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Abstract. Natural numerical networks on directed graphs as a new
supervised deep learning PDE-based classification algorithm are proposed
in this work. The Natural numerical network (NatNet) is based on a
forward-backward diffusion model, where the points of the given clusters
are attracted together by the forward diffusion, and in contrast, the back-
ward diffusion repulses points of different clusters from each other. First,
the network is trained on the labelled data to achieve the highest possible
accuracy on the learning dataset. Then, the method is applied to the clas-
sification of Sentinel-2 satellite optical data to automatically identify the
protected oak habitat in Western Slovakia due to its threatened status. To
that goal, the relevancy map, one of the outputs of the Natural numeri-
cal network, is created efficiently; its construction is significantly speed up
thanks to the new NatNet formulation on directed graphs.

Keywords: Forward-backward diffusion · Partial differential equations
on graph · Numerical methods · Data classification

1 Introduction

A new concept of Natural numerical network (NatNet) on directed graphs is
introduced in this paper. The NatNet as a new supervised deep learning PDE-
based classification method was presented in [13]. It introduces a forward-back-
ward diffusion model on undirected graphs and its numerical discretisation to get
the classification algorithm. The forward diffusion attracts the points of the given
clusters together while the backward diffusion repulses the points of different
clusters from each other. Such approach is inspired by the recent ODE and PDE-
based deep learning methods from [4,10], and attraction-repulsion strategies are
used also in other clustering applications such as high-dimensional data visual-
ization [3]. For an interesting overview of PDE-based and variational approaches
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on graphs for high-dimensional data classification we refer also to [2]. In [10], the
relation between a successful deep learning model, the so-called Residual Neural
Network (ResNet) [4,11], and the numerical solution of the system of ordinary
differential equations using the forward Euler method is shown. The authors
then designed parabolic and hyperbolic networks for deep learning classification
based on corresponding types of partial differential equations. The NatNet [13]
uses another type of PDE, the nonlinear forward-backward diffusion equation,
which is natural for supervised deep learning classification.

In [13], the NatNet supervised deep learning classification method was
applied to the Sentinel-2 multispectral optical data to obtain in an automated
way a spatial appearance of Natura 2000 [7] protected habitats in Slovakia and
along the Danube river in Central and South-Eastern Europe. There exist vari-
ous recent studies dealing with the classification of land cover classes by using the
multispectral satellite images, and all standard classification algorithms, such as
the Random Forest, k-Nearest Neighbour, and Support Vector Machine, were
used, reported, and compared [5,16,18]. In general, the standard methods pro-
vide a meaningful classification of land cover classes, but a higher accuracy,
exceeding 90%, is only reached, when simple categories are identified, e.g. water
bodies, meadows, forests, fields and urbanised areas. They fail to classify accu-
rately different forest types using purely the Sentinel-2 multispectral optical
bands information, in such case, the classification accuracy drops to about 80%
[18]. On the other hand, forest habitats defined in the Natura 2000 classification
system are complex plant communities with variable species composition, and
commonly one habitat cannot be defined by one dominant tree species. Provid-
ing classification of such detailed classes has been a challenging task with high
demand on new reliable classification methods based on widely available mul-
tispectral satellite data. The NatNet designed in [13] provides a first successful
approach to solve this task.

The trained NatNet can be represented by the forward-backward diffusion on
undirected graphs [13], but for the classification of a large number of new obser-
vations, the directed graph concept is useful due to its computational efficiency.
The NatNets classification output is given, together with the cluster membership
of any pixel of the satellite image, by the so-called relevancy map. The relevancy
map is a greyscale image giving information on the relevancy of cluster mem-
bership for every pixel and it has the same dimension as the satellite image.
In order to create the relevancy map we have to let evolve the new observation
by the dynamics of the trained network and classify it. In the undirected graph
approach, we have to do it one by one solving as many times a small system of
equations as there are pixels in the relevancy map. By using the directed graph
concept, all pixel values in the relevancy map are computed at once by solving
one system of equations which speeds up the computation many times, propor-
tionally to the number of graph vertices in the learning dataset, and makes it
possible to include the relevancy map computation directly into the NaturaSat
software [15]. In this paper, we explain the NatNet on directed graphs in detail
and apply it to the classification of protected oak habitats in Western Slovakia
by Sentinel-2 satellite images.
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2 Natural Numerical Network (NatNet)

2.1 Mathematical Model

A directed graph G consists of a non-empty finite set V (G) of elements called
vertices and a finite set A(G) of ordered pairs of distinct vertices called arcs or
directed edges [1]. We denote the number of vertices of the directed graph G
by NV . In general, for an arc (u, v) = euv, the first vertex u is its tail, and the
second vertex v is its head, which means that the arc (u, v) leaves u and enters
v. The head and tail of an arc are its end-vertices [1]. In the sequel, we will use
a semi-complete directed graph G, where semi-complete means that there exists
an arc between every pair of vertices V (G).

Let us have the function X : G × [0, T ] → R
k representing the Euclidean

coordinates X(v, t) = (x1(v, t), . . . , xk(v, t)) of the vertex v ∈ V (G) in time t ∈
[0, T ]. The index k represents a dimension of the feature space R

k. A diffusion of
the function X(v, t) on the directed graph G is formulated as a partial differential
equation (PDE)

∂tX(v, t) = ∇ · (g∇X(v, t)), v ∈ V (G), t ∈ [0, T ], (1)

where g represents the diffusion coefficient, see also [9]. We consider Eq. (1)
together with an initial condition X(v, 0) = X0(v), v ∈ V (G). The boundary
conditions are not necessary to prescribe because in our model diffusion occurs
between all vertices of the semi-complete directed graph G.

We consider the diffusion coefficient g depending on the distance between
two vertices v and u of the directed graph G. It will give a nonlinear diffusion
model on the directed graph. We consider Eq. (1) with diffusion coefficient g in
the form

g(euv) = ε(euv)
1

1 +
∑k

i=1(Ki l2i (euv))
, Ki ≥ 0, i = 1, . . . , k, (2)

where Ki represents weights for each coordinate li(euv), i = 1, . . . , k, of the
vector

l(euv) = (l1(euv), . . . , lk(euv))T = X(v, ·) − X(u, ·) =

= (x1(v, ·) − x1(u, ·), . . . , xk(v, ·) − xk(u, ·))T , v, u ∈ V (G),
(3)

and allow us to control the diffusion speed in each direction of the k-dimensional
feature space. If the sum in the diffusion coefficient is large, the diffusion coef-
ficient g is close to 0, which means that the diffusion process will be slow and
the points do not diffuse by averaging. If the sum in the diffusion coefficient is
small, the diffusion coefficient is close to 1, the diffusion process is faster, and
the points are moving fast by diffusion.
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The value of ε(euv) in the diffusion coefficient depends on the type of diffusion
applied in each arc between each pair of vertices. For applying the forward
diffusion, we choose ε(euv) as a positive constant, in all computations presented
in this paper ε(euv) = 1. In our application, forward diffusion causes a moving,
and thus clustering of points together. On the other hand, backward diffusion is
represented by a negative diffusion coefficient, ε(euv) is a small negative value,
and in our application it gives a repulsion of the points belonging to different
clusters. Such a model with a combination of forward and backward diffusion is
a suitable tool for supervised learning.

In the case of two directed edges between two vertices u and v, we consider
g(euv) = g(evu).

In Fig. 1 we illustrate the behaviour of the model (1)–(2) on two given clusters
where by light blue arrows we plot some of the links of forward diffusion and
by red arrows some of the links of backward diffusion. This figure depicts the
basic features and behaviour of the Natural network. The points inside a given
cluster are attracted by forward diffusion, while there is a repulsion of points
of different clusters by backward diffusion. The model allows the directed graph
to have arcs with the same end-vertices, and in this figure all vertices have two
directed edges, which means that the diffusion influence occurs in both directions.
It is important to realise that the model does not allow pairs of arcs with the
same tail and the same head (parallel arcs) or arcs whose heads and tails are the
same vertex (loops).

Fig. 1. Randomly generated 2D points in two clusters and some links of forward diffu-
sion (light blue arrows) inside the clusters, and some links of backward diffusion (red
arrows) between points from different clusters. (Color figure online)

Furthermore, in Fig. 2 we illustrate the situation that arises in the super-
vised learning and application phases of the classification method when a new
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observation is added to the network. Only forward diffusion is applied to all
links of the vertex representing the new observation, which means that the new
vertex is the head for directed edges connecting it with all other vertices. The
forward diffusion links are depicted by the dark blue arrows connecting the new
observation (black square) to every other point. Thus, this new observation is
attracted by a certain diffusion speed to all existing clusters, which themselves
are subject to the forward-backward diffusion as described before. The dynamics
of the network decides on the cluster membership of the new observation.

Fig. 2. Randomly generated 2D points in two clusters with one new observation (black
square). The light blue arrows represent some of the forward diffusion links inside the
clusters. The forward diffusion links from all other points to the new observation are
represented by the dark blue arrows. The red arrows represent the links of backward
diffusion between points from different clusters. (Color figure online)

We can reduce the influence of forward diffusion on the new observation
vertex w ∈ V (G) by using the diffusion coefficient in the form

g(evw) = max(ε(evw)
1

1 +
∑k

i=1(Ki l2i (evw))
− δ, 0), ε(evw) > 0 (4)

at all directed edges entering w, where δ is a parameter of the size of the ”diffusion
neighbourhood”. The aforementioned modification causes that only the points
for which the diffusion coefficient is larger than δ, attract new observation point
w in the classification process.

2.2 Numerical Discretisation

To discretise the equation (1), we use i) the balance of diffusion fluxes (inflows
and outflows) at each vertex v ∈ V (G) and ii) the approximation of the diffusion
flux to the vertex v along its arcs.
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Let us define the diffusion flux approximation, which depends on the differ-
ence of the values of the function X at the vertices v and u, as

X (v, euv, t) = geuv
(X(u, t) − X(v, t)), (5)

for each directed edge (u, v), where geuv
represents the diffusion coefficient on

the directed edge (u, v). If X (v, euv, t) > 0, it represents the diffusion inflow,
while if X (v, euv, t) < 0, it represents the diffusion outflow. Then the balance of
diffusion fluxes at the vertex v is expressed by the equation

∂tX(v, t) =
∑

u∈V (G) :
euv∈A(G)

X (v, euv, t). (6)

By the substitution of the approximation of the diffusion flux (5) into the
balance equation (6), we obtain the so-called “graph-Laplacian” with a measure
equal to 1 which is a common choice in the graph theory. A more detailed
description can be found in the paper [13].

For the time discretisation, we use the semi-implicit approach, see e.g. [14].
The finite difference method is used for the approximation of time derivative.
Since the diffusion coefficient geuv

at the directed edge euv can depend on the
unknown quantity X, see (2) and (4), and thus can change over time, we take its
value from the previous time step. In the case of classification of the data from
the k-dimensional feature space, we get in each time step k systems of linear
equations

(1 + τ
∑

u∈V (G) :
euv∈A(G)

gn−1
euv

)xn
i (v) − τ

∑

u∈V (G) :
euv∈A(G)

gn−1
euv

xn
i (u) = xn−1

i (v),

i = 1, . . . , k, v ∈ V (G),

(7)

which are interconnected by the diffusion coefficient gn−1
euv

, which depends on all
xn−1

i (v), xn−1
i (u), i = 1, . . . , k and can be written in the form

gn−1
euv

= ε(en−1
uv )

1

1 +
∑k

i=1(Ki l2i (e
n−1
uv ))

, Ki ≥ 0. (8)

This system of equations is represented by a full matrix and, as we have said
before, for considered semi-complete directed graphs, it is not necessary to define
any boundary condition.

The Eqs. (7)–(8) represent our network, where the points inside the given
clusters are moving together, and the clusters themselves are keeping away. The
illustration of that dynamic can be found in the paper [13]. In the learning phase,
and also in the application phase, the dynamics is modified in such a way that
all other points are moving by (7)–(8) but for the new observation w /∈ Ci,
i ∈ {1, . . . , NC}, the diffusion coefficient is set to

gn−1
euw

= max(ε(en−1
uw )

1

1 +
∑k

i=1(Ki l2i (e
n−1
uw ))

− δ, 0), (9)
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ε(en−1
uw ) ≥ 0, Ki ≥ 0, δ > 0 are given constants, see also (4). It is crucial to

realise that the vertex w is the head of the directed edges connecting it with the
neighbouring vertices, so the directed edges enter w, and there do not exist arcs
leaving w.

To clearly conceive the role of the diffusion coefficient geuv
in the classifica-

tion algorithm, we describe and schematically show the system matrix of the semi-
implicit scheme. As an example, we use the directed graph from Fig. 1, where the
number of clusters is NC = 2. For that directed graph, the matrix (10) is con-
structed by (7)–(8) representing the fundamental dynamics of the NatNet. The
matrix contains four blocks. The first block B1 corresponds to the vertices from
the first cluster, and because the vertices are from the same cluster, only forward
diffusion on their arcs is used. The vertices influence each other in the same way, so
the first block is symmetric B1 = BT

1 . Similarly, the fourth block B4 corresponds
to the vertices of the second cluster, and again the forward diffusion is applied to
their arcs in a symmetric way, thus B4 = BT

4 . Moreover, the diagonal of these
blocks is positive while out of diagonal elements are negative. The entries in the
second B2 and the third B3 block are given by the values of diffusion coefficient on
the directed edges between the vertices of different clusters (in Fig. 1 red arrows).
The backward diffusion with a small negative value of ε(euv) = −10−2 is applied
to these directed edges and cause the small positive values in the second and third
block. The blocks are symmetric to each other B2 = BT

3 , which means that the
vertices from the different clusters affect themselves symmetrically.

(
B1 B2

B3 B4

)

(10)

Modifying the diffusion coefficient for the new observation by using (9) in the
directed graph approach changes the matrix of the system in the following way.
Let us consider the same example as in the description of the matrix for funda-
mental network dynamics but with one new observation added to the directed
graph, see Fig. 2. Adding the new observation in the directed graph enlarges the
size of the matrix (10) by one row and column. Due to one-sided arcs between
new observation and other vertices the system matrix is non-symmetric. Conse-
quently, the matrix (11) for the directed graph enriched with a new observation
differs only in the last row and column from the system matrix (10). The values
in the row N for the new observation are calculated by (9), which means that if
the new observation has some vertices in the “δ-diffusion neighbourhood”, the
non-zero value of diffusion coefficient is set in the intersection of the row of the
new observation and the column of that vertex in the matrix. In the last column
corresponding to the new observation there are only zero values because the new
observation is not affecting any other vertex of the directed graph.

⎛

⎝
B1 B2

B3 B4
0

N

⎞

⎠ (11)
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The aforementioned change in the Natural numerical network concept leads
to a significant reduction in CPU time. In paper [13], the classification process is
run for any new observation sequentially, which means that the new observations
are added to the undirected graph one by one and dynamics of the network are
run for every new observation independently. In theory, the CPU time for such
an approach is proportional to P (NV + 1), where P are the number of new
observations. With a new concept of the NatNets on directed graphs, we can
classify all new observations simultaneously because the new observations do
not affect any other vertex of the graph. In this case, theoretically, the CPU
time is proportional to NV + P , and the speed-up of the computation is thus
proportional to NV . To test the speed up in practice, we calculated the relevancy
map of dimension 2000×2000, so we have 4·106 new observations to be classified
by NatNet. For the approach from [13], we obtained CPU time 801 s for such
large-scale classification task, while for the new concept presented in this paper,
we obtained CPU time 25.2 seconds, which means the speed up 31.78 times. The
computations were performed on the machine with AMD Ryzen Threadripper
PRO 3975WX 32-Cores processor, RAM 256 GB DDR4 and using OpenMP
parallelisation in both approaches.

A histogram stopping criterion is applied in the network dynamics. It is based
on the calculation of the number of occurrences (frequency) of evolving points in
prescribed spatial cells in every time step. For more details about the stopping
criterion, see the paper [13].

2.3 Construction of Relevancy Maps

The relevancy map is a grayscale image with the same size as the images from
satellite optical channels. The square A(p, r) is created in every image pixel
p with Chebyshev radius r. For each p of the square A(p, r), the statistical
characteristics (the mean, the standard deviation, the minimum value and the
maximum value) are computed and considered and added in the directed graph G
as new observation w(p). Every new observation w(p) is classified by the Natural
network and its relevancy coefficient R(w(p)) is computed. Finally, depending
on the Chebyshev radius r of the square A(p, r), the relevancy map Mr

i , i =
1, . . . , NC , is defined for every cluster Ci, i = 1, . . . , NC , in every pixel p as
follows

Mr
i (p) = R(w(p)), if w(p) is classified into Ci,

Mr
i (p) = 0, if w(p) is not classified into Ci.

(12)

The definition of the relevancy coefficient R(w(p)) is given by

R(w(p)) = L(1 − l1(w(p))
l1(w(p)) + l2(w(p))

), L(x) =
1

1 + eλ(0.5−x)
(13)

and it depends on the distance between the new observation and the centroid of
the cluster Ca(w(p)) to which it is assigned by the network dynamics,

l1(w(p)) =| X(w(p), 0) − Ca(w(p)) | , (14)
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and the average distance of the new observation to all other cluster centroids,

l2(w(p)) =
1

Nc − 1

Nc∑

i=1
i�=a

| X(w(p), 0) − Ci(w(p)) | . (15)

The relevancy coefficient R(w(p)) has the nonlinear character and is assigning
the values close to 1 for the new observation X(w, 0) close to the centroid of the
cluster to which it is classified, while in the other case it is low.

3 Natural Numerical Network in Nature Protection

The Natural numerical network is applied in ecology and nature conservation
tasks. It is a suitable tool for identification and classification of protected forest
habitats by using the remote sensing. In our experiments we are focused on the
data from the Sentinel-2 satellite of the European Space Agency (ESA) [8]. The
Sentinel-2 offers optical imagery in high spatial resolution with 17 channels. In
addition to these 17 channels, we calculate one more, the normalized difference
vegetation index (NDVI) [6] which quantify the vegetation. Thus, for the fea-
ture space construction, we use 18 channels in which we compute the statistical
characteristics in a prescribed image subarea A. Therefore, the feature space is
the 72-dimensional Euclidean space, i.e. k = 72.

The classification by NatNets is applied to two groups of forest habitats,
QC forest - segments dominated by Quercus cerris (habitats 91M0 Pannonian-
Balkanic turkey oak-sessile oak forests and 91I0 Euro-Siberian steppic woods
with Quercus spp.) and QP forest - segments with the dominance of Quer-
cus petraea (habitat 91G0 Pannonic woods with Quercus petraea and Carpinus
betulus). The habitats 91M0, 91I0, and 91G0 are part of Natura 2000 protected
network [7]. The motivation for the classification and identification of such oak
forests is that the forests of 91M0 and 91I0 habitats are very endangered in Slo-
vakia. The wood of the Quercus cerris (turkey oak), which is dominant in these
habitats, is considered to be of lower quality compared to other oak species in
Slovakia, and therefore the turkey oak was often eliminated in favour of other
Quercus species.

3.1 Training of the Network

The vegetation scientists use automatic segmentation methods in NaturaSat
software [15] to segment 42 areas of QC and QP forests in Western Slovakia,
see Fig. 3 for areas examples of QC segmented areas. We denote the segmented
areas as Si, where i = 1, . . . , NS , NS = 42, and in each segmented area, we
choose randomly a square Ai = A(pi, r) centred in a pixel pi ∈ Si. The values for
Chebyshev radius r are equal to 5 for large segmented areas, while for small areas,
r can be smaller, equal to 4 or 3. The statistical characteristics are computed
for every square Ai. The statistical characteristics of squares Ai represent the
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vertices of the initial network directed graph G. Since we have multi-dimensional
feature space, we apply the Principal Component Analysis (PCA) [12,17] to
reduce the data dimension but retain the maximum amount of information in the
data. We observed experimentally, that using the first two principal components
is sufficient, further coordinates do not help to differentiate clusters and can be
omitted. Thus the dimension of the problem is reduced to k = 2 which gives
at the same time the computationally tractable task and sufficiently accurate
classification, exceeding 95%, in the training phase of the model. Because we
have two types of forests, we have two clusters in the classification, NC = 2, and
each vertex in the directed graph is labelled by the cluster number to which its
segmented area belongs.

Fig. 3. The subregion of Western Slovakia with segmented areas of protected QC forests
(red curves). (Color figure online)

Network training aim is to tune the parameters of the model (7)–(9) to
achieve the highest possible classification accuracy for the learning dataset. To
attain that aim, we subsequently remove the cluster label from each vertex of
the directed graph G, representing the learning dataset, and set it as the new
observation. Then we classify it using the NatNet. We analyse the results and
choose the model parameters with the highest success rate NB/NV , where NB

is a number of correctly classified observations.
Now let us consider the directed graph G having NV = 42 vertices described

above and denote it LDS42. We run the training of the network on the LDS42
dataset, the results are shown in the first row of Table 1. We achieved the success
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rate of 37/42. Since we have randomly chosen the squares A(pi, r), it is not the
optimal approach. To increase the success rate, we adjust the learning dataset by
a spatial shifting of representative squares inside the segmented areas Si based
on the relevancy maps computed using LDS42. We try to find the new square
A(pi, r) for each segmented area Si such that Mr

a (pi) >> 0 for a new square
centre pi ∈ Si by analysing the relevancy map Mr

a of the cluster to which the
segmented area Si belongs. If we find a pixel pi with high relevancy, we can
construct the new square A(pi, r) and replace the randomly chosen square from
LDS42 with the new one. In this manner, we construct the adjusted learning
dataset LDS42adj and run the training of the network again. The result of the
training is shown in the second row of Table 1. We achieve the success rate of
40/42 = 0.9524, which is sufficiently high and allows us to use the trained NatNet
for the identification of oak forests in Western Slovakia outside the areas used
in the training of the network.

Table 1. The results of the learning phase on datasets LDS40 and LDS40adj.

Dataset name Correctly classified Incorrectly classified Outliers Success rate

LDS42 37 5 1 88.09%

LDS42adj 40 1 1 95.24%

3.2 Application of the Trained Network

By a successfully trained NatNet, we can classify satellite images and identify
areas of target habitat in the examined territory. In our case, the target habi-
tats are that dominated by Quercus cerris (turkey oak) due to their endangered
status in Slovakia. The relevancy maps are computed for that purpose. We work
with two habitats, thus we obtain two relevancy maps. Figure 4 depicts the area
of Martinsky les special protected area with the segmented areas of QC forests
(red curves). On the left part in Fig. 4, there is the image from the Sentinel-2
satellite, and on the right part, there is the relevancy map for the QC forests.
The relevancy map shows bright colours in the interior of the segmented areas,
which means high relevancy coefficient in the pixels and reflects the correct clas-
sification of the segmented area. We can notice that there is also apparent bright
colour outside the segmented areas, which leads to field reviewal by vegetation
scientists. The result of the field research is that the NatNet correctly classified
a given territory. There are further areas of 91M0 and 91I0 habitats in such
territory validated by fields visit and comparing them with forestry maps. The
second relevancy map for QP forests is depicted in Fig. 5. This relevancy map
shows the regions of appearance of QP forests in bright colour pixels, thus having
a high relevancy coefficient. When we are focused on the segmented curves of the
QC forests, we can conclude that the interior is quite dark, which expresses low
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Fig. 4. The segmented areas of QC forests (red curve) plotted on the Sentinel-2 image
(left) and on the relevancy map for QC forests (right). (Color figure online)

Fig. 5. The segmented areas of QC forests (red curve) plotted on the Sentinel-2 image
(left) and on the relevancy map for QP forests (right). (Color figure online)

or no relevancy of the occurrence of the QP forest. The Natura 2000 habitats are
complex compositions of various types of species, and it is impossible to have a
homogeneous relevancy map for one habitat. Nevertheless, we can observe that
the relevancy map for the QC forests and the QP forests complement each other.
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