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Abstract

The Wiener index W (G) of a connected graph G is defined to be the sum
∑

u,v d(u, v) of distances between all unordered pairs of vertices in G. Similarly,
the edge-Wiener index We(G) of G is defined to be the sum

∑

e,f d(e, f) of dis-
tances between all unordered pairs of edges in G, or equivalently, the Wiener index
of the line graph L(G). Wu [37] showed that We(G) ≥ W (G) for graphs of min-
imum degree 2, where equality holds only when G is a cycle. Similarly, in [24] it

was shown that We(G) ≥ δ2−1
4 W (G) where δ denotes the minimum degree in G. In

this paper, we extend/improve these two results by showing that We(G) ≥ δ2

4 W (G)
with equality satisfied only if G is a path on 3 vertices or a cycle. Besides this, we
also consider the upper bound for We(G) as well as the ratio We(G)

W (G) . We show that

among graphs G on n vertices We(G)
W (G) attains its minimum for the star.

Keywords: Wiener index, Gutman Index, Line graph

1 Introduction

For a graph G, let deg(u) and d(u, v) denote the degree of a vertex u ∈ V (G) and the
distance between vertices u, v ∈ V (G), respectively. Let L(G) denote the line graph of
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G, that is, the graph with vertex set E(G) and two distinct edges e, f ∈ E(G) adjacent
in L(G) whenever they share an end-vertex in G. Furthermore, for e, f ∈ E(G), we let
d(e, f) denote the distance between e and f in the line graph L(G).

In this paper we consider three important graph invariants, called Wiener index (de-
noted by W (G) and introduced in [36]), edge-Wiener index (denoted by We(G) and in-
troduced in [21]) and Gutman index (denoted by Gut(G) and introduced in [12]), which
are defined as follows:

W (G) =
∑

{u,v}⊆V (G)

d(u, v),

We(G) =
∑

{e,f}⊆E(G)

d(e, f),

Gut(G) =
∑

{u,v}⊆V (G)

deg(u) deg(v) d(u, v).

Observe that the edge-Wiener index of G is nothing but the Wiener index of the line
graph L(G) of G. Note also that in the literature a slightly different definition of the
edge-Wiener index is sometimes used; for example, in [20] edge-Wiener index is defined
to be We(G) +

(

n
2

)

where We(G) is defined as above and n is the order of G.
The Wiener index and related distance-based graph invariants have found extensive

application in chemistry, see for example [14, 15, 34], and [2, 8, 16, 17, 18, 30, 31] for
some recent studies. The Wiener index of a graph was investigated also from a purely
graph-theoretical point of view (for early results, see for example [9, 33], and [4, 25, 26, 38]
for some surveys). Generalizations of Wiener index and relationships between these were
studied in a number of papers (see for example [3, 5, 6, 20]), and relationships between
generalized graph entropies and the Wiener index (among other related topological in-
dices) were established in [28]. New results on the Wiener index are constantly being
reported, see for instance [10, 19, 23, 29, 35] for recent research trends.

Wu [37] showed that We(G) ≥ W (G) for graphs of minimum degree 2 where equality
holds only when G is a cycle. Similarly, in [24] it was shown that We(G) ≥ δ2−1

4
W (G)

where δ denotes the minimum degree in G. In this paper, we improve these two results by
showing that We(G) ≥ δ2

4
W (G) with equality satisfied only if G is a path on 3 vertices or

a cycle. One of the closely related distance-based graph invariant is the Szeged index [11],
and a relation between the Szeged index and its edge version was recently established in
[27].

In [3] it was proved that We(G) ≤ 22

55
+O(n9/2) for graphs of order n. Using the result

of [32] we improve this bound to We(G) ≤ 22

55
+ O(n4). We also consider the ratio We(G)

W (G)

and show that this ratio is minimum if G is the star Sn on n vertices. Consequently, if G
is a graph on n vertices, then We(G)

W (G)
≥ n−2

2(n−1)
.

2 Distances, average distance and Dα relations

Note that for any two distinct edges e = u1u2 and f = v1v2 in E(G), the distance between
e and f equals

d(e, f) = min{d(ui, vj) : i, j ∈ {1, 2}}+ 1. (1)

In the case when e and f coincide, we have d(e, f) = 0. In addition to the distance
between two edges we will also consider the average distance between the endpoints of
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two edges, defined by

s(u1u2, v1v2) =
1

4

(

d(u1, v1) + d(u1, v2) + d(u2, v1) + d(u2, v2)
)

.

Notice that s(e, f) = 1
2
when e and f coincide. The average distance of endpoints is in

an interesting relationship with the Gutman index of a graph. Namely, if one likes to
consider the version of edge-Wiener index where the distances between edges are replaced
by the average distances of their endpoints, then what one gets is essentially the Gutman
index, see Lemma 1.

A variation to the following result was mentioned in [24, 37], where the sum in (2) is
taken over all ordered pairs of edges. In our case the sum runs over all 2-element subsets
of E(G).

Lemma 1. Let G be a connected graph. Then

∑

{e,f}⊆E(G)

s(e, f) =
1

4

(

Gut(G)− |E(G)|
)

. (2)

Proof. Consider the sum on the left-hand side of (2). We can rewrite it as

1

4

∑

{uw,vz}⊆E(G)

(

d(u, v) + d(u, z) + d(w, v) + d(w, z)
)

.

Now, for any two non-adjacent vertices of G, say u and v, the distance d(u, v) appears in
the above sum precisely once for each pair of edges, where one of these edges is incident
with u and the other is incident with v. Thus, d(u, v) appears in total precisely deg(u) ·
deg(v) times. And, if u and v are two adjacent vertices of G, then the distance d(u, v) = 1
appears in that sum precisely deg(u) · deg(v)− 1 times. Thus, the above sum equals

1

4

[

∑

uv 6∈E(G)

deg(u)deg(v)d(u, v) +
∑

uv∈E(G)

(

deg(u)deg(v)− 1
)

d(u, v)
]

,

which is the right-hand side of (2).

Now we define the following notions. Let G be a graph. For a pair of edges e and f
of G we define the difference

D(e, f) = d(e, f)− s(e, f).

Moreover, if D(e, f) = α, we say that e, f form a pair of type Dα or that the pair e, f
belongs to the set Dα. Note that if e = f , then D(e, f) = −1

2
. Denote by I the set

{0, 1
4
, 1
2
, 3
4
, 1}. Note that

∑

α∈I

|Dα| =

(

|E(G)|

2

)

. Next easy lemma shows that D(e, f) ∈ I

whenever e 6= f .

Lemma 2. In a connected graph, every pair of distinct edges belongs to Dα for some
α ∈ I.
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Proof. Let e = u1u2 and f = v1v2 be two distinct edges. We may assume that

d(u1, v1) = min
i,j∈{1,2}

{d(ui, vj)} .

Let k = d(u1, v1). Notice that

d(u1, v2), d(u2, v1) ∈ {k, k + 1} and d(u2, v2) ∈ {k, k + 1, k + 2}.

If d(u2, v2) = k + 2, then it must hold d(u1, v2) = d(u2, v1) = k + 1, and hence
D(e, f) = 0, which means that the pair e, f belongs to D0. So, in the sequel, we assume
that d(u2, v2) = k or k + 1. Suppose d(u1, v2) = d(u2, v1) = k. If d(u2, v2) = k, then
the pair e, f belongs to D1. And, if d(u2, v2) = k + 1 then the pair e, f belongs to D 3

4

.

Suppose now that d(u1, v2) = k + 1 and d(u2, v1) = k. If d(u2, v2) = k, then again the
pair e, f belongs to D 3

4

. On the other hand, if d(u2, v2) = k + 1, then the pair e, f

belongs to D 1

2

. We argue similarly if d(u1, v2) = k and d(u2, v1) = k+1. Finally, suppose

that d(u1, v2) = d(u2, v1) = k + 1. If d(u2, v2) = k, the pair e, f belongs to D 1

2

. If

d(u2, v2) = k + 1, the pair e, f belongs to D 1

4

.

To prove our main result we will have to distinguish two possibilities for α = 1
2
.

If (according to the notation in the proof of Lemma 2) d(u1, v1) = d(u2, v2) = k and
d(u1, v2) = d(u2, v1) = k + 1 then we say that the pair belongs to D′

1

2

, and if d(u1, v1) =

d(u2, v1) = k and d(u1, v2) = d(u2, v2) = k + 1, we say that the pair belongs to D′′
1

2

.

In Figure 1, where all different configurations of pairs of edges are presented, full lines
represent the edges u1u2 and v1v2.

Proposition 3. Let G be a connected graph. Then

We(G) =
Gut(G)

4
−

|E(G)|

4
+ |D1|+

1

4
|D 1

4

|+
1

2
|D 1

2

|+
3

4
|D 3

4

|. (3)

Proof. By Lemma 1, we have

We(G) =
∑

{e,f}⊆E(G)

d(e, f)

=
∑

{e,f}⊆E(G)

s(e, f) +
∑

{e,f}⊆E(G)

D(e, f)

=
Gut(G)

4
−

|E(G)|

4
+

∑

{e,f}⊆E(G)

D(e, f) .

Now, as every pair e, f belongs to precisely one of Dα for some α ∈ I, we have

∑

{e,f}∈E(G)

D(e, f) = 0 · |D0|+
1

4
· |D 1

4

|+
1

2
· |D 1

2

|+
3

4
· |D 3

4

|+ 1 · |D1|,

and the proof follows.
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3 Bounds for We(G)

Klavžar and Lipovec [22] proved the following result.

Lemma 4. Let G be a 2-connected graph that is not a cycle. Then G contains two
isometric cycles C1 = u1u2 . . . ukuk+1 . . . uru1 and C2 = u1u2 . . . ukvk+1 . . . vsu1, where
r ≥ s > k ≥ 2 and vi 6= uj for i, j ≥ k + 1.

Note that the path S = u1u2 . . . uk cannot contain more than half of the edges of one
of the cycles C1 and C2, otherwise the other cycle would not be isometric. Thus S is
a shortest path among the three paths between u1 and uk in C1 ∪ C2, and as such it is
isometric (otherwise again a contradiction is obtained with C1 and C2 being isometric).
This fact will be of use in the proof of the next lemma.

Lemma 5. In a 2-connected graph G, we have

2|D′
1

2

|+ |D 1

4

| ≥ |E(G)|. (4)

Moreover, equality holds if and only if G is a cycle.

Proof. Let G be a 2-connected graph. It is well-known that if an edge e = xy belongs to a
cycle, then it must belong to an isometric cycle. (In order to obtain such a cycle just take
the edge e and a shortest path distinct from the path e connecting x and y, which must
exist since xy lies on a cycle.) Let E0 (resp. E1) be the set of edges that belong to some
isometric cycle in G of even (resp. odd) length. Since |E(G)| = |E0| + |E1| − |E0 ∩ E1|,
we have |E(G)| ≤ |E0|+ |E1|.

Notice that if e is an edge of an even isometric cycle C, and e′ is its antipodal edge on
C, then the pair e, e′ belongs to D′

1

2

. Let G0 be a graph such that V (G0) = E0 and two

vertices are adjacent in G0 if the corresponding edges in G belong to a pair in D′
1

2

. This

gives us

|E0| = |V (G0)| ≤
∑

v∈V (G0)

deg(v) = 2|E(G0)| = 2|D′
1

2

|, (5)

as every vertex in V (G0) is of degree at least 1, since every edge of E0 is at least in some
pair of D′

1

2

.

Similarly, if e is an edge of an odd isometric cycle C, and e1, e2 are antipodal edges of
e, then the pairs e, e1 and e, e2 belong to D 1

4

. Defining a graph G1 with V (G1) = E1 and

two vertices being adjacent in G1 if the corresponding edges in G belong to a pair in D 1

4

,
we get

2|E1| = 2|V (G1)| ≤
∑

v∈V (G1)

deg(v) = 2|E(G1)| = 2|D 1

4

|, (6)

since every vertex in V (G1) is of degree at least 2, as every edge of E1 is at least in two
pairs of D 1

4

. Thus |E1| ≤ |D 1

4

| and 2|D′
1

2

|+ |D 1

4

| ≥ |E0|+ |E1| ≥ |E(G)|.

If G is an even cycle, we clearly have |E0| = 2|D′
1

2

| and |E1| = 0, and if G is an odd

cycle, then |E1| = |D 1

4

| and |E0| = 0. Thus, if G is a cycle, we have equality in (4). Now,

we show that as soon as G is not a cycle, strict inequality holds in (4). By Lemma 4,
there exist two different isometric cycles C and C ′ such that C ∩C ′ is a path of length at
least one. Denote this path by S and let u1u2 be the first edge on this path.
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If one of the cycles C and C ′ is even and the other is odd, we have u1u2 ∈ E0 ∩ E1,
thus |E(G)| < |E0|+ |E1|, which readily implies |E(G)| < 2|D′

1

2

|+ |D 1

4

|.

Now assume that both C and C ′ are even. Observe that every pair of edges that lie on
an isometric path belongs to D0. Thus, since S is isometric, the edge that is antipodal to
the edge u1u2 on C (C ′, respectively) belongs to C \ S (C ′ \ S, respectively). This means
that the degree of the vertex in G0 that corresponds to u1u2 is at least 2, which implies
strict inequality in (5), i.e |E0| < 2|D′

1

2

| and thus |E(G)| ≤ |E0|+ |E1| < 2|D′
1

2

|+ |D 1

4

|.

Similarly, if both C and C ′ are odd, we observe that the two antipodal edges of u1u2

in C are different from the antipodal edges of u1u2 in C ′. This yields a strict inequality
in (6) (since the vertex corresponding to u1u2 is of degree at least 4 in G1) and the result
follows.

To prove the main theorem in case of regular graphs the following observation will be
needed.

Lemma 6. Suppose that G 6= K2 is a regular graph containing bridges. Then every
end-block of G contains an edge e such that for every bridge b the pair e, b is in D′′

1

2

.

Proof. Let G be a regular graph of degree k. Since G 6= K2, we have k ≥ 2. Let B be an
end-block, and let v be the cut-vertex incident with B. Since k ≥ 2, B contains at least
3 vertices. Moreover, all vertices of B are of degrees k in B except v.

We claim that B is a non-bipartite graph. Suppose to the contrary that B is bipartite
with bipartition L,R of V (B). Assume that v ∈ R. Then k|L| = |E(B)| = k(|R| − 1) +
degB(v), which implies that k divides degB(v), a contradiction.

For each i ≥ 0, denote by Li the vertices of B at the distance i from v. As B is
non-bipartite, some Li will contain adjacent vertices. Hence, there is an edge e = u1u2 of
B with d(u1, v) = d(u2, v).

Now we will show that e is the required edge. For any bridge b = v1v2 notice that
d(v1, v) 6= d(v2, v), otherwise we obtain that b lies on a cycle. So, we may assume that
d(v1, v) = d(v2, v) + 1. As B is an end-block attached to the rest of the graph at v, every
shortest path from a vertex of B to a vertex in G− B must contain the vertex v. Hence

d(u1, v2) = d(u1, v) + d(v, v2) = d(u2, v) + d(v, v2) = d(u2, v2),

and similarly, d(u1, v1) = d(u2, v1). Thus,

d(u1, v2) = d(u2, v2) = d(u1, v1)− 1 = d(u2, v1)− 1,

and hence the pair e, b is in D′′
1

2

.

Now we are ready to prove the main result.

Theorem 7. Let G be a connected graph of minimum degree δ. Then,

We(G) ≥
δ2

4
W (G) (7)

with equality holding if and only if G is isomorphic to a path on three vertices or a cycle.
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Proof. We distinguish two cases.

Case 1: G is non-regular.

Then G has a vertex w ∈ V (G) of degree at least δ + 1. By Proposition 3, we have

4We(G) = Gut(G)− |E(G)|+ 4|D1|+ |D 1

4

|+ 2|D 1

2

|+ 3|D 3

4

|

≥ Gut(G)− |E(G)|

≥ δ2
∑

{u,v}∈V (G)\{w}

d(u, v) + (δ + 1)
∑

u∈V (G)\{w}

deg(u)d(u, w)− |E(G)|

≥ δ2W (G) +
∑

u∈V (G)\{w}

deg(u)− |E(G)|

≥ δ2W (G).

Note that in order to obtain equality in (7), no edge lies on a cycle by Lemma 5, otherwise
we have |D 1

4

| > 0 or |D′
1

2

| > 0. This implies that G is a tree, and so δ = 1. Moreover, each

edge is incident with w, as we need that
∑

u∈V (G)\{w}

deg(u) = |E(G)|, which implies that

G is a star. And finally, we need deg(w) = δ + 1 = 2, which implies that G is isomorphic
to P3. This establishes the case.

Case 2: G is regular.

Let B be the set of bridges of G and let Ec be the set of edges of G that lie on at least one
cycle. Then E(G) = B∪Ec and B∩Ec = ∅. One can check that if a pair of edges belongs
to D′

1

2

or D 1

4

, then this pair belongs to the same block. Now, applying Lemma 5 to every

nontrivial block of G, i.e. to every block containing a cycle, we obtain cumulatively that

2|D′
1

2

|+ |D 1

4

| ≥ |Ec|.

If G has bridges, i.e. if B 6= ∅, then G has at least two end-blocks. Now, Lemma 6
assures the existence of two distinct edges e′ and e′′ such that for every bridge b each of
the pairs b, e′ and b, e′′ belongs to D′′

1

2

. So we have

|D′′
1

2

| ≥ 2|B|.

Now, starting with the equality (3) and using the fact that Gut(G) = δ2W (G) for
regular graphs, we obtain

4We(G) = Gut(G)− |E(G)|+ 4|D1|+ |D 1

4

|+ 2|D 1

2

|+ 3|D 3

4

|

= δ2W (G)− |Ec| − |B|+ 4|D1|+ |D 1

4

|+ 2|D′
1

2

|+ 2|D′′
1

2

|+ 3|D 3

4

|

≥ δ2W (G)− |Ec| − |B|+ 4|D1|+ |Ec|+ 4|B|+ 3|D 3

4

|

= δ2W (G) + 4|D1|+ 3|B|+ 3|D 3

4

|

≥ δ2W (G) .

Note that in order to obtain equality in (7), B = ∅, i.e., G must have no bridges. So
there are no trivial blocks in G. Next, in order to have the equality, by Lemma 5 every
nontrivial block must be a cycle. This means that all blocks of G are cycles. Consequently,
since G is regular, we conclude that G is a cycle.

Now we consider the upper bound for We(G). In [32] we have the following theorem:
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Theorem 8. Let G be a connected graph on n vertices. Then

Gut(G) ≤
24

55
n5 + O(n4).

Using this theorem we prove the following statement.

Theorem 9. Let G be a connected graph on n vertices. Then

We(G) ≤
22

55
n5 +O(n4).

Proof. For all pairs of edges e, f ∈ E(G) and for all ui, vj , where e = u1u2, f = v1v2 and
i, j ∈ {1, 2}, we sum the distances dL(G)(e, f). In this way we get 4We(G). Now we group
these distances according to the pairs ui, vj . That is, for all pairs of vertices u, v ∈ V (G)
(including the pairs of identical vertices) we take all edges e incident to u, all edges f
incident to v, and we sum dL(G)(e, f). Let e be an edge incident to u and let f be an edge
incident to v. Then

dL(G)(e, f) ≤ dG(u, v) + 1.

By c(u, v) we denote the sum
∑

e,f dL(G)(e, f) taken over all edges e, f such that e is
incident with u and f is incident with v. Then

c(u, v) =
∑

e,f

dL(G)(e, f) ≤ deg(u)deg(v)
(

dG(u, v) + 1
)

.

By Theorem 8, we have

4We(G) =
∑

u 6=v

c(u, v) +
∑

u

c(u, u)

≤
∑

u 6=v

deg(u)deg(v)
(

dG(u, v) + 1
)

+
∑

u

(deg(u))2 · 1

≤ Gut(G) +
∑

u 6=v

deg(u)deg(v) +
∑

u

(deg(u))2

≤
24

55
n5 +O(n4) +O(n4) +O(n3)

=
24

55
n5 +O(n4).

4 A lower bound for We(G)/W (G)

The problem of finding the graphs on n vertices, whose line graph has maximal Wiener
index (i.e. whose edge-Wiener index is maximal) was given by Gutman [13] (see also [7]).
Moreover, Dobrynin and Mel’nikov [7] proposed to estimate the ratio W (Li(G))/W (G),
where Li(G) stands for an iterated line graph, defined inductively as

Li(G) =

{

G if i = 0,
L(Li−1(G)) if i > 0.

In this section we consider the case i = 1 and give a tight lower bound for We(G)
W (G)

.

We need two well-known results. While the first one is already a folklore (and follows
from a result in [9]), the second was proved by Buckley in [1].
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Theorem 10. Among all trees on n vertices, the star Sn has the smallest Wiener index.

Theorem 11. If T is a tree on n vertices, n ≥ 2, then We(T ) = W (T )−
(

n
2

)

.

Now we are able to prove our lower bound.

Theorem 12. Among all connected graphs on n vertices, the fraction We(G)
W (G)

is minimum

for the star Sn, in which case We(G)
W (G)

= n−2
2(n−1)

.

Proof. First we prove that if G is not a tree, then We(G)
W (G)

≥ 1
2
. Thus, assume that G is not

a tree. We start with the following claim.

Claim 1. There is f : V (G) → E(G) such that for every v ∈ V (G) the edge f(v) is
incident with v and f(u) 6= f(v) whenever u 6= v.

By Claim 1, G has a collection of n edges that can be considered as a system of distinct
representatives for the vertices in such a way, that a vertex and an edge representing the
vertex must be incident.

Proof of Claim 1. We start with trees. Since trees have only n − 1 edges, they cannot
satisfy Claim 1. However, for every tree T and for every vertex v0 ∈ V (T ), one can find
f : V (T ) \ {v0} → E(T ) satisfying Claim 1. To see this, it suffices to set f(v) to be the
first edge of the unique v, v0-path in T .

Now let e0 be an edge of G such that deleting e0 results in a connected graph. Further,
let T be a spanning tree of G which does not contain e0. Denote by v0 a vertex incident
with e0 in G and construct f : V (T ) \ {v0} → E(T ) as described above. Then the
extension of f to V (T ) = V (G) by setting f(v0) = e0 satisfies Claim 1.

Now we proceed with the proof of Theorem 12. Consider a function f satisfying
Claim 1. We have

We(G) =
∑

{e,f}⊆E(G)

dL(G)(e, f) ≥
∑

{u,v}⊆V (G)

dL(G)(f(u), f(v)),

where the sums are taken over all pairs of distinct elements of E(G) and V (G), respec-
tively. Hence,

We(G)

W (G)
≥

∑

{u,v}⊆V (G)

dL(G)(f(u), f(v))

∑

{u,v}⊆V (G)

dG(u, v)
.

The fraction on the right-hand side is the smallest when the denominator is as big as
possible compared with the numerator. Since dL(G)(f(u), f(v)) ≥ dG(u, v) − 1, that is
dG(u, v) ≤ dL(G)(f(u), f(v)) + 1, we get

We(G)

W (G)
≥

∑

{u,v}⊆V (G)

dL(G)(f(u), f(v))

∑

{u,v}⊆V (G)

(dL(G)(f(u), f(v)) + 1)
.

Since f(u) 6= f(v) whenever u 6= v, we have dL(G)(f(u), f(v)) ≥ 1, which gives We(G)
W (G)

≥ 1
2
.

Thus, assume that G is a tree. By Theorem 11, we have

We(G)

W (G)
=

W (G)−
(

n
2

)

W (G)
.

Hence, We(G)
W (G)

achieves its minimum for a tree with the minimum Wiener index. Since

W (Sn) = 2
(

n−1
2

)

+ (n−1) = (n−1)2, Theorem 10 completes the proof.
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[17] A. Hamzeh, A. Iranmanesh, T. Réti, I. Gutman, Chemical graphs constructed of com-
posite graphs and their q-Wiener index, MATCH Commun. Math. Comput. Chem.
72 (2014) 807–823.

[18] H. Hou, B. Liu, Y. Huang, The maximum Wiener polarity index of unicyclic graphs,
Appl. Math. Comput. 218 (2012) 10149–10157.
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Figure 1: Different configurations of pairs of edges.
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