
DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2020351
DYNAMICAL SYSTEMS SERIES S

3D IMAGE SEGMENTATION SUPPORTED BY A POINT

CLOUD
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Abstract. Here, we report a novel method of 3D image segmentation, using
surface reconstruction from 3D point cloud data and 3D digital image infor-

mation. For this task, we apply a mathematical model and numerical method

based on the level set algorithm. This method solves surface reconstruction
by the application of advection equation with a curvature term, which gives

the evolution of an initial condition to the final state. This is done by defining

the advective velocity in the level set equation as the weighted sum of distance
function and edge detector function gradients. The distance function to the

shape, represented by the point cloud, is computed using the fast sweeping

method. The edge detector function is applied to the presmoothed 3D im-
age. A crucial point for efficiency is the construction of an initial condition by

a simple tagging algorithm, which allows us also to highly speed up the nu-
merical scheme when solving PDEs. For the numerical discretization, we use

a semi-implicit co-volume scheme in the curvature part and implicit upwind

scheme in the advective part. The method was tested on representative exam-
ples and applied to real data representing 3D biological microscopic images of

developing mammalian embryo.

1. Introduction. Image segmentation is widely used to divide images into frac-
tions of units with related values to allow easier representation, edge detection or
to subtract a part of the image. Such segments contain data, which are related and
have similar traits. An image simplified in this manner is easier to analyze and the
data it represents is clear to understand. One of the methods used for image seg-
mentation is the subjective surface method [13, 2, 3, 6]. However, the application of
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this method to data with strong noise or the segmentation of structures composed
of cells is complicated. Consequently, we add point cloud data given by the user to
the image to support the segmentation.

The main goal of processing point cloud data is to create a computerized three-
dimensional (3D) model, representing the real object, from which the point cloud
was created, as accurately as possible. This process can be very complex and time
consuming. The prime cause for this difficulty is that the point cloud data has no
information about ordering or connectivity. Other reasons, which can make the
process difficult, are the unknown topology of the scanned object and the presence
of noise in the data.

Various methods already exist to process such data sets. The most used ap-
proaches by commercial software are nonuniform B-spline surfaces, triangulated
surfaces, and the substitution of point cloud by shapes defined by mathematical
equations representing geometric objects as cuboid, cylinder, cone or sphere. Some
software packages are available for different tasks, nevertheless, it is difficult to se-
lect the optimal one for all requirements. These software packages mainly use point
cloud data obtained by 3D laser scanning or photogrammetric methods. Here, we
analyzed data sets that included both point cloud data as well as 3D image intensity
information that we want to utilize in the reconstruction process.

Another approach for the processing of point cloud data is given by application of
the level set method [19], which has a wide range of applications in image processing,
computer graphics, material science and physics [14, 11]. In image processing,
the level set method is used for image segmentation. Our data sets contain 3D
images, in which image intensity is given in every voxel. These images can represent
biological data for which one may want to segment different continuous tissues
consisting of separate cells. Such tissues do not have clear boundaries and as a result,
automatic segmentation algorithms used so far may not give any useful result. To
distinguish the tissues from the other parts of the whole image we can use manually
identified point cloud data. Thus, the segment that we aim to identify, can be
seen as a volume, the boundary of which is determined by the point cloud data
related to the image information. In our algorithm, we enrich the level set motion
by the information coming from 3D digital images, allowing the image segmentation
combining 3D images and the point cloud data. Such a semi-automatic approach
for segmentation of image objects without clearly observable boundaries has not
been used in any previous articles.

The basic form of the algorithm consists in the solution of a partial differential
equation (PDE) representing the level set motion. The solution of the PDE is
calculated on a rectangular computational domain, which we choose according to
the point cloud and image data. The point cloud data set must be a subset of the
computational domain. The solution by the level set method results in the evolution
of the level set function as a deformation of an initial guess. The reconstructed
surface is then created as an isosurface of the level set function at the numerical
steady state.

2. Mathematical model. Our method is based on solution of the following ad-
vection equation with the curvature term,

ut + v · ∇u− δ |∇u| ∇ ·
(
∇u
|∇u|

)
= 0, (x, t) ∈ Ω× [0, T ] , (1)
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where u (x, t) is an unknown function, v denotes the advective velocity, the pa-
rameter δ ∈ [0, 1] determines influence of the curvature to the result, Ω is the
computational domain, and [0, T ] is a time interval. This equation is coupled with
homogeneous Neumann boundary conditions and an initial condition. The initial
condition is given by help of the distance function to a surface containing the point
cloud data Ω0, see [7] section 2.2. Then, this initial condition is driven to reach
the final segmentation result through the advective velocity v, smoothed by the
curvature term.

The advective velocity v in (1) contains information on both the given point cloud
data and 3D image intensity. For the point cloud data, the distance function d is
calculated using the fast sweeping method [18]. To utilize the image information,
we introduce the edge detector function g0 = g

(∣∣∇Gσ ∗ I0
∣∣), similarly as it is used

in [13, 2, 10, 8, 9, 17] for the classical image segmentation. Here, I0 denotes the
3D image intensity, Gσ represents a smoothing kernel applied to the image for
presmoothing the gradients of the intensity, and g is a function defined as

g (s) =
1

1 +Ks2
, (2)

where K ≥ 0 is an empirically chosen parameter [12]. Then, the advective velocity
is given by a combination of the distance function and the edge detector function
gradients, i.e.

v = θ (−∇d) + ρ

(
−∇g0

|∇g0|ε

)
. (3)

In the model, the first term −∇d drives the level sets of the solution for function
u (x, t) to the points of the cloud and the second term

(
−∇g0/

∣∣∇g0
∣∣
ε

)
drives them

to the image edges in the neighborhood of the point cloud.
The term

∣∣∇g0
∣∣
ε

is calculated according to the Evans-Spruck ε-regularization [4]

as

√
ε2 + |∇g0|2 where ε > 0. The parameters θ, ρ ∈ [0, 1] determine the influence

of two mentioned gradients on the surface reconstruction process. The edge detector
gradient is normalized and regularized in order to get comparable speed of advection
coming from the distance function and the edge detector function terms.

3. Numerical discretization. First of all, we apply a backward difference in time
with a uniform time step τ and the semi-implicit time discretization in nonlinear
curvature term of (1) to get

un − un−1

τ
+ v · ∇un − δ

∣∣∇un−1
∣∣∇ · ( ∇un

|∇un−1|

)
= 0. (4)

The spatial discretization is performed on a uniform voxel grid where the voxels
can be described as cubes with edge size h. The voxels are denoted by the indexes
p = (i, j, k) and at each voxel center the value of the image intensity is given by
I0
i,j,k, the value of computed distance function is denoted by di,j,k, and the computed

value of unknown function un at time step n in voxel p = (i, j, k) is denoted by both
unp and uni,j,k. For the calculation of the norm of gradient

∣∣∇un−1
∣∣, on the voxel

faces and in the voxel, and the calculation of
∣∣∇Gσ ∗ I0

∣∣ to determine the values of

g0 at voxels, we use the 3D tetrahedral finite element grid Th illustrated in Figure
1 [2].

The tetrahedral finite elements in Th are created by the following approach.
Every voxel is divided into six pyramid shaped elements with the base surface given
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by the voxel’s faces and the common vertex by the voxel center. Each of these
pyramids is joined with the neighboring pyramids, with which they have a common
base surface. These newly formed octahedrons are then split into four tetrahedrons.

Figure 1. The voxel grid cell with a tetrahedral finite element.

For tetrahedral grid Th, we construct a co-volume mesh, which consists of cells
p = (i, j, k) corresponding again to the voxels at our grid, see also [2]. We denote
the set of all neighboring cells q of p by Cp. The centers of these cells q ∈ Cp are all
connected to center of p by a common edge σpq of four tetrahedrons with the length
hpq = h. Each cell p is bounded by a plane for every q ∈ Cp, which is perpendicular
to σpq and denoted by epq. The set of tetrahedrons T , which have σpq as an edge,
is denoted by εpq. For every T ∈ εpq, cTpq is the area of the intersection of epq and
T . Let Np be the set of tetrahedrons that have p as a vertex. Let uh be a piecewise
linear function on Th. We use the notation up = uh (xp) where xp denotes the
coordinates of the center of cell p.

The spatial discretization of (4) is derived by using the following form of the
equation:

un − un−1

τ
+ v · ∇un = δ

∣∣∇un−1
∣∣∇ · ( ∇un

|∇un−1|

)
. (5)

We begin by integration of (5) over every p:∫
p

un − un−1

τ
dx+

∫
p

v · ∇undx =

∫
p

δ
∣∣∇un−1

∣∣∇ · ( ∇un

|∇un−1|

)
dx. (6)

For the first part of left hand side in (6), we get the approximation in the form∫
p

un − un−1

τ
dx = m (p)

unp − un−1
p

τ
, (7)

where m (p) is a measure in R3 of the cell p. The second part of the left hand side
can be written in an equivalent form by

v · ∇u = ∇ · (uv)− u∇ · v,∫
p

v · ∇undx =

∫
p

∇ · (unv) dx−
∫
p

un∇ · v dx.
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Considering un constant on p in the second term on the right hand side and by
using the divergence theorem, we get∫

p

∇ · (unv)dx−
∫
p

un∇ · v dx =

∫
∂p

unv · n̄ dσ − unp
∫
∂p

v · n̄ dσ =∑
q∈Cp

unpq

∫
epq

v · n̄ dσ −
∑
q∈Cp

unp

∫
epq

v · n̄ dσ
(8)

where unpq is an approximate value of the level-set function on the face epq and n̄ is

the outer normal to p. We approximate
∫
epq

v · n̄ dσ in (8) by vpq = h2v (xpq) · n̄,

where xpq is a center of epq, and get∫
p

v · ∇undx =
∑
q∈Cp

vpq
(
unpq − unp

)
. (9)

In order to use the upwind approach, the set Cp is divided into Cp = Cinp ∪ Coutp ,

where Cinp = {q ∈ Cp, vpq < 0}, which consists of the inflow boundaries, and Coutp =
{q ∈ Cp, vpq > 0} consisting of the outflow boundaries. By the upwind approach,
we set the values unpq to unq if q ∈ Cinp and to unp if q ∈ Coutp . After these definitions,
we can rewrite (9) into∫

p

v · ∇undx =
∑
q∈Cp

min (vpq, 0)
(
unq − unp

)
. (10)

For discretization of the right hand side of (6), we consider the term in front of
divergence constant on p and then we use the divergence theorem to get∫

p

δ
∣∣∇un−1

∣∣∇ · ( ∇un

|∇un−1|

)
dx = δ

∣∣∇un−1
p

∣∣ ∑
q∈Cp

∫
epq

1

|∇un−1|
∂un

∂n̄
dσ. (11)

The integral
∫
epq

1
|∇un−1|

∂un

∂n̄ dσ and
∣∣∇un−1

p

∣∣ in (11) is approximated numerically

using piecewise linear reconstruction of un−1 on the tetrahedral grid Th, thus we
get∫

p

δ
∣∣∇un−1

∣∣∇ · ( ∇un

|∇un−1|

)
dx = δ

∣∣∇un−1
p

∣∣ ∑
q∈Cp

 ∑
T∈εpq

cTpq
1∣∣∇un−1
T

∣∣
 unq − unp

h

where ∣∣∇un−1
p

∣∣ = Mn−1
p =

∑
T∈Np

m (T ∩ p)
m (p)

∣∣∇un−1
T

∣∣ (12)

and
∣∣∇un−1

T

∣∣ denotes the gradient of un−1
h on T . Then the discretized form of the

equation (5) is given by

m (p)
unp − un−1

p

τ
+
∑
q∈Cp

min (vpq, 0)
(
unq − unp

)
=

δMn−1
p

∑
q∈Cp

 ∑
T∈εpq

cTpq
1∣∣∇un−1
T

∣∣
 unq − unp

h
.

(13)
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After rearranging (13) and applying the Evans-Spruck ε-regularization
∣∣∇un−1

T

∣∣
ε

=√
ε2 +

∣∣∇un−1
T

∣∣, the equation has the following form

unp +
τ

m (p)

∑
q∈Cp

min (vpq, 0)
(
unq − unp

)

−δMn−1
p

∑
q∈Cp

 ∑
T∈εpq

cTpq
1∣∣∇un−1
T

∣∣
ε

 unq − unp
h

 = un−1
p .

(14)

If we define the coefficients

an−1
pq =

τ

m (p)

min (vpq, 0)− δMn−1
p

1

h

∑
T∈εpq

cTpq
1∣∣∇un−1
T

∣∣
ε

 , (15)

we get from (14) a system of linear equations with strictly diagonally dominant
M-matrix in the form

unp +
∑
q∈Np

an−1
pq

(
unq − unp

)
= un−1

p , (16)

which by addition of the homogeneous Neumann boundary conditions and initial
values u0

p is solved in every time step n. Since an−1
pq are non-positive coefficients a

unique solution exists (un1 , ..., u
n
M ) of (16) where M is a number of unknowns, for

any τ > 0, ε > 0, and for every n = 1, ..., N .
For the numerical solution of (16), we need the values of matrix coefficients apq.

We apply a “finite-difference notation”, the cell p is denoted by the index triplet
(i, j, k). The value unp is associated with uni,j,k. At each cell p, the set Np consists of

24 tetrahedrons on which we compute |∇unT |ε denoted by Gun,li,j,k, l = 1, ..., 24. To

derive the computation of Gun,li,j,k, we introduce a similar notation as used in [9].

First, we define the index sets P 1, P 2 and P 3 as

P 1 = {(r, s, t) ; r, s, t ∈ {−1, 0, 1} ; |r|+ |s|+ |t| = 1}
P 2 = {(r, s, t) ; r, s, t ∈ {−1, 1}}
P 3 = {(r, s, t) ; r, s, t ∈ {−1, 0, 1} ; |r|+ |s|+ |t| = 2}

Considering any (r, s, t) ∈ P 1 let xr,s,ti,j,k be the points where the edges σpq intersect
the planes epq, for every q ∈ Cp. Every vertex of a cubic element is represented by

zr,s,ti,j,k , for (r, s, t) ∈ P 2. The midpoints between each neighboring vertices of cubic

elements are denoted by yr,s,ti,j,k, for (r, s, t) ∈ P 3. The explained notation is presented
in Figure 2.

The values un−1 approximated at xr,s,ti,j,k, zr,s,ti,j,k and yr,s,ti,j,k are denoted by ur,s,ti,j,k,

leaving out the time index. In xr,s,ti,j,k, (r, s, t) ∈ P 1, the values are calculated as the
average value for two neighboring cells,

ur,s,ti,j,k =
1

2

(
un−1
i,j,k + un−1

i+r,j+s,k+t

)
, for (r, s, t) ∈ P 1.

In zr,s,ti,j,k , (r, s, t) ∈ P 2, as the average value of the 8 voxels which have zr,s,ti,j,k as a
common vertex,

ur,s,ti,j,k =
1

8
(un−1
i,j,k + un−1

i+r,j,k + un−1
i,j+s,k + un−1

i,j,k+t + un−1
i+r,j+s,k+
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un−1
i+r,j,k+t + un−1

i,j+s,k+t + un−1
i+r,j+s,k+t), for (r, s, t) ∈ P 2.

In yr,s,ti,j,k, (r, s, t) ∈ P 3, as the averages of values ur,s,ti,j,k in points zr,s,ti,j,k ,

ur,s,ti,j,k =
1

2

(
u
r+ξ(r),s+ξ(s),t+ξ(t)
i,j,k + u

r−ξ(r),s−ξ(s),t−ξ(t)
i,j,k

)
, for (r, s, t) ∈ P 3,

where

ξ (x) =

{
0 if x ∈ {−1, 1}
1 if x = 0

.

x0,0,1
i,j,k•

x−1,0,0
i,j,k •

x0,1,0
i,j,k•

z−1,1,1
i,j,k

z1,1,−1
i,j,k

z−1,1,−1
i,j,k

z1,−1,1
i,jk

•

•
•

•

•

•
•

y−1,0,−1
i,j,k

•

•

y−1,0,1
i,j,k

•

y−1,1,0
i,j,k •

y0,1,−1
i,j,k•

•

y0,1,1
i,j,k•

•
•

x1,0,0
i,j,k•

x0,0,−1
i,j,k•

x0,−1,0
i,j,k

•

z1,−1,−1
i,j,k

z−1,1,−1
i,j,k

z1,1,1
i,j,k

z1,−1,1
i,jk

•
•

•

•

•

•
•

•

y0,−1,−1
i,j,k•

•

•

y1,0,−1
i,j,k
•

•
y1,−1,0
i,j,k•

y1,0,1
i,j,k
•

y0,−1,1
i,j,k •

Figure 2. Notation for the additional points of a grid cell used

for calculation of Gun,li,j,k, l = 1, ..., 24

Norm of gradient
∣∣∇un−1

T

∣∣
ε

is computed by using values in two neighboring voxel

centers, in vertices of voxels corresponding to tetrahedral edge, zr,s,ti,j,k , and center of

that edge, yr,s,ti,j,k, and center of the face, xr,s,ti,j,k. Approximation of partial derivatives
included in gradient computation for one tetrahedra is illustrated in Figure 3. By red
color and dashed pattern we indicate the line which is used for approximating ∂uh

∂x ,

by green dotted line approximation of ∂uh

∂y , and blue dash-dotted line approximation

of ∂uh

∂z . For other tetrahedrons it is done similarly. Thereby, we get the values

Gun−1,l
i,j,k l = 1, ..., 24.

Besides
∣∣∇un−1

T

∣∣
ε
, given using the above explanation and Mn−1

p given by (12),

we need to determine also the values vpq in (15). Taking into account the definition
(3), we get

vpq = h2
(
θ (−∇d) + ρ

(
−∇g0
|∇g0|ε

))∣∣∣
xpq

· n̄. (17)

On the six voxel faces we can write

vti,j,k = −θh (di,j,k+1 − di,j,k)− ρh
((
g0
i,j,k+1 − g0

i,j,k

)
/
∣∣∇g0

i,j,k

∣∣
ε

)
vbi,j,k = θh (di,j,k − di,j,k−1) + ρh

((
g0
i,j,k − g0

i,j,k−1

)
/
∣∣∇g0

i,j,k

∣∣
ε

)
vni,j,k = −θh (di+1,j,k − di,j,k)− ρh

((
g0
i+1,j,k − g0

i,j,k

)
/
∣∣∇g0

i,j,k

∣∣
ε

)
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Figure 3. Tetrahedral finite element with marked edges for
approximation of partial derivatives.

vsi,j,k = θh (di,j,k − di−1,j,k) + ρh
((
g0
i,j,k − g0

i−1,j,k

)
/
∣∣∇g0

i,j,k

∣∣
ε

)
vei,j,k = −θh (di,j+1,k − di,j,k)− ρh

((
g0
i,j+1,k − g0

i,j,k

)
/
∣∣∇g0

i,j,k

∣∣
ε

)
vwi,j,k = θh (di,j,k − di,j−1,k) + ρh

((
g0
i,j,k − g0

i,j−1,k

)
/
∣∣∇g0

i,j,k

∣∣
ε

)
.

To obtain these values, we need to evaluate the discrete values of g0
i,j,k =

g
(∣∣∣∇Gσ ∗ I0

i,j,k

∣∣∣) for every voxel. To achieve this, we solve the convolution Iσ =

Gσ ∗ I0 through solving the linear heat equation by the implicit scheme with a time
step related to σ, where also the homogeneous Neumann boundary conditions are
applied.

Now, we can calculate
∣∣∣∇Iσi,j,k∣∣∣ analogously to (12) and finally we get

g0
i,j,k = g

(
1

24

24∑
l=1

GIσ,li,j,k

)
. (18)

With the discrete values of g0
p, we compute norm of regularized gradient

∣∣∇g0
p

∣∣
ε

=√
ε2 +

∣∣∇g0
p

∣∣2 where
∣∣∇g0

p

∣∣ is given according to the “magic formula” as described

in [5]: ∣∣∇g0
p

∣∣2 =
1

m (p)

∑
epq∈Cp

m (epq)
1

dpq

(
g0
pq − g0

p

)2
(19)

where dpq is the distance between the center of cell p and the center of epq. With

m (p) = h3, m (epq) = h2, dpq = h
2 and using g0

pq =
g0q+g0p

2 , we get:

∣∣∇g0
p

∣∣ =

√√√√1

2

∑
q∈Cp

(
g0
q − g0

p

h

)2

. (20)
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So we get

∣∣∇g0
i,j,k

∣∣ =

√√√√√1

2

∑
(r,s,t)∈P 1

(
g0
i+r,j+s,k+t − g0

i,j,k

h

)2

(21)

By using above considerations, we define

bi,j,k =
τ

h3

(
min

(
vbi,j,k, 0

)
− δMn−1

i,j,k

h

4

4∑
l=1

(
ε2 +

(
Gun−1,l

i,j,k

)2
)− 1

2

)

ti,j,k =
τ

h3

(
min

(
vti,j,k, 0

)
− δMn−1

i,j,k

h

4

8∑
l=5

(
ε2 +

(
Gun−1,l

i,j,k

)2
)− 1

2

)

ni,j,k =
τ

h3

(
min

(
vni,j,k, 0

)
− δMn−1

i,j,k

h

4

12∑
l=9

(
ε2 +

(
Gun−1,l

i,j,k

)2
)− 1

2

)

si,j,k =
τ

h3

(
min

(
vsi,j,k, 0

)
− δMn−1

i,j,k

h

4

16∑
l=13

(
ε2 +

(
Gun−1,l

i,j,k

)2
)− 1

2

)

ei,j,k =
τ

h3

(
min

(
vei,j,k, 0

)
− δMn−1

i,j,k

h

4

20∑
l=17

(
ε2 +

(
Gun−1,l

i,j,k

)2
)− 1

2

)

wi,j,k =
τ

h3

(
min

(
vwi,j,k, 0

)
− δMn−1

i,j,k

h

4

24∑
l=21

(
ε2 +

(
Gun−1,l

i,j,k

)2
)− 1

2

)
where Mn−1

i,j,k is given by

Mn−1
i,j,k =

√√√√ε2 +

(
1

24

24∑
l=1

Gun−1,l
i,j,k

)2

and the diagonal coefficient is defined as

ci,j,k = 1− bi,j,k − ti,j,k − ni,j,k − si,j,k − ei,j,k − wi,j,k.

With these notations, we rewrite (16) into the form of a system of linear equations

ci,j,ku
n
i,j,k + bi,j,ku

n
i,j,k−1 + ti,j,ku

n
i,j,k+1 + ni,j,ku

n
i+1,j,k

+si,j,ku
n
i−1,j,k + ei,j,ku

n
i,j+1,k + wi,j,ku

n
i,j−1,k = un−1

i,j,k,
(22)

for all (i, j, k). This system is solved at every time step by the SOR (Successive
Over Relaxation) iterative method. We stop the calculation when the residuum
between two consecutive time steps is lower than a chosen tolerance.

For the calculation, we need discrete initial values for the level set function u (x, 0)
in the zero time step. This initial condition is determined by a simple tagging
algorithm using distance function to the point cloud. With further modification of
this tagging algorithm, we are able to construct a band around the area between the
initial surface and point cloud data for computation acceleration [7]. For finding
the surface, which we want to reconstruct, it is sufficient to update the solution
values on grid cells contained only in such band.
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Figure 4. In the first column there are 3D images of a sphere
with 6 symmetrically placed holes. The experiment was executed
on spheres with holes of different shapes and sizes. The second
column shows the result of the mathematical model (1) with θ = 0
and ρ = 1 for the advective velocity (3). In the third column we
show the result after we added points to the missing parts of the
sphere and set θ = 1, ρ = 1 in (3).
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Figure 5. Sections of the embryo together with the marked points
for visceral endoderm (VE).

3.1. Numerical experiments. In the numerical experiments, we first set θ = 0
and ρ = 1 for the advective velocity (3). We prepared 3D images of a sphere, with

the radius r =
√

3
2 , on which we symmetrically placed 6 holes. We executed the

experiments with holes of different shapes and sizes. The 3D images can be seen
in the first column of the Figure 4. In the second column, the results we obtained
are represented. As expected, the missing parts were completed by the minimal
surfaces.

For the second experiment, we added points on the sphere randomly distributed
in the areas of the holes and set θ = 1 to see the effects with combined information
of point cloud data and image intensity. In the third column of the Figure 4, we see
the added point cloud together with the results of the reconstruction. In all cases
the missing parts of the sphere were accurately recreated.

In both cases, the calculations were executed on a grid with 2603 voxels which
have edge size h = 0.01 and we set the parameter δ for the curvature term in (1) to
0.05.
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Figure 6. 3D image of embryo structure, visualized with the re-
constructed ExE part of the embryo in the upper picture and with
VE part in the lower one.
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Figure 7. Reconstructed surface of extraembryonic ectoderm
(ExE) and visceral endoderm (VE), visualized with point cloud.
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To test our method on biological samples, we processed 3D microscopic images
of mouse embryos at early peri-implantation stages provided by the group of Mag-
dalena Zernicka-Goetz, University of Cambridge, in course of an ImageInLife EC
funded project. At the time of implantation, the embryo is composed of three dis-
tinct tissues, the epiblast, which will give rise to the organism, is enveloped by
two extraembryonic lineages, the visceral endoderm (VE) and the extra-embryonic
ectoderm (ExE). Both provide essential signaling cues mediating proper embryonic
development eventually giving rise to yolk sac and placenta respectively [1, 15, 16].

To gain further information on the 3D shape of both extra-embryonic tissues, we
decided to reconstruct both ExE and VE taking advantage of our new model (1).
For this, the embryo was scanned in 58 sections along the z-axis in 1µm steps. In
Figure 5, we can see section 20 (top row) and 40 (bottom row). Figure 6 depicts
the entire embryo through volume rendering of the 3D image.

As both tissues could not be segmented automatically by using 3D image intensity
information, the tissue borders were identified in 2D slices by marking through
single points. This manual process took around 2 hours for each tissue in the
whole 3D image. These points represent a basis for 3D point cloud data entering
the model equation (1). The idea of using point cloud for segmentation instead
of image information, was first explored in [3], and it is used in the current work
as well, but combined with the 3D image intensity information. We can see the
examples of manually identified points in the second column of Figure 5 for VE
part. We applied linear interpolation between neighboring points in every 2D slice
and combined all the points of all sections to create a 3D point cloud data set. We
applied our algorithm to solve (1) and present the results in Figure 7 visualized
with the supporting points.

In this example the, dimension of the 3D image was 512x512x58 voxels. The
calculations were performed on a computer with an Intel(R) Core(TM) i7-5820
CPU 3.30GHz processor and 128 GB RAM. We measured the CPU times for both
cases. For ExE part the calculation lasted 1017 seconds and for the VE part 1420
seconds. We also applied parallelization to our implementation with the utilization
of the OpenMP library. For parallel calculations we used 6 threads on the mentioned
computer. After this the calculation of the ExE part took 448 seconds and for the
VE part 599 seconds.

Acknowledgments. This work was supported by the grants APVV-15-0522 and
EC project ImageInLife - Marie Sklodowska-Curie grant agreement No. 721537.
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