
�

�
Mathematical Publications

DOI: 10.2478/tmmp-2023-0033
Tatra Mt. Math. Publ. 00 (xxxx), 1–40

DIRECT SIMPLE COMPUTATION OF MIDDLE

SURFACE BETWEEN 3D POINT CLOUDS AND/OR

DISCRETE SURFACES BY TRACKING SOURCES

IN DISTANCE FUNCTION CALCULATION

ALGORITHMS

Balázs Kósa — Karol Mikula

Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak
University of Technology in Bratislava, SLOVAKIA

ABSTRACT. In this paper, we introduce novel methods for computing middle
surfaces between various 3D data sets such as point clouds and/or discrete
surfaces. Traditionally the middle surface is obtained by detecting singu-

larities in computed distance function such as ridges, triple junctions, etc.
It requires to compute second order differential characteristics, and also some
kinds of heuristics must be applied. Opposite to that, we determine the middle
surface just from computing the distance function itself which is a fast and sim-
ple approach. We present and compare the results of the fast sweeping method,
the vector distance transform algorithm, the fast marching method, and the

Dijkstra-Pythagoras method in finding the middle surface between 3D data sets.

1. Introduction

Finding an optimal middle surface for a data set is a crucial task in many
applications such as computational geometry, surface representation and recon-
struction, image processing and computer vision or mesh generation. In opti-
mal mesh generation [7], for example, the information about the middle surface
can be used to densify or coarsen the computational grid in the computational
domain. For this reason, having an efficient method that fulfils such needs is very

© 2023 Mathematical Institute, Slovak Academy of Sciences.
2020 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 65M06, 65Y20, 68U05, 53A05.
Keywords: Middle surface, 3D point cloud, triangulated surface, fast sweeping method, fast
marching method, vector distance transform, Dijkstra-Pythagoras method.
This work was supported by grants APVV-19-0460, and VEGA 1/0436/20.

Licensed under the Creative Commons BY-NC-ND4.0 International Public License.

1

B. KÓSA—K. MIKULA

important. Very often the middle surface, which algorithms are seeking for, is a
middle axis of a closed curve or a surface, see e.g. [6,9,11]. Such algorithms can
be complicated because they utilize the second order derivatives of the computed
distance function in order to detect its ridges, junctions and other singularities
which often requires some kinds of heuristics, see also [7]. In cases where we can
distinguish individual separated or labelled shapes between which we want to
find the middle surface, a much more straightforward approach can be derived.
We show how algorithms designed for distance function calculation can be ad-
justed and utilized in these cases to obtain the middle surface already during
the computations of the distance function itself. Opposite to methods that uti-
lize second order derivatives of the computed distance function, we only adjust
the distance function calculation algorithms. This makes our methods simple,
efficient and easy to implement.

A distance function to an object is a useful tool in a variety of disciplines.
For this reason, over the years many algorithms, which were optimized to obtain
the most accurate result as fast as possible, have been developed, see e.g. [5].
We provide a short description of four such algorithms and show how they can
be implemented to calculate the distance function on a uniform voxel grid for 3D
objects represented either by point clouds or triangulated surfaces. To compare
the algorithms, we applied them to several data sets and measured their accuracy
and speed.

After providing a sufficient explanation of the methods with detailed pseudo-
codes for each of them, we describe how we use them to find the middle surface.
We will see that all it needs is a few natural changes in the implementation
to achieve this goal. We test our approaches on several experiments and present
the results subsequently.

2. Numerical methods

In computational mathematics, the notion of distance function is used for the
result of distance computation. In this section, we will discuss common numerical
methods used for this task. Following [12] the presented methods are classified
according to two criteria:

(1) Distance definition: The distance function can be calculated as
a solution of the so called Eikonal equation or by the Euclidean distance
computation.

(2) Voxel visit order strategy: We will analyse sweeping and wavefront
methods.

2

DIRECT COMPUTATION OF MIDDLE SURFACES

Our goal is to demonstrate how methods falling under these categories can be
used to find the middle surface between two or more input data sets. We will dis-
cuss and analyse these methods: the fast sweeping method (FSM) [14], the vector
distance transform (VDT) algorithm [3], the fast marching method (FMM) [10]
and the Dijkstra-Pythagoras (DP) method [12]. Table 1 shows the classification
of the four studied methods.

Table 1. Overview of methods used to compute the distance function.

Rows represent the distance definition. Columns represent the voxel visit
order strategy.

Sweeping Wavefront

Eikonal equation
Fast sweeping

method

Fast marching

method

Euclidean distance
Vector distance

transform
Dijkstra-Pythagoras

2.1. Basic definitions

The distance function will be calculated on the computational domain Ω,
Ω ⊆ R

n. A data set Ω0, to which we want to compute distance function d, will
be a subset of Ω, Ω0 ⊆ Ω. In this paper, we work with 3D objects so we limit
the dimension of Ω to n = 3. With this notation of the domain, we can define
the distance function as d : Ω → R. On subset Ω0 the distance should be 0,
thus we get the boundary condition

d (x) = 0, x ∈ Ω0 ⊆ Ω. (1)

Then the task is to calculate

d (x) , x ∈ Ω \ Ω0.

2.1.1. Distance definition

For the numerical methods, the computational domain Ω will be discretized into
a finite number of voxels with edge size h. The number of voxels will be denoted
as Ni along the x axis, Nj along the y axis, and Nk along the z axis. In the
obtained computational grid, the function d will be calculated at the center
of every voxel, the so-called grid points.

The eikonal equation is given by

|∇d (x)| = 1, x ∈ Ω. (2)

This equation will be coupled with the boundary condition (1). For the dis-
cretization of (2), we denote grid points of Ω by xi,j,k and the numerical solution

3

B. KÓSA—K. MIKULA

of the distance function at xi,j,k as di,j,k. The discretization of (2) at interior
grid points is done according to the Godunov upwind difference scheme [8]:

[
(di,j,k − dx min)

+
]2
+

[
(di,j,k − dy min)

+
]2
+

[
(di,j,k − dz min)

+
]2

= h2,

i = 1, . . ., I − 1, j = 1, . . . , J − 1, k = 1, . . . , K − 1,

dx min = min (di,j−1,k, di,j+1,k) ,

dy min = min (di−1,j,k, di+1,j,k) ,

dz min = min (di,j,k−1, di,j,k+1) ,

(3)

(x)+=

{
x, x > 0,

0, x ≤ 0.

At the boundary of Ω we use one sided difference. This enforces that the solution
at every voxel center is defined by the smaller values of neighbouring grid points.
Eikonal-based methods calculate the distance function by applying the described
numerical scheme (3).

Euclidean distance between two points will be defined according to the
Pythagoras’ theorem. For

a = (ax, ay, az) ∈ Ω, b = (bx, by, bz) ∈ Ω

we define

d (a, b) =

√
(ax − bx)

2
+ (ay − by)

2
+ (az − bz)

2
. (4)

2.1.2. Voxel visit order strategy

For algorithms with the sweeping approach, Gauss-Seidel iterations with alter-
nating sweeping orderings are used. This allows the methods to pass through
the voxels multiple times. For three dimensions we sweep the computational
domain with eight alternating orderings:

1. i = 1 : Ni, j = 1 : Nj, k = 1 : Nk;

2. i = 1 : Ni, j = 1 : Nj, k = Nk : 1;

3. i = 1 : Ni, j = Nj : 1, k = 1 : Nk;

4. i = 1 : Ni, j = Nj : 1, k = Nk : 1;

5. i = Ni : 1, j = 1 : Nj, k = 1 : Nk;

6. i = Ni : 1, j = 1 : Nj, k = Nk : 1;

7. i = Ni : 1, j = Nj : 1, k = 1 : Nk;

8. i = Ni : 1, j = Nj : 1, k = Nk : 1.

4

DIRECT COMPUTATION OF MIDDLE SURFACES

To work with these sweeps, we will define the following sets:

isweep =
{{0, Ni − 1, 1} , {0, Ni − 1, 1} , {0, Ni − 1, 1} , {0, Ni − 1, 1} ,
{Ni − 1, 0,−1} , {Ni − 1, 0,−1} , {Ni − 1, 0,−1} , {Ni − 1, 0,−1}}

jsweep =
{{0, Nj − 1, 1} , {0, Nj − 1, 1} , {Nj − 1, 0,−1} , {Nj − 1, 0,−1} ,
{0, Nj − 1, 1} , {0, Nj − 1, 1} , {Nj − 1, 0,−1} , {Nj − 1, 0,−1}}

ksweep =
{{0, Nk − 1, 1} , {Nk − 1, 0,−1} , {0, Nk − 1, 1} , {Nk − 1, 0,−1} ,
{0, Nk − 1, 1} , {Nk − 1, 0,−1} , {0, Nk − 1, 1} , {Nk − 1, 0,−1}}.

(5)

The different algorithms analyse a certain set of neighbouring voxels in every
iteration. This can be the set of 6 closest neighbours

P 1 =
{
(r, s, t) ; r, s, t ∈ {−1, 0, 1} ; |r| + |s|+ |t| = 1

}
, (6)

or the set including also the diagonal voxels, the set of all 26 neighbours

P 2 =
{
(r, s, t) ; r, s, t ∈ {−1, 0, 1} ; |r|+ |s|+ |t| = c; c ∈ {1, 2, 3}}. (7)

In the wavefront methods at every grid point, we assign the final value
already in the first pass. To ensure this, the algorithms have to be set up in
a way that every voxel is visited in the correct order, starting with the voxel
nearest to Ω0 and ending with the furthest. For this, a data structure called
min-priority-heap [2] is utilized. In this structure whenever a change occurs
the elements are rearranged so the element with the smallest value is on top.
For wavefront algorithms at the beginning, we store all grid points that enforce
the boundary condition in such a heap, with their distance value d and their
location in the grid. In every iteration, we can immediately obtain the grid
point with the smallest value of d (x). As the front moves on, new elements are
added to the heap. For easy updates of distance values at grid points already
saved in the heap, additional information about their location in the heap should
be maintained.

In the next subsections, we will go through the implementation of the men-
tioned methods, so we will be able to describe how to change them for the task
of computing the middle surface. To that goal, we start with the description
of how to implement the initialization of the distance function to ensure the
boundary condition (1).

2.2. Initialization

For every point x of the input data set Ω0 the function d should fulfill (1).
When we implement a method for the calculation of d, we need to find a way
to fulfill this condition. If point x would coincide with the voxel center, in an ar-
ray representing d we could just set the values to 0 for every such point x.
Unfortunately, this is usually not the case.

5

B. KÓSA—K. MIKULA

While working with point cloud data, to fulfill (1), we initialize the function d
as follows. We find the 8 nearest grid points to every point in the cloud and
calculate the exact distance for these points from the corresponding point cloud
element. The smallest possible distance will be saved at grid points when explor-
ing subsequently all point cloud elements. These initialized values will be fixed
in further calculations. Some of the algorithms described in the following sections
use the cloud points as “sources” to calculate the distance function at other grid
points. For this reason, in the initialization, we will keep track of this informa-
tion as well. We can easily do this by setting the index of the source cloud point
to the fixed grid points which will refer to the coordinates of the source. At other
than fixed grid points, we set d to a high enough number, which is bigger than
the biggest possible distance in the grid. To simplify this, we can use +∞, which
for example when we implement the algorithm in C or C++ can be substituted
by the maximum double value.

In Alg. 1, we show how the described initialization can be easily implemented.

2.3. Fast sweeping method

The fast sweeping method (FSM) [14] is an iterative algorithm with alternating
sweeps (5) used for the numerical solution of the Eikonal equation (3). It can
be applied in any number of dimensions for a rectangular computational grid.
The value of d (x) at any grid point will never increase because an update rule is
implemented by which the new value of the distance function is saved only if it
is smaller than the current value. This enforces the correct value not to change
at later iterations.

Let us denote in equation (3) the unknown as x = di,j,k and the coefficients
as

a1 = dx min, a2 = dy min, a3 = dz min.

Then the unique solution, denoted by x̄, to the equation

[
(x− a1)

+
]2
+

[
(x− a2)

+
]2
+

[
(x− a3)

+
]2

= h2 (8)

can be found as follows. We order a1, a2, a3 in the increasing order. For generality
we assume a1 ≤ a2 ≤ a3. There is an integer p, 1 ≤ p ≤ 3, such that x̄ is
the unique solution that satisfies

(x− a1)
2
+ (x− a2)

2
+ (x− a3)

2
= h2

and

ap < x̄ < ap+1. (9)

6

DIRECT COMPUTATION OF MIDDLE SURFACES

Algorithm 1 Initialization of distance function to the point cloud data

Input: Point cloud data:

pcl - (x, y, z) coordinates of the lth point,

N - number of points.

Input: 3D grid with voxel edge size h and dimensions Ni, Nj , Nk.

Declaration: Arrays:

di,j,k - value of distance function at grid point (i, j, k),
ci,j,k - (x, y, z) coordinates of grid point (i, j, k),
fi,j,k - determines if di,j,k is fixed at (i, j, k),

si,j,k - source for di,j,k calculation at (i, j, k).
1: Set: di,j,k to +∞, fi,j,k to false, si,j,k to unknown
2: Calculate: ci,j,k
3: for (l = 0; l < N ; l = l+ 1) do

4: ifirst = RoundDown
((

pcl.x−min
(
ci,j,k.x

))
/h

)

5: jfirst = RoundDown
((

pcl.y −min
(
ci,j,k.y

))
/h

)

6: kfirst = RoundDown
((

pcl.z −min
(
ci,j,k.z

))
/h

)

7: for (i = ifirst; i ≤ ifirst + 1; i = i+ 1) do
8: for (j = jfirst; j ≤ jfirst + 1; j = j + 1) do

9: for (k = kfirst; k ≤ kfirst + 1; k = k + 1) do
10: dnew = d

(
pcl, ci,j,k

)
� Calculated by (4).

11: if dnew < di,j,k then
12: di,j,k = dnew
13: fi,j,k = true
14: si,j,k = pcl
15: end if
16: end for
17: end for
18: end for
19: end for

To find x̄ we start with p = 1. If x̃ = a1+h ≤ a2 then x̄ = x̃. Otherwise we have
to find the solution of the quadratic equation

(x− a1)
2
+ (x− a2)

2
= h2

that satisfies x̃>a2. We always take the maximum of the two solutions as our x̃.
If x̃ ≤ a3 then x̄ = x̃. If we still do not have x̃ which satisfies all the conditions
as the third step we compute the solution of the quadratic equation

(x− a1)
2
+ (x− a2)

2
+ (x− a3)

2
= h2

which will satisfy (2.3).

Only a finite amount of iterations is needed to obtain the solution, thus the
complexity of the method is O (N), where N is the total number of grid points
in the computational domain. This method is simple to implement, as it can be
seen in the provided pseudo-code Alg. 2.

7

B. KÓSA—K. MIKULA

Algorithm 2 Fast sweeping method

Input: From Alg.1: 3D grid, di,j,k, fi,j,k

1: for (l = 0; l < 8; l = l+ 1) do

2: for (i = isweep [l, 0] ; i ≤ isweep [l, 1] ; i = i+ isweep [l, 2]) do

3: for (j = jsweep [l, 0] ; j ≤ jsweep [l, 1] ; j = j + jsweep [l, 2]) do

4: for (k = ksweep [l, 0] ; k ≤ ksweep [l, 1] ;k = k + ksweep [l, 2]) do

5: if fi,j,k is not true then

6: a1 = min
(
di+1,j,k, di−1,j,k

)

7: a2 = min
(
di,j+1,k, di,j−1,k

)

8: a3 = min
(
di,j,k+1, di,j,k−1

)
� Use +∞ if (i, j, k) is out of bounds.

9: Sort {a1, a2, a3} from lowest to highest.

10: dnew = a1 + h

11: if dnew > a2 then

12: dnew = MaxSolution
x

(
(x− a1)

2 + (x− a2)
2 = h2

)

13: if dnew > a3 then

14: dnew = MaxSolution
x

(
(x− a1)

2 + (x− a2)
2 + (x− a3)

2 = h2
)

15: end if

16: end if

17: if dnew < di,j,k then

18: di,j,k = dnew

19: end if

20: end if

21: end for

22: end for

23: end for

24: end for

2.4. Vector distance transform

For the implementation of the vector distance transform (VDT) [3] algorithm,
we follow the implementation used in [12] and extend it to 3D calculations.
Comparing the pseudo-code of this method, Alg. 3 with Alg. 2, we can imme-
diately see that the algorithm also uses Gauss-Seidel iterations alternating the
sweeping ordering (5). This shows that the information propagates in the same
manner, and we can use the same update rules for the values of d (x).

The main difference between VDT and FSM lies in the method of how the
values of d (x) are calculated at the not fixed grid points. While FSM calculates
new distance values from the values of neighbouring grid points, VDT only checks
the source of the neighbours to calculate the smallest possible exact Euclidean
distance (4) at the current grid point. For this reason, we need to keep track
of the sources, and every time we calculate a smaller distance value we update
this information. This method yields O (N) complexity as well.

8

DIRECT COMPUTATION OF MIDDLE SURFACES

Algorithm 3 Vector distance transform

Input: From Alg.1: 3D grid, di,j,k, ci,j,k, fi,j,k, si,j,k

1: for (l = 0; l < 8; l = l+ 1) do

2: for (i = isweep [l, 0] ; i ≤ isweep [l, 1] ; i = i+ isweep [l, 2]) do

3: for (j = jsweep [l, 0] ; j ≤ jsweep [l, 1] ; j = j + jsweep [l, 2]) do

4: for (k = ksweep [l, 0] ; k ≤ ksweep [l, 1] ;k = k + ksweep [l, 2]) do

5: if fi,j,k is not true then

6: for all
{
(i+ r, j + s, k + t) ; (r, s, t) ∈ P 1

}
not out of bound do

7: if si+r,j+s,k+t is known then

8: dnew = d
(
si+r,j+s,k+t, ci,j,k

)
� Calculated by (4).

9: if dnew < di,j,k then

10: di,j,k = dnew

11: si,j,k = si+r,j+s,k+t

12: end if

13: end if

14: end for

15: end if

16: end for

17: end for

18: end for

19: end for

2.5. Fast marching method

Similarly, as the FSM algorithm, the fast marching method (FMM) [10] gives
results based on the solution of the Eikonal equation. While FSM tests the pos-
sible solutions of the alternatives of (2.3) by going through them in the right
order, FMM sets up the solution immediately according to which coefficients are
already calculated. In the construction of this algorithm, one-way propagation
of information is utilized, secured by the upwind difference structure of dis-
cretization. To properly monitor this propagation the visiting of grid points is
tracked throughout the execution of the algorithm. The solution is built outward
from the smallest values, which, as seen in the initialization phase in Section 2.2,
are at the grid points nearest to the points in the cloud. These elements are
gathered in a min-priority-heap and marked as ‘to be visited’, while all others
are marked ‘unvisited’. In Alg. 4 we can see how the heap is used. While the
solution from the initialized grid points is marched forward the values from the
heap are finalized, marked as ‘visited’, and new points are brought into this set.
FMM works, because we always select the grid point with the smallest value from
the heap to calculate the values of the neighbouring elements, thus ‘unvisited’
grid points will not have any effect on the solution.

9

B. KÓSA—K. MIKULA

The complexity of the FMM algorithm is of order O (N log2 N), because we
visit every grid point once and the operations of the min-priority-heap have
a complexity of O (log2 N).

Algorithm 4 Fast marching method

Input: From Alg.1: 3D grid, di,j,k, fi,j,k
Declaration: vi,j,k will hold the visiting values of grid points

‘unvisited’=0, ‘to be visited’=1, ‘visited’=2

Declaration: heap container will be a min-priority-heap

Initialization: ∀fi,j,k = true :
{
vi,j,k = 1; heap.InsertNode(di,j,k)

}
else: vi,j,k = 0

1: while heap is not empty do
2: (i, j, k) = heap.GetRoot() � Obtain (i, j, k) with minimum d and delete from heap.
3: for all

{
(i+ r, j + s, k + t) ; (r, s, t) ∈ P 1

}
, not out of bound do

4: if (fi+r,j+s,k+t is false) and (vi+r,j+s,k+t = 0 or vi+r,j+s,k+t = 1) then

5: x = min
(
di+r+1,j+s,k+t, di+r−1,j+s,k+t

)
6: y = min

(
di+r,j+s+1,k+t, di+r,j+s−1,k+t

)
7: z = min

(
di+r,j+s,k+t+1, di+r,j+s,k+t−1

)
� Use +∞ if (i+ r, j + s, k + t) is

8: a = b = c = 0 out of bounds.
9: if x �= +∞ then a = a+ 1; b = b+ x; c = c+ x2

10: if y �= +∞ then a = a+ 1; b = b+ y; c = c+ y2

11: if z �= +∞ then a = a+ 1; b = b+ z; c = c+ z2

12: a = a ∗ (
1/h2

)
13: b = (−2) ∗ b ∗ (

1/h2
)

14: c = c ∗ (
1/h2

)− 1.0

15: dnew =
−b+

√
b2−4∗a∗c
2∗a

16: if dnew < di+r,j+s,k+t then
17: di+r,j+s,k+t = dnew
18: if vi+r,j+s,k+t = 0 then
19: heap.InsertNode(di+r,j+s,k+t)
20: vi+r,j+s,k+t = 1

21: else
22: heap.DecreaseKey

(
(i+ r, j + s, k + t) , dnew

)
23: end if
24: end if
25: end if

26: end for
27: vi,j,k = 2
28: end while

2.6. Dijkstra-Pythagoras method

The Dijkstra-Pythagoras (DP) method was introduced in [12]. In [12], a gap
was detected for a wave-front type method, like FMM, which has lead
to a new DP method giving the results with the exact Euclidean distance.
Dijkstra-Pythagoras algorithm uses visiting rules and a min-priority-heap as
described in the FMM algorithm but utilizes the source tracking for distance

10

DIRECT COMPUTATION OF MIDDLE SURFACES

calculation as in the VDT method. In [12] the pseudo-code of the method was
outlined in a 2D pixel grid with pixel edge size 1. We extend it to the 3D voxel
grid and introduce a substantial modification. In the initial proposal, the algo-
rithm analyses all neighbours of grid points. We changed this to include only
the closest ones, which in 3D are the voxels from the set P 1 (6). We found that
with this modification the method becomes much faster and its precision stays
approximately the same. In Alg. 5 we show the detailed pseudo-code with our
changes.

The logic of the method is based on a two-fold relaxation of d (x) values.
As in FMM, every cycle of the algorithm starts with the grid point of the smallest
d value popped from a min-priority-heap. The distance value of this point is
checked to the sources of all its ‘visited’ neighbours. From all 6 possibilities the
value is adjusted to the minimum before it is marked as ‘visited’ as well. Its source
is selected accordingly. Then this method attempts to relax the ‘unvisited’ and
‘to be visited’ neighbours in a Dijkstra way. The distances for these grid points
are updated according to the Pythagoras rule if the new value is smaller than
the value already stored. Their sources are set to the source of the grid point
by which they were updated. The neighbours which are ‘unvisited’ will be added
to the heap. The algorithm runs till the heap is empty.

Similarly to FMM the complexity of this method is O (N log2 N).

3. Numerical experiments - methods comparison

In this section, we compare the efficiency of the described algorithms and show
that they can be used for computing the distance function to objects represented
by a 3D point cloud and triangulated surface.

3.1. Comparing methods

For the first experiment, we will work with a cube with an edge size of 1.0, and
its vertex with minimum coordinates at (0.0, 0.0, 0.0). Around it, we construct
a rectangular computational domain which is in every direction 0.4 times larger
than the Cube. In this experiment, we discretize the computational domain
in a way that some of the grid points will always lie on the surface of the Cube.
Thus, we can set the distance function at these points to 0 during initialization.

With this setup, we computed the distance function for the Cube with the
four algorithms on the computational domain discretized to a grid by voxels
with different edge sizes, namely 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125.
We demonstrate how the distance function looks like on these grids in Figure 1
calculated by the FSM algorithm.

11

B. KÓSA—K. MIKULA

Algorithm 5 Dijkstra-Pythagoras method

Input: From Alg.1: 3D grid, di,j,k, ci,j,k, fi,j,k, si,j,k
Declaration: vi,j,k will hold the visiting values of grid points

‘unvisited’=0, ‘to be visited’=1, ‘visited’=2

Declaration: heap container will be a min-priority-heap

Initialization: ∀fi,j,k = true :
{
vi,j,k = 1; heap.InsertNode(di,j,k)

}
else: vi,j,k = 0

1: while heap is not empty do
2: (i, j, k) = heap.GetRoot() � Obtain (i, j, k) with minimum d and delete from heap.
3: for all

{
(i+ r, j + s, k + t) ; (r, s, t) ∈ P 1

}
, not out of bound do

4: if fi+r,j+s,k+t is false and vi+r,j+s,k+t = 2 then

5: dnew = d
(
si+r,j+s,k+t, ci,j,k

)
� Calculated by (4).

6: if dnew < di,j,k then
7: di,j,k = dnew
8: si,j,k = si+r,j+s,k+t

9: end if
10: end if

11: end for
12: vi,j,k = 2

13: for all
{
(i+ r, j + s, k + t) ; (r, s, t) ∈ P 1

}
, not out of bound do

14: if (fi+r,j+s,k+t is false) and (vi+r,j+s,k+t = 0 or vi+r,j+s,k+t = 1) then

15: dnew = di,j,k + h
16: if dnew < di+r,j+s,k+t then
17: di+r,j+s,k+t = dnew
18: si+r,j+s,k+t = si,j,k
19: if vi+r,j+s,k+t = 0 then
20: heap.InsertNode(di+r,j+s,k+t)

21: vi+r,j+s,k+t = 1
22: else
23: heap.DecreaseKey((i+ r, j + s, k + t) , dnew)
24: end if
25: end if

26: end if
27: end for
28: end while

To compare the accuracy of the algorithms, we calculated the mean squared
difference from the exact solution for all grids. If we denote the exact solution
as d̄i,j,k at xi,j,k ∈ Ω the mean squared difference can be calculated as⎡

⎣N1−1∑
i=0

N2−1∑
j=0

N3−1∑
k=0

(
d̄i,j,k − di,j,k

)2
⎤
⎦/

(N1 ∗N2 ∗N3) (10)

We are listing these results in Table 2. In the first column, we list the number
of grid points in x, y, z directions of our computational grid. In the second
column, we see the length of the voxel edges. In the following columns, we see
the mean squared difference for FSM, VDT, FMM, and DP methods. We can

12

DIRECT COMPUTATION OF MIDDLE SURFACES

Figure 1. Distance function visualization for the Cube experiment. We
visualize the section in a constant z plane for voxel edge sizes 0.2, 0.1,
0.05, 0.025. Values go from the highest dark red to the lowest dark blue.
Results were calculated by FSM.

see that the results for the VDT and DP methods are basically 0, as we would
have expected after stating the fact that they yield Euclidean distance results.
The results of FSM and FMM are less accurate. We compare these results also
visually in Figure 2 for computational grids with voxel edge size 0.1 and 0.025.
We can see that the results for the pairs of FSM, FMM, and VDT, DP in this
experiment are visually identical.

13

B. KÓSA—K. MIKULA

Table 2. Mean squared difference comparison for distance function calcu-
lation methods tested on the Cube experiment.

Number of

grid points

Voxel

edge size
FSM VDT FMM DP

103 0.2 2.5692e-03 1.4791e-34 2.5692e-03 4.227801e-33

193 0.1 9.7901e-04 1.8869e-34 9.7902e-04 5.011068e-33

373 0.05 3.7697e-04 1.0579e-34 3.7697e-04 1.151981e-32

733 0.025 1.4352e-04 5.0275e-35 1.4352e-04 8.414407e-33

1453 0.0125 5.3092e-05 2.5195e-35 5.3092e-05 9.454389e-33

2893 0.00625 1.8949e-05 1.3057e-35 1.8949e-05 3.427338e-32

5773 0.003125 6.5244e-06 6.5770e-36 6.5244e-06 1.404635e-31

Figure 2. Visualization of results for distance function calculation
in a constant z plane. In the first row, we see visualization for voxel edge
size 0.1, in the second row for voxel edge size 0.025. In the first column,
we see the result for the FSM algorithm, in second for FMM, in third
for VDT and in the fourth for DP.

Besides the accuracy, for this experiment, we also measured the CPU time
needed to calculate the distance function using different methods, reported
in Table 3. Here again, first, the parameters of our grid are listed. In the third
column, we list the CPU time for the initialization phase of the algorithms.
The initialization is the same for all four methods. Because of the simplicity

14

DIRECT COMPUTATION OF MIDDLE SURFACES

of the experiment, this takes just a few seconds even for the finest grid. Compar-
ing the results we see that concerning CPU time, the FSM algorithm outperforms
all other methods.

Table 3. CPU time comparison for distance function calculation methods
tested on the Cube experiment. CPU time was measured in seconds.

Number of

grid points

Voxel

edge size
Initialization FSM VDT FMM DP

103 0.2 0 0.001 0.002 0.001 0.001

193 0.1 0 0.002 0.017 0.002 0.002

373 0.05 0.001 0.008 0.029 0.016 0.015

733 0.025 0.014 0.059 0.186 0.18 0.138

1453 0.0125 0.105 0.352 1.416 1.988 1.441

2893 0.00625 0.816 2.881 11.352 26.109 15.425

5773 0.003125 6.375 24.442 88.836 313.009 159.762

For further comparison of efficiency we choose a data set from [1] which
will be used as a point cloud data and as a triangulated surface as well.
This data set, seen in Figure 3, represents a teddy bear. Similarly, as in the
previous experiment, we computed the distance function for the point cloud
data with the four algorithms on computational grids with different voxel edge
sizes 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125, 0.0015625. Some of the results
for distance functions calculated by the FSM algorithm can be seen in Figure 4.
Visually there is no big difference between the results of the four algorithms.

We list the CPU time for calculation in Table 4. We added one more in-
formation in this table that was not listed in the previous experiment.
In the third column, we list the number of fixed grid points produced by the
initialization phase of the calculations. We will use this information for the
comparison of distance function calculation in the case of the triangulated
surface. In this experiment the points from the point cloud data do not coincide
with points of the grid, thus the initialization was done by Alg. 1. The FSM

algorithm is the fastest in this case as well.

3.2. Distance function to triangulated surfaces

With small changes, it is possible to easily modify the algorithm for the cal-
culation of the distance function to triangulated surfaces. The most important
changes which need to be applied concern the initialization phase. We demon-
strate this in the pseudo-code Alg. 6. In this algorithm, we cycle through all

15

B. KÓSA—K. MIKULA

Figure 3. Teddy Bear point cloud data. In the left picture, we can see it
from the front, in the right picture from the side.

Table 4. CPU time comparison for distance function calculation meth-
ods tested on the Teddy Bear point cloud data. CPU time was measured
in seconds.

Number of

grid points

Voxel

edge size

Fixed

points

Initial

condition
FSM VDT FMM DP

15 x 21 x 9 0.1 1003 0.001 0.002 0.002 0.001 0.001

29 x 41 x 17 0.05 3906 0.002 0.007 0.024 0.005 0.005

57 x 81 x 32 0.025 14428 0.007 0.036 0.083 0.059 0.054

113 x 161 x 62 0.0125 47575 0.042 0.253 0.562 0.658 0.605

224 x 321 x 122 0.00625 76231 0.293 1.891 4.135 9.079 7.638

447 x 640 x 242 0.003125 76384 2.235 15.335 33.126 121.185 103.515

893 x 1279 x 482 0.0015625 76384 19.085 118.572 254.895 1439.6 1221.13

16

DIRECT COMPUTATION OF MIDDLE SURFACES

Figure 4. Distance function visualization of the Teddy Bear data set.
Visualizing sections in a constant z plane for voxel edge sizes 0.1, 0.05,
0.025, 0.0125, 0.00625, 0.003125. In the last picture, we visualize the dis-
tance function with point cloud data. Values go from the highest dark red
to the lowest dark blue. Results were calculated by FSM.

triangles in the triangulated surface. For every triangle, we find the grid points
which are lying next to its surface. In these grid points, we calculate the distance
from the triangle. For this, we use the method described in [4]. Similarly, as with
the point cloud data, the values in these points will be fixed, but now as the
source of distance computation, we will refer to the triangles. Regarding the al-
gorithms FSM, VDT, FMM, and DP, the only changes will be in the pseudo-code
Alg. 3 for VDT on the line 8 and in the pseudo-code Alg. 5 for DP on line 5
where the distance will be calculated between a point and a triangle.

17

B. KÓSA—K. MIKULA

Algorithm 6 Initialization of distance function to triangulated surface

Input: Triangulated surface:

trl - set of triangles,

N - number of triangles.

Input: 3D grid with voxel edge size h and dimensions Ni, Nj , Nk.

Declaration: Arrays:

di,j,k - value of distance function at grid point (i, j, k),
ci,j,k - (x, y, z) coordinates of grid point (i, j, k),
fi,j,k - determines if di,j,k is fixed at (i, j, k),
si,j,k - source for di,j,k calculation at (i, j, k).

1: Set di,j,k to +∞, fi,j,k to false, si,j,k to unknown
2: Calculate: ci,j,k
3: for (l = 0; l < N ; l = l+ 1) do
4: gpm = PointsAlongTriangle (trl) � gpm is a subset of the computational grid.
5: Ngp = NumberOfPointsIn(gpm)
6: for (m = 0;m < Ngp;m = m+ 1) do
7: (i, j, k) = gpm
8: dnew = d

(
trl, ci,j,k

)
� Distance of a point from a triangle.

9: if dnew < di,j,k then
10: di,j,k = dnew
11: fi,j,k = true
12: si,j,k = trl
13: end if
14: end for

15: end for

To demonstrate the results of these changes we will use again the Teddy Bear
data set, but now as a triangulated surface as is seen in Figure 5. Similarly, as
for the calculation to the point cloud data, we measured the CPU times and listed
them in Table 5. If we compare this to Table 4 we can see the difference between
the calculation of the distance function for point cloud data and a triangulated
surface. The number of fixed points is much higher for the triangulated surface.
This is because the initialization produces a “contiguous” volume around the
triangles for every density of the grid, while around the point cloud data gaps
can develop. We can see this also in Figure 6. Here we compare the distance
function for both point cloud and triangulated surface by the results obtained
by the FSM algorithm. (The difference in the visualization of the distance func-
tion calculated with the other algorithms is very small thus we provide just
the visualization of the FSM algorithm.) The results for the triangulated sur-
face, shown in the right column, are much smoother near the object as for the
point cloud data, seen in the left column. While this difference has a little effect
on the calculation time of the FSM and FMM algorithms, it increases the time
for VDT and DP, significantly mainly for VDT method. This is because the imple-
mentation of FSM and FMM is independent of the initial data, but in VDT and

18

DIRECT COMPUTATION OF MIDDLE SURFACES

DP we work with the source as well and the calculation of the distance between
a point and a triangle takes more time than the calculation between two points.

One may also observe that the increase in time is proportionally much higher
for VDT than DP . This fact directly correlates to how the algorithms work and
how many times we need to calculate the distance from a triangle to a point
in each algorithm. From Alg. 3 for VDT , we see that potentially this operation
is executed 8 (number of sweeps) × {Ni ×Nj ×Nk} (number of grid points)
× 6 (number of closest neighbours) times. Compared to this from Alg. 5 for
DP we can determine that this number is much lower, namely {Ni ×Nj ×Nk}
(number of grid points) × 6 (number of closest neighbours), because every grid
point goes through the heap container only once. In both cases the exact number
of executions depends on the topology of the data set to which we calculate the
distance function. We counted the number of calls of exact distance calculation
for the Teddy Bear data set and present them in Table 6 to support our reasoning
and compare this number also to the number of grid points.

To demonstrate a further example of distance function calculation on a trian-
gulated surface we applied the algorithm on an additional data set. We obtained
it from [13]. In Figure 7 we can see the triangulated surface of hand bones.
With its many details and small parts, it is a good data set to show the accu-
racy of the results. We can see these in Figure 8. Here we choose planes in the
computational domain in which we can see the most details.

Table 5. CPU time comparison for distance function calculation methods
tested on Teddy Bear triangulated surface data. CPU time was measured

in seconds.

Number of

grid points

Voxel

edge size

Fixed

points

Initial

condition
FSM VDT FMM DP

15 x 21 x 9 0.1 1283 0.039 0.001 0.007 0.001 0.001

29 x 41 x 17 0.05 5147 0.048 0.007 0.056 0.005 0.008

57 x 81 x 32 0.025 20526 0.067 0.04 0.446 0.057 0.08

113 x 161 x 62 0.0125 82756 0.139 0.255 3.408 0.659 0.828

224 x 321 x 122 0.00625 331874 0.504 1.966 26.054 9.475 11.02

447 x 640 x 242 0.003125 1332140 2.877 16.211 203.035 120.117 131.252

893 x 1279 x 482 0.0015625 5346482 19.807 126.331 1578.07 1441.91 1394.25

19

B. KÓSA—K. MIKULA

Figure 5. Teddy Bear triangulated surface data. In the left picture,
we can see it from the front, in the right picture from the side.

Table 6. The number of execution for calculating the distance from a tri-
angle to a point in VDT and DP algorithms for Teddy Bear triangulated
surface data.

Number of

grid points (NOGP)

Voxel

edge size

Fixed

points
VDT

VDT/

NOGP
DP

DP/

NOGP

15 x 21 x 9 0.1 1283 61043 21.5319 3605 1.2716

29 x 41 x 17 0.05 5147 629890 31.1626 40776 2.01732

57 x 81 x 32 0.025 20526 5359252 36.2739 364370 2.46623

113 x 161 x 62 0.0125 82756 43690983 38.7343 3067140 2.71918

224 x 321 x 122 0.00625 331874 349466298 39.8375 25049348 2.85551

447 x 640 x 242 0.003125 1332140 2808035440 40.5602 202613176 2.92661

893 x 1279 x 482 0.0015625 5346482 22508797856 40.8868 1631172583 2.96299

20

DIRECT COMPUTATION OF MIDDLE SURFACES

Figure 6. Comparing the results of distance function calculation from
point cloud data (first column) and triangular surface (second column).
Voxel edge size for results in the first row is 0.0125, in the second row

is 0.003125. Results were calculated by FSM.

21

B. KÓSA—K. MIKULA

Figure 7. Hand Bones triangulated surface data. In the first picture,
we can see it from above, in the second picture from the front, and the third
picture from the side.

22

DIRECT COMPUTATION OF MIDDLE SURFACES

Figure 8. Visualization of slices of the distance function calculated

to Hand Bones triangulated surface data. In the first and third picture,
we can see the location of slices in the 3D computational domain, in the
second and fourth picture the slices.

23

B. KÓSA—K. MIKULA

4. Numerical methods for computing the middle surface

While analysing the algorithms for distance function calculation, we realized
that methods tracking the source of the distance, such as VDT and DP, can be
straightforwardly modified for the search of middle surfaces between data sets.
In fact, the main inspiration for us was DP method where we expected such
modification should work. We propose how to adjust all previously described
algorithms to find the middle surface for more data sets of various kinds. Our ap-
proach is based on information propagation through which we track the source
of the information.

In the pseudo-codes Alg. 1 and Alg. 6 we showed how to initialize the distance
function from one data set. When we have more data sets, we apply one of the
algorithms for them separately on the same computational grid. A change which
needs to be applied is that in the array si,j,k for the source of di,j,k calculation,
we need to track also the information to which data set this source belongs to.

The change in the VDT and DP algorithms for our new purpose is very simple,
because they already include source tracking. Again, what we need to change
is to track also a label of the data set from which the information propagates.
The modification of the FSM and FMM algorithms is not trivial. These methods
originally do not contain any information about sources, thus we need to include
it in a proper manner.

We display the modification of the FSM algorithm in the pseudo-code Alg. 7.
In every iteration of the algorithm when we cycle through the grid points, we take
the distance value from the neighbouring points to solve a quadratic equation.
We need to keep track, from which neighbours the distance values enter the
quadratic equation, thus we save the indexes (r, s, t), r, s, t ∈ {−1, 0, 1}, which
identify them. When the solution is calculated for the equation we add up the
indexes (r, s, t), see line 20 of Alg. 7, and this will show us which source to save
for the current grid point from the sources of its 26 neighbours.

For the FMM algorithm, the modification is shown in the pseudo-code Alg. 8.
In this modification after a nonfixed voxel is tagged as ‘visited’ (the visiting
value is set to 2), we analyse all its neighbours, see line 26 of the pseudo-code.
With the neighbours that also were ‘visited’, we calculate the current voxel’s
possible distance from the neighbours’ sources, which for quick calculation will
be determined by the neighbours’ distance value plus the distance between the
voxel and its neighbour. The source for which the calculated value is the smallest
will be chosen as the source for the current voxel.

By using the modified algorithms, the grid points in the computational
domain will be divided into subvolumes “belonging” to the different data sets
by source information propagation. To obtain the middle surface between the
data sets we just need to find the borders between these subvolumes.

24

DIRECT COMPUTATION OF MIDDLE SURFACES

To that goal, we use two methods. For any number of data sets, we can cy-
cle through all points of the computational domain and find every point which
has a neighbour belonging to a different subvolume. If we apply this for every
data set separately, for each of them we obtain a set of points which are at a dis-
crete border of the subvolume belonging to it. If we have just two data sets,
we can treat the obtained information about which data set the grid points be-
long to, as a function of values 0 or 1, and visualize the isosurface of the function
with the value 0.5. We demonstrate the two approaches of visualizing the results
in the next subsection with the first numerical experiment for finding the mid-
dle surface. In Figure 11 in the second picture of the right column we see the
representation of the middle surface as a discrete border of subvolumes belong-
ing to a data set, and in the third picture of the right column as an isosurface
of a function.

4.0.1. Experiment 1: Sponge & Sphere

Let us have two 3D point clouds, presented in Figure 9. The first is the “Sponge”
point cloud data created by the parametric equations

x = sx +
(
0.207 + 2.003 · 2

sin (ϕ)− 1.123 · 4
sin (ϕ)

)
· cos (ϕ) · sin (θ) ,

y = sy + cos (ϕ) · sin (θ) ,
z = sz + sin (ϕ) ,

ϕ ∈ 〈0, 2π) , θ ∈ 〈0, π) .

(11)

The second point cloud data is a sphere with a radius of 0.5. The distance be-
tween the centres of the two objects is 2.0. To create the point cloud data we
used a step of π

10 for both angles in the parametric equations. We calculated the
distance function on a grid voxel edge size 0.025. For the middle surface calcu-
lated by the VDT algorithm, we obtained the result seen in Figure 10 visualized
as an isosurface. The FMM and DP algorithms yield a similar result.

With the application of the modified FSM algorithm for this experiment, we
discovered that it can cause some issues in specific situations. When we initialize
the distance function according to Alg. 1 on a grid with density higher than the
point cloud density, we get an initial value that consists of separated subvolumes
around the points. The problem is that these gaps in the initialized distance
function do not contain any source information, and if we apply FSM, such lack
of information can propagate through the computational grid. We can see that
in the second picture of the left column in Figure 11. The orange dots indicate
the grid points with no source information. This leads to errors when we are
trying to detect grid points on the discrete borders of subvolumes belonging
to the different point cloud data sets or when we want to visualize the middle

25

B. KÓSA—K. MIKULA

Figure 9. Experiment 1: Generated point cloud data of Sponge and Sphere.

Figure 10. Experiment 1: Middle surface between Sponge and Sphere
point cloud data calculated by the VDT algorithm.

26

DIRECT COMPUTATION OF MIDDLE SURFACES

Algorithm 7 Modified fast sweeping method including sources

Input: From correct initialization: 3D grid, di,j,k, fi,j,k, si,j,k
1: for (l = 0; l < 8; l = l+ 1) do
2: for (i = isweep [l, 0] ; i ≤ isweep [l, 1] ; i = i+ isweep [l, 2]) do
3: for (j = jsweep [l, 0] ; j ≤ jsweep [l, 1] ; j = j + jsweep [l, 2]) do
4: for (k = ksweep [l, 0] ; k ≤ ksweep [l, 1] ;k = k + ksweep [l, 2]) do

5: if fi,j,k is not true then
6: The indexes (r, s, t), r, s, t ∈ {−1, 0, 1}, indicate from

7: which neighbour the distance value comes from.

8:
[
a1, (r, s, t)a1

]
= min

d

([
di+1,j,k, (1, 0, 0)

]
,
[
di−1,j,k, (−1, 0, 0)

])

9:
[
a2, (r, s, t)a2

]
= min

d

([
di,j+1,k, (0, 1, 0)

]
,
[
di,j−1,k, (0,−1, 0)

])

10:
[
a3, (r, s, t)a3

]
= min

d

([
di,j,k+1, (0, 0, 1)

]
,
[
di,j,k−1, (0, 0,−1)

])

11: � Use +∞ if (i, j, k) is out of bounds.
12: Sort {[a1, (r, s, t)] , [a2, (r, s, t)] , [a3, (r, s, t)]} from lowest to

13: highest according to values {a1, a2, a3}.
14:

[
dnew, (r, s, t)dnew

]
=

[
a1, (r, s, t)a1

]
+ [h, (0, 0, 0)]

15: if dnew > a2 then

16: dnew = MaxSolution
x

(
(x− a1)

2 + (x− a2)
2 = h2

)

17: (r, s, t)dnew
= (0, 0, 0) + (r, s, t)a1

+ (r, s, t)a2

18: if dnew > a3 then

19: dnew = MaxSolution
x

(
(x− a1)

2 + (x− a2)
2 + (x− a3)

2 = h2
)

20: (r, s, t)dnew
= (0, 0, 0) + (r, s, t)a1

+ (r, s, t)a2
+ (r, s, t)a3

21: end if
22: end if

23: if dnew < di,j,k then
{
di,j,k = dnew; si,j,k = s(i,j,k)+(r,s,t)dnew

}

24: end if

25: end for
26: end for
27: end for
28: end for

surface as an isosurface of a function. The isosurface with errors can be seen
in the third picture of the left column in Figure 11.

To solve this problem, we need to modify also the initialization of the dis-
tance function to point cloud data for the FSM algorithm. The idea is to get
a contiguous subvolume for the initialized grid points. For this, we need to in-
crease the volume around the single points in which we initially calculate the
distance function. We need to find the minimum size of this volume so that
for two neighbouring cloud points the volumes will intersect. We found that
for this minimum size we can use the maximum of all minimal distances be-
tween two cloud points. With its value, we build a cube around every cloud
point which determines the volume in which we will calculate the exact distance
values. We can see the result of this modification in the right column of Figure 11.

27

B. KÓSA—K. MIKULA

Figure 11. Experiment 1: Finding the middle surface between Sponge and
Sphere point cloud data by the FSM algorithm. In the first picture of the
left column, we see the section of the original initial condition in a con-
stant y plane. In the second picture of the left column, the grid points with
no source are visualized. In the third picture of the left column, the incor-

rect isosurface between subvolumes of the computational grid is visualized.
In the first picture of the right column, we can see the corrected initial con-
dition. In the second picture of the right column, the discrete borders of the
subvolumes obtained by the corrected calculation are visualized. Red points
“belong” to Sponge point cloud data, blue points “belong” to Sphere point
cloud data. In the third picture of the right column, the correct isosurface

between subvolumes of the computational grid is visualized.

28

DIRECT COMPUTATION OF MIDDLE SURFACES

Algorithm 8 Modified fast marching method including sources

Input: From Alg. 1: 3D grid, di,j,k, fi,j,k, si,j,k
Declaration: vi,j,k will hold the visiting values of grid points

‘unvisited’=0, ‘to be visited’=1, ‘visited’=2

Declaration: heap container will be a min-priority-heap

Initialization: ∀fi,j,k = true :
{
vi,j,k = 1; heap.InsertNode(di,j,k)

}
else: vi,j,k = 0

1: while heap is not empty do
2: (i, j, k) = heap.GetRoot() � Obtain (i, j, k) with minimum d and delete from heap.
3: for all

{
(i+ r, j + s, k + t) ; (r, s, t) ∈ P 1

}
, not out of bound do

.

. � The pseudo-code is the same as in Alg. 4.

.

22: end for
23: vi,j,k = 2
24: if fi,j,k is not true then
25: [dmin, (u, v,w)] = [∞, (0, 0, 0)]
26: for all

{
(i+ r, j + s, k + t) ; (r, s, t) ∈ P 2

}
, not out of bound do

27: if vi+r,j+s,k+t = 2 then
28: if |r|+ |s|+ |t| = 1 then dtest = di+r,j+s,k+t + h

29: if |r|+ |s|+ |t| = 2 then dtest = di+r,j+s,k+t +
√
2 ∗ h

30: if |r|+ |s|+ |t| = 3 then dtest = di+r,j+s,k+t +
√
3 ∗ h

31: if dmin > dtest then
32: [dmin, (u, v, w)] = [dtest, (i+ r, j + s, k + t)]

33: end if
34: end if
35: end for
36: si,j,k = s(u,v,w)

37: end if
38: end while

In the first picture, visualizing a section of the new initial condition, we can see
that now we have a contiguous subvolume of grid points. In the second picture,
we can see that the discrete border of the subvolumes belonging to a data set
can be detected correctly, and in the third picture that the isosurface is obtained
without any error.

To have a sense of the overall CPU times required for finding the middle sur-
face with the mentioned algorithms we conducted some measurements
on this experiment and present these in Table 7 for FSM, Table 8 for VDT,
Table 9 for FMM and Table 10 for DP. As in the previous tables, the param-
eters of our grid are listed in the first columns. After that we see the number
of fixed points for the initialization of our grid and how long it took to perform
it. These values are higher for the FSM algorithm as we needed to get the con-
tiguous subvolumes. For the other three algorithms these numbers are the same.
In each table the fifth column shows CPU times required to calculate just the

29

B. KÓSA—K. MIKULA

distance function, and the sixth column CPU times for middle surface calcula-
tion. This way, we can compare how tracing the sources and the objects for every
grid point impacted the speed of the algorithms. The modification of algorithms
VDT and DP was minimal, thus CPU times increased only about 10–20%, while
for FSM and FMM, with more complex modifications, the CPU times increased
about 30–40%.

In the following experiments, we will show various cases of how we can apply
the described algorithms and discuss possible differences in the results of the
methods.

Table 7. CPU time comparison for original and modified FSM algorithms
applied to Experiment 1.2.

Number of

grid points

Voxel

edge size

Fixed

points

Initial

condition
Original FSM Modified FSM

43 x 32 x 32 0.1 12357 0.003 0.007 0.011

85 x 62 x 62 0.05 86306 0.018 0.049 0.07

168 x 123 x 123 0.025 628799 0.13 0.371 0.525

334 x 245 x 245 0.0125 4781922 1.003 2.9 4.189

667 x 488 x 488 0.00625 38269939 8.071 23.829 33.078

Table 8. CPU time comparison for original and modified VDT algorithms
applied to Experiment 1.

Number of

grid points

Voxel

edge size

Fixed

points

Initial

condition
Original VDT Modified VDT

43 x 32 x 32 0.1 1890 0.001 0.028 0.02

85 x 62 x 62 0.05 2716 0.014 0.143 0.145

168 x 123 x 123 0.025 2892 0.09 0.922 1.126

334 x 245 x 245 0.0125 2912 0.702 7.563 8.942

667 x 488 x 488 0.00625 2912 5.62 59.763 72.474

4.0.2. Experiment 2: Subsets of the Cube

We return to the Cube data set that has coinciding points with the com-
putational grid. We will use a computational grid with voxel edge size 0.05.
The points on every subset of the Cube (vertex, edge, wall) will be treated
as a separate data set. In Figure 12 we visualize with colors how the points
are distributed into sets of sources. We can see that the vertices are treated
as one-point data sets, the edges do not contain the vertices and the walls do

30

DIRECT COMPUTATION OF MIDDLE SURFACES

Table 9. CPU time comparison for original and modified FMM algorithms
applied to Experiment 1.

Number of

grid points

Voxel

edge size

Fixed

points

Initial

condition
Original FMM Modified FMM

43 x 32 x 32 0.1 1890 0.001 0.015 0.023

85 x 62 x 62 0.05 2716 0.014 0.144 0.208

168 x 123 x 123 0.025 2892 0.09 1.707 2.696

334 x 245 x 245 0.0125 2912 0.702 24.61 36.103

667 x 488 x 488 0.00625 2912 5.62 332.377 430.497

Table 10. CPU time comparison for original and modified DP algorithms
applied to Experiment 1.

Number of

grid points

Voxel

edge size

Fixed

points

Initial

condition
Original DP Modified DP

43 x 32 x 32 0.1 1890 0.001 0.012 0.014

85 x 62 x 62 0.05 2716 0.014 0.126 0.133

168 x 123 x 123 0.025 2892 0.09 1.516 1.619

334 x 245 x 245 0.0125 2912 0.702 21.333 23.499

667 x 488 x 488 0.00625 2912 5.62 274.257 290.603

not contain either the edges or the vertices. Now in this setup, we apply the
algorithms for computing the middle surface.

First, we analyse the results for VDT . In Figure 13 we can see how the grid
points are assigned to the different subsets. For clearer visualization, we show
just some of the separate volumes with the outlines of the Cube by white lines.
We can identify by color to which subset of the Cube the points belong to.
Let us notice that to the interior of the Cube only the information from the
walls propagates. From the vertices and edges, the information only propagates
outwards. For this reason, the discrete borders of the subvolumes inside of the
Cube are not ”uniform”. We can see it more clearly in Figure 14 where we
visualize only the borders of the subvolumes. For FMM and DP we obtain similar
results.

Let us compare the previous result to the results of the FSM algorithm visual-
ized in Figure 15. We can identify by the colors that the information propagates
inward from all subsets of the Cube. Inside of the Cube, the grid points belonging
to vertices are along a line, for edges, the grid points are confined to a triangle,
and for the walls, they are inside a pyramid. In these results, the borders of the
separated volumes are much clearer and sharper which we can identify easier
in Figure 16.

31

B. KÓSA—K. MIKULA

Figure 12. Experiment 2: Visualization of source labels on the Cube data set.

4.0.3. Experiment 3: Cube & Sphere

In the next experiment, we consider a cube with the same parameters but now we
will work with it as a triangulated surface. As we demonstrated in Section 3.2, we
can use the algorithms for distance function calculations on triangulated surfaces
as well if we use the Alg. 6 for the initialization. This type of initialization
produces contiguous subvolumes of grid points thus it does not need any changes
to be applicable for the Modified FSM algorithm as it was in the case of point
cloud data. Inside of the Cube, we have the Sphere with radius 0.25 and center
point the same as the center of the Cube. We can see their relative location in the
first picture of Figure 17. In the second picture, we see the computed middle
surface with the objects. In the next pictures of this figure, we can see the results
for the VDT, DP, FSM, and FMM algorithms, in this order from left-up to right-
-down. In the detailed view of the results, we can see the fine differences between
them.

32

DIRECT COMPUTATION OF MIDDLE SURFACES

Figure 13. Experiment 2: Visualization of source tracking result on the

Cube data set for the VDT method.

Figure 14. Experiment 2: Visualization of discrete borders of subvolumes
belonging to different sources on the Cube data set for the VDT method.

33

B. KÓSA—K. MIKULA

Figure 15. Experiment 2: Visualization of source tracking result on the
Cube data set for the FSM algorithm.

Figure 16. Experiment 2: Visualization of discrete borders of subvolumes
belonging to different sources on the Cube data set for the FSM algorithm.

34

DIRECT COMPUTATION OF MIDDLE SURFACES

For a quantitative comparison of the methods, we calculate the volume and
area of the isosurfaces computed on computational grids with different voxel
edge sizes, equal to

0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125.

We list these results in Table 11. By comparing the values in this table and
looking at the pictures of the middle surface we can see that the results from
the pairs VDT, DP, and FSM, FMM are very similar.

Table 11. Experiment 3: Comparing volume and area for middle surface
between the Cube and the Sphere data sets.

Number of Voxel VDT DP FSM FMM

grid points edge size Volume Area Volume Area Volume Area Volume Area

103 0.2 0.418667 2.92008 0.418667 2.92008 0.418667 2.92008 0.418667 2.92008

193 0.1 0.3005 2.39785 0.2855 2.34128 0.244167 1.98998 0.2645 2.21841

373 0.05 0.291396 2.40964 0.291396 2.40964 0.271396 2.29456 0.273396 2.31799

733 0.025 0.286294 2.39177 0.286326 2.39452 0.277992 2.34297 0.274508 2.34427

1453 0.0125 0.287682 2.40421 0.287686 2.40489 0.282912 2.39768 0.277739 2.37683

2893 0.00625 0.287828 2.42233 0.287828 2.42245 0.284826 2.40956 0.281192 2.40664

5773 0.003125 0.287996 2.42093 0.287995 2.42094 0.286224 2.42284 0.283977 2.41481

4.0.4. Experiment 4: Five Ellipsoids

The following experiment is done with five different Ellipsoids point cloud data
sets, for which the center points all lie on the plane z = 0. In Figure 18 we
visualize the results of the algorithms in the plane z = 0 as the discrete border
of subvolumes together with the distance function and the original data. Here
we show the results of the FSM algorithm with red lines, of VDT with dark blue
lines. Because of the overlapping of the results for DP and FMM are almost not
visible. We can just see the result for DP with a green line in the upper left
corner. In this experiment, we can see that with our algorithms the obtained
results are a good approximation of the Voronoi diagram.

35

B. KÓSA—K. MIKULA

Figure 17. Experiment 3: Finding the middle surface between Sphere
point cloud data inside a Cube triangulated surface. In the first picture,
we see the two objects. In the next picture, we visualize the middle sur-

face together with the objects. In the following pictures, we show the re-
sulting isosurfaces for every algorithm in more detail. They are visualized
from left-up to down-right in the following order: VDT, DP, FSM, FMM.
The visualized results were computed on a grid with 1813 elements and
a voxel edge size of 0.01.

36

DIRECT COMPUTATION OF MIDDLE SURFACES

Figure 18. Experiment 4: Finding the border between five Ellipsoid point
cloud data. In the picture, the border points between divided volumes are
visualized in the plane z = 0 together with the distance function and the
data sets. We show the results for FSM algorithm with red lines, for VDT
with dark blue lines.

4.0.5. Experiment 5: Two parallel surfaces

For the last experiment, we want to show how accurately the algorithms can
find the middle surface between two parallel data sets. For this purpose, we will
use wave-like surfaces generated as point cloud data by functions

f(x, y) = 0.2 ∗ cos (x ∗ y) + 0.5,

f(x, y) = 0.2 ∗ cos (x ∗ y)− 0.5, (12)

(x, y) ∈ < −5.0, 5.0 > × < −5.0, 5.0 >

with a step of 0.05 for both x and y variables.

37

B. KÓSA—K. MIKULA

Figure 19. Experiment 5: Finding the middle surface between two paral-
lel wave-like point cloud data sets generated by equations (4.0.5). In the
first picture, we see the visualization of one point cloud. The other one is

identical just shifted along the z axis. In the second picture, we visualize
the middle surface which divides the computational domain between the
two point cloud data sets.

38

DIRECT COMPUTATION OF MIDDLE SURFACES

We can see the visualization of the point cloud data generated by the first
equation of (4.0.5) in the first picture of Figure 19. In the second picture, we
can see the result of the calculations by the FSM algorithm on a computational
grid with voxel edge size 0.025 represented as an isosurface. This isosurface
lies between the two parallel point cloud data sets. Visually the results for the
four methods do not show noticeable differences, thus we show only the results
of FSM .

Acknowledgement�
We would like to thank Prof. Zuzana Krivá for pointing out the possibility to use
6 voxel neighbours instead of 26 in the Dijkstra-Pythagoras method.

REFERENCES

[1] CHEN, X.—GOLOVINSKIY, A.—FUNKHOUSER, T.: A benchmark for 3D mesh seg-
mentation, ACM Transactions on Graphics 28 (2009). pp. 1–12.
https://doi.org/10.1145/1531326.1531379

[2] CORMEN, T. H.—LEISERSON, C. E.—RIVEST, R. L.—STEIN, C.: Introduction

to Algorithms Third Edition. MIT Press, Cambridge, MA, 2009.

[3] DANIELSSON, P.-E.: Euclidean distance mapping, Computer Graphics and Image
Processing 14 (1980), 227–248.

[4] EBERLY, D.: Distance between point and triangle in 3D, Geometric Tools, Redmond WA
98052, (1999).
https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf

[5] JONES, M. W.—BAERENTZEN, J. A.—SRAMEK, M.: 3D distance fields: a sur-
vey of techniques and applications, IEEE Transactions on Visualization and Computer
Graphics 12 (2006), no. 4, 581–599.

[6] KIMMEL, R.—SHAKED, D.—KIRYATI, N.—BRUCKSTEIN, A. M.: Skeletonization
via distance maps and level sets, Computer Vision and Image Understanding 62 (1995),

382–391.

[7] PERSSON, P.-O.: Mesh Generation for Implicit Geometries. PhD Thesis, Department
of Mathematics, Massachusetts Institute Of Technology, 2005.

[8] ROUY, E.—TOURIN, A.: A viscosity solutions approach to shape-from-shading, SIAM
Journal on Numerical Analysis 29 (1992), 867–884.

[9] RUMPF, M.—TELEA, A.: A continuous skeletonization method based on level sets,

Proceedings of the Symposium on Data Visualisation 2002 (2002), 151–ff.

[10] SETHIAN, J. A.: A fast marching level set method for monotonically advancing fronts,
Proc. Nat. Acad. Sci. U.S.A. 93 (1996), no. 4, 1591–1595.

[11] SIDDIQI, K.—BOUIX, S.—TANNENBAUM, A.—ZUCKER, S.: The hamilton-jacobi
skeleton. In: Proc. of the Seventh IEEE International Conference on Computer Vision

(ICCV)(September 1999) Vol. 2 (1999), pp. 828-834.

39

https://doi.org/10.1145/1531326.1531379
https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf

B. KÓSA—K. MIKULA

[12] SMÍŠEK, M.: Analysis of 3D and 4D Images of Organisms in Embryogenesis. PhD Thesis,

Faculty of Civil Engineering, Slovak University of Technology Bratislava, 2015.

[13] TURK, G.—MULLINS, B.: Large Geometric Models Archive. Georgia Institute of Tech-
nology, 1999.

[14] ZHAO, H.: A fast sweeping method for Eikonal equations, Math. Comput. 74 (2005),
603–627.

Received November 13, 2022
Revised March 23, 2023
Accepted October 9, 2023
Publ. online December 20, 2023

Department of Mathematics and
Descriptive Geometry
Faculty of Civil Engineering
Slovak University of Technology
in Bratislava

Radlinského 11
810 05 Bratislava
SLOVAKIA

E-mail : kosabalu@gmail.com
mikula@math.sk

40

	1. Introduction
	2. Numerical methods
	2.1. Basic definitions
	2.2. Initialization
	2.3. Fast sweeping method
	2.4. Vector distance transform
	2.5. Fast marching method
	2.6. Dijkstra-Pythagoras method

	3. Numerical experiments - methods comparison
	3.1. Comparing methods
	3.2. Distance function to triangulated surfaces

	4. Numerical methods for computing the middle surface
	REFERENCES

