈kβ〉Γ = 1
L

∫
Γ
kβ ds. For the time evolution of the ratio

g

L
we then obtain( g

L

)
t

=
(gkβ + αu)L− gL 〈kβ〉Γ

L2
=
g

L
(kβ + αs − 〈kβ〉Γ) . (16)

If we now impose that
( g
L

)
t

= ω
(

1− g

L

)
, where ω is a parameter determining how

fast the redistribution becomes uniform, we get desired condition g
L → 1, and we

obtain the formula for the tangential velocity which guarantees the asymptotically
uniform redistribution of grid points

αs = 〈kβ〉Γ − kβ + ω

(
L

g
− 1

)
. (17)

2.2. Numerical discretization. Let us recall the intrinsic PDE (11) for the planar
curve evolution and write it in the following form

xt − αxs = δxss + wx⊥s , (18)

where w and α are given by (10) and (17). First, we perform the spatial dis-
cretization, which is based on the flowing finite volume method [11, 13] and then
we discuss the time discretization, which is semi-implicit in the intrinsic diffusion
term and uses inflow-implicit/outflow-explicit strategy for intrinsic advection term
[11, 13, 9, 10].

xi
xi−1

xi+2 xi+3

xi−2

xi−3

xi+1

xi− 3
2

xi− 5
2

pi−1
xi− 1

2

xi+ 1
2

xi+ 3
2

xi+ 5
2

pi
pi+1

Figure 3. Visualization of the curve discretization: curve grid
points (red) and their midpoints. Finite volumes pi−1,pi, and
pi+1 are highlighted by green, brown and yellow color. Note that
pi is not a straight line given by xi− 1

2
and xi+ 1

2
, but a broken line

given by xi− 1
2
, xi and xi+ 1

2
, see also [1].

Integrating (18) over the finite volume pi = [xi− 1
2
,xi+ 1

2
], see Fig. 3, where xi− 1

2

represents the middle point between the points xi−1 and xi, i.e.

xi− 1
2

=
xi−1 + xi

2
, (19)

we get
x
i+1

2∫
x
i− 1

2

xtds− α

x
i+1

2∫
x
i− 1

2

xsds = δ

x
i+1

2∫
x
i− 1

2

xssds+ w

x
i+1

2∫
x
i− 1

2

x⊥s ds, (20)
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where the values δ, α and w are considered constant, with values δi, αi, wi on the
discrete curve segment pi around the point xi. We define hi = |xi − xi−1|, then

the measure of the segment pi is equal to hi+hi+1

2 , and using the Newton-Leibniz
formula we get the following approximation of (20), for i = 1, ..., n,

hi + hi+1

2
(xi)t − αi [x]

x
i+1

2
x
i− 1

2

= δi [xs]
x
i+1

2
x
i− 1

2

+ wi

(
[x]

x
i+1

2
x
i− 1

2

)⊥
(21)

hi + hi+1

2
(xi)t − αi

(
xi+ 1

2
− xi− 1

2

)
= δi [xs]

x
i+1

2
x
i− 1

2

+ wi

(
xi+ 1

2
− xi− 1

2

)⊥
. (22)

Approximating the arc-length derivative xs in the first bracket on the right hand
side by a finite difference we obtain the semi-discrete flowing finite volume scheme,

hi+hi+1

2 (xi)t − αi
(
xi+ 1

2
− xi− 1

2

)
= δi

(
xi+1−xi

hi+1
− xi−xi−1

hi

)
(23)

+wi

(
xi+ 1

2
− xi− 1

2

)⊥
.

Now we split the advection term (involving the tangential velocity α) as follows,

− αi
(
xi+ 1

2
− xi− 1

2

)
= αi

(
xi − xi+ 1

2

)
− αi

(
xi − xi− 1

2

)
. (24)

Using (19) we obtain

hi + hi+1

2
(xi)t +

αi
2

(xi − xi+1)− αi
2

(xi − xi−1)

= δi

(
xi+1 − xi
hi+1

− xi − xi−1

hi

)
+ wi

(
xi+1 − xi−1

2

)⊥
. (25)

If αi < 0, i.e. the velocity of advection (−α) in (18) is positive in the segment pi,
there is an inflow into the finite volume through its boundary point xi− 1

2
and an

outflow through the boundary point xi+ 1
2
. On the other hand, if αi > 0, there is

an inflow in xi+ 1
2

and an outflow in xi− 1
2
. Let us define

bini− 1
2

= max (−αi, 0) , bouti− 1
2

= min (−αi, 0) ,

bini+ 1
2

= max (αi, 0) , bouti+ 1
2

= min (αi, 0) (26)

and rewrite the equation (25) as follows

hi + hi+1

2
(xi)t +

1

2

(
bin
i+ 1

2

+ bout
i+ 1

2

)
(xi − xi+1) +

1

2

(
bin
i− 1

2

+ bout
i− 1

2

)
(xi − xi−1)

= δi

(
xi+1 − xi
hi+1

− xi − xi−1

hi

)
+ wi

(
xi+1 − xi−1

2

)⊥
. (27)

In order to perform the time discretization, let us denote by m the time step index
and by τ the length of the discrete time step. Let us approximate the time derivative

by the finite difference (xi)t =
xm+1
i −xm

i

τ . Let us take the unknowns in the inflow
part of the advection term implicitly and in the outflow part explicitly. Then
approximate also the expanding term explicitly and the diffusion term implicitly.
In that (semi-implicit) way we obtain the fully discrete scheme in the form of a
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cyclic tridiagonal system

xm+1
i−1

(
− δ

m
i

hmi
−
bin

m
i− 1

2

2

)
+ xm+1

i+1

(
− δmi
hmi+1

−
bin

m
i+ 1

2

2

)

+xm+1
i

(
hmi+1 + hmi

2τ
+
δmi
hmi

+
δmi
hmi+1

+
bin

m
i− 1

2

2
+
bin

m
i+ 1

2

2

)
= xmi

hmi+1 + hmi
2τ

(28)

−
bout

m
i+ 1

2

2

(
xmi − xmi+1

)
−
bout

m
i− 1

2

2

(
xmi − xmi−1

)
+ wmi

(
xmi+1 − xmi−1

2

)⊥
,

i = 1, ..., n, where n is the number of the curve grid points.
In the segmentation process the evolving curve can split due to a noisy data or

merge with another segmentation curve and thus it can have locally sharp corners
or other singular points. In such singular points we modify the scheme (28) and
use just the first order implicit upwind scheme instead of the second order inflow-
implicit/outflow-explicit method in the discretization of the advection term. This
first order upwind scheme is applied when the angle between two consecutive curve
segments (xi−1,xi) and (xi,xi−1) is less than 120◦, i.e. ](xi−1xixi+1) < 120◦. In
the upwind scheme we use only the inflow velocities bin

i− 1
2

, bin
i+ 1

2

, and points xi− 1
2
,

xi+ 1
2

in (24) are approximated by the neighbouring values xi−1 or xi+1, depending

on the inflow direction. In this way we get

hi + hi+1

2
(xi)t + bin

i+ 1
2

(xi − xi+1) + bin
i− 1

2

(xi − xi−1)

= δi

(
xi+1 − xi
hi+1

− xi − xi−1

hi

)
+ wi

(
xi+1 − xi−1

2

)⊥
(29)

instead of (27) and in a singular point we use

xm+1
i−1

(
− δ

m
i

hmi
− binmi− 1

2

)
+ xm+1

i+1

(
− δmi
hmi+1

− binmi+ 1
2

)
+xm+1

i

(
hmi+1 + hmi

2τ
+
δmi
hmi

+
δmi
hmi+1

+ bin
m
i− 1

2
+ bin

m
i+ 1

2

)
= xmi

hmi+1 + hmi
2τ

(30)

+wmi

(
xmi+1 − xmi−1

2

)⊥
instead of (28). This replacement of (28) by (30) occurs rarely, but in case it arises,
the usage of (30) makes the scheme robust with respect to singularities.

The system (28), (30) is always represented by a strictly diagonally dominant
matrix, thus it is always solvable by the efficient cyclic tridiagonal solver (a mod-
ification of the basic Thomas algorithm) and the solvability is guaranteed without
any restriction on time step length τ [14].

In the numerical scheme (28),(30) there are two parameters αmi and wmi , given
by (17) and (10), which are evaluated as follows,

wmi = ((1− λmi ) g2i − λmi (∇g1)i ·Nm
i ) , (31)

where Nm
i =

(
xm
i+1−x

m
i−1

hm
i+1+hm

i

)⊥
and g2i and (∇g1)i are discrete values of the functions

g2 and ∇g1 in the curve point xmi . The partial derivatives of g1 included in the
gradient are evaluated by finite differences on the pixel grid.
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In order to discretize the tangential velocity α we first set αm0 = 0, which causes
the point x0 will move only in the normal direction. Then, by the finite volume
discretization of equation (17) we get αmi for i = 1, 2, ..., n− 1 by

αmi = αmi−1 + hmi 〈kβ〉
m
Γ − h

m
i k

m
i β

m
i + ω

(
Lm

n
− hmi

)
, (32)

where the curvature kmi , the normal velocity βmi , for i = 1, 2, ..., n, the mean value
〈kβ〉Γ and the total curve length Lm are given by following formulas

kmi = sgn
(
hmi−1 ∧ hmi+1

) 1

2hmi
arccos

(
hmi+1 · hmi−1

hmi+1h
m
i−1

)
, (33)

βmi = −
δmi−1 + δmi

2
kmi +

wmi−1 + wmi
2

, (34)

〈kβ〉Γ =
1

Lm

n∑
l=1

hml k
m
l β

m
l , (35)

Lm =

n∑
l=1

hml , (36)

where hmi = xmi − xmi−1, hmi = |hmi |.
Since the initial setting for αm0 = 0 can cause unnecessary large values of the

tangential velocity in an effort to redistribute the curve points uniformly, we find

the average tangential velocity αmavg =
n∑
i=0

αm
i

n . It is clear that αmavg is an unnecessary

tangential velocity and therefore we find new minimized values as αmi = αmi −αmavg
for i = 0, 1, ..., n− 1, by which we redefine αmi and use these new values inside the
scheme (28),(30).

The last issue that must be solved in the numerical implementation of the La-
grangian curve evolution approach is topological changes treatment. By a topo-
logical change, we mean merging of several evolving curves and/or splitting of
the evolving curve into several separate curves. The splitting can occur when the
curve velocity is locally slowed down significantly and merging when, e.g., we be-
gin with several initial curves. Detecting and solving the topological changes in
the Lagrangian approach is usually highly time-consuming because the standard
approaches have computational complexity O

(
n2
)
, where n is the number of curve

points [5, 17]. Such a high complexity is due to the strategy for the topological
changes detection, which consists of computing pairwise distances between all grid
points of the curve. The number of operations in such an approach is proportional
to (n− 1)

2
= n2 − 2n + 1 and such a number of additional operations should be

performed in every computational time step to evolve the curve. In general, it would
slow down the overall computational time significantly and so one has to implement
a different, efficient solution. We took our solution from [2, 14, 1] where the topolog-
ical changes are detected and resolved with O(n) complexity, which gives real-time
fast algorithm and makes our Lagrangian approach for image segmentation efficient
and reliable.

3. Numerical experiments. In the following experiments, we applied the pro-
posed segmentation method to the real Sentinel-2 optical data and we have been
testing the method on selected Natura 2000 habitat - 91F0 Riparian mixed forests
along the great rivers - in Záhorie region of Western Slovakia. We used Sentinel-2
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data from April 21, 2018 and its B03-Green (Figs. 4-7) and B04-Red (Fig. 8) opti-
cal bands (with 2.5% cropped histogram) as the image intensity function I0. The
reason to use these channels is that in this period of the year the riparian forests are
best observable/distinguishable in these optical bands. Before applying the func-
tions g1, H and g2 we always rescale the cropped image intensity I0 to the interval
[0, 1].

The first two numerical experiments serve for illustration of the method behaviour
on real data. The function H was given by (5) with small ε = 0.025 in manually
placed initial circle. Further parameters, σl, l = 0, 1, 2 in convolutions and k1

in definition of g1, were chosen according to the smoothness of the original data in
expected segmented regions and along their boundaries. The weight λ was set to 0.5
until the overall normal motion of the curve was slowed down to β < 0.001 and then
it was set to 1. The curvature influence parameter δ was considered small, δ = 0.01.
For the obtained segmentation results and the visualization of the method inputs,
look at Figs. 4-5. Note, that g2 (x) is the term expanding the curve. Curvature
term is helpful in case of inhomogeneity of g2 (x) in the segmented area. It allows
the curve to expand to the boundary also through inhomogeneities in g2(x), see
Figs. 4 and 5, third row right. Near the boundary, the expanding term weakens
and the edge detector attracts the curve to the edge. One can see in the second
numerical experiment that we can begin with two separate initial curves which are
subsequently merged and found the final riparian forest segmentation. From the
CPU time point of view, the method is fast, the computations took 0.45 and 2.6
seconds for these two numerical experiments.

In the next Figs. 6-8 we are comparing the results of the automatic segmentation
of riparian forests in Záhorie region with the GPS tracks obtained in the field and
with the semi-automatic segmentations obtained by the botany expert using the
method [15]. In Figs. 6-8 we placed the evolving curves into the classical RGB
images to see better the desired segmented regions. The segmentation parameters
were chosen similarly to experiments in Figs. 4-5, but the function H was given by
(5) for Fig. 7 and by (4) for the other two figures, δ was chosen 0.1 until the curve
was slowed down and then δ was set to 1 in all three experiments.

For the comparison we are using the mean and maximal Hausdorff distances. The
mean Hausdorff distance dH(A,B) of two discrete curves is given by the following
formula

δH(A,B) =
1

n

n∑
i=1

min
b∈B

d(ai, b), δH(B,A) =
1

m

m∑
i=1

min
a∈A

d(a, bi), (37)

dH(A,B) =
δH(A,B) + δH(B,A)

2
, (38)

where d(ai, b) is the Euclidean distance of two points ai and b from the point sets
A = {a1, a2, a3, ..., an} and B = {b1, b2, b3, ..., bm}. The maximal (or classical)
Hausdorff distance dH(A,B) is given by

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
. (39)

The quantitative comparisons are as follows:
Fig. 6: The mean Hausdorff distance of the automatic and semi-automatic seg-

mentation is 6.83m and their maximal Hausdorff distance is 27.20m. The mean
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Hausdorff distance of the automatic segmentation and GPS track obtained by
botanists in the field is 12.42m and their maximal Hausdorff distance is 39.21m.

Fig. 7: The mean Hausdorff distance of the automatic and semi-automatic seg-
mentation is 10.73m and their maximal Hausdorff distance is 63.95m. The mean
Hausdorff distance of the automatic segmentation and GPS track obtained by
botanists in the field is 10.82m and their maximal Hausdorff distance is 50.44m.

Fig. 8: The mean Hausdorff distance of the automatic and semi-automatic seg-
mentation is 8.48m and their maximal Hausdorff distance is 51.85m. The mean
Hausdorff distance of the automatic segmentation and GPS track obtained by
botanists in the field is 11.70m and their maximal Hausdorff distance is 49.96m.

As one can see, the mean Hausdorff distances of all compared curves are compa-
rable to Sentinel-2 pixel resolution accuracy (10m) and the maximal ones are in the
range of few tens of meters, which indicate desired accuracy of developed automatic
segmentation method.

4. Conclusions. In this paper, we presented the design and numerical implemen-
tation of the method for the automatic segmentation of Natura 2000 habitats from
Sentinel-2 optical data. We discussed details of mathematical model design and its
numerical discretization including efficient and robust computer implementation.
The CPU times of the method are in the range of few seconds (or less) and pre-
sented tests show the accuracy (in the sense of the mean Hausdorff distance) in
the range of Sentinel-2 pixel resolution (10m). The method was tested on selected
Natura 2000 habitat, the riparian forests, where we have at disposal semi-automatic
segmentation performed by botany experts as well as the GPS tracks obtained by
botanists in the field.

Future usage of the developed automatic segmentation method will be twofold,
first for finding occurrences and borders of habitats and second for monitoring the
habitat changes in time. The second goal is very important from the society point of
view. We will start with already performed accurate habitat area segmentation and
evolve automatically such initially given segmentation curve in a newly incoming
satellite data to check whether it undergoes significant change. Such a change would
indicate the change in habitat area and/or conditions and should lead to actions
to protect the Nature reserve. Since the segmentation method is computationally
fast, we will be able to use the inverse modelling [16] to find optimal segmentation
parameters for every habitat area where we have at disposal GPS tracks and/or
semi-automatic segmentation result. The optimal parameters will be chosen with
the goal to minimize the mean Hausdorff distance of the automatic segmentation
and GPS track/semi-automatic segmentation.
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[17] P. Pauš, M. Beneš, Algorithm for topological changes of parametrically described curves,

Proceedings of ALGORITMY, 2009, 176–184.
[18] A. Sarti, R. Malladi and J. A. Sethian: Subjective surfaces: A method for completing missing

boundaries, Proc. Natl. Acad. Sci. USA, 97 (2000), 6258–6263.

Received December 2018; revised November 2019.

E-mail address: mikula@math.sk

E-mail address: jozo.urban@gmail.com

E-mail address: michalkollar27@gmail.com

E-mail address: ambroz.martin.ml@gmail.com

E-mail address: ivan.jarolimek@savba.sk

E-mail address: jozef.sibik@savba.sk

E-mail address: maria.sibikova@savba.sk

http://www.ams.org/mathscinet-getitem?mr=MR1412430&return=pdf
http://dx.doi.org/10.1007/BF00379537
http://dx.doi.org/10.1007/BF00379537
http://www.ams.org/mathscinet-getitem?mr=MR1475140&return=pdf
http://dx.doi.org/10.1007/BF03167390
http://dx.doi.org/10.1007/BF03167390
http://www.ams.org/mathscinet-getitem?mr=MR2882346&return=pdf
http://dx.doi.org/10.1007/978-3-642-20671-9_72
http://dx.doi.org/10.1007/978-3-642-20671-9_72
http://www.ams.org/mathscinet-getitem?mr=MR3239215&return=pdf
http://dx.doi.org/10.1016/j.apnum.2014.06.002
http://dx.doi.org/10.1016/j.apnum.2014.06.002
http://www.ams.org/mathscinet-getitem?mr=MR1824511&return=pdf
http://dx.doi.org/10.1137/S0036139999359288
http://dx.doi.org/10.1137/S0036139999359288
http://www.ams.org/mathscinet-getitem?mr=MR2077443&return=pdf
http://dx.doi.org/10.1002/mma.514
http://dx.doi.org/10.1002/mma.514
http://www.ams.org/mathscinet-getitem?mr=MR2673133&return=pdf
http://dx.doi.org/10.4208/cicp.2009.08.169
http://dx.doi.org/10.4208/cicp.2009.08.169
http://dx.doi.org/10.1109/CISP.2012.6469852
http://www.ams.org/mathscinet-getitem?mr=MR3526188&return=pdf
http://dx.doi.org/10.1088/978-0-7503-1218-9
http://www.ams.org/mathscinet-getitem?mr=MR1760935&return=pdf
http://dx.doi.org/10.1073/pnas.110135797
http://dx.doi.org/10.1073/pnas.110135797
mailto:mikula@math.sk
mailto:jozo.urban@gmail.com
mailto:michalkollar27@gmail.com
mailto:ambroz.martin.ml@gmail.com
mailto:ivan.jarolimek@savba.sk
mailto:jozef.sibik@savba.sk
mailto:maria.sibikova@savba.sk

	1. Mathematical model for image segmentation
	2. Numerical algorithm for evolving curves
	2.1. Suitable choice of tangential velocity
	2.2. Numerical discretization

	3. Numerical experiments
	4. Conclusions
	REFERENCES

