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Abstract

The Wiener index W(G) of a connected graph G is defined to be the sum
Y uw d(u,v) of distances between all unordered pairs of vertices in G. Similarly,
the edge-Wiener index We(G) of G is defined to be the sum 3, ;d(e, f) of dis-
tances between all unordered pairs of edges in G, or equivalently, the Wiener index
of the line graph L(G). Wu [37] showed that W.(G) > W(G) for graphs of min-
imum degree 2, where equality holds only when G is a cycle. Similarly, in [24] it

was shown that W, (G) > ‘524_1 W (G) where ¢ denotes the minimum degree in G. In

this paper, we extend/improve these two results by showing that W,(G) > %W(G)
with equality satisfied only if G is a path on 3 vertices or a cycle. Besides this, we
also consider the upper bound for W, (G) as well as the ratio Wel®)  We show that

w(G) -
%((g)) attains its minimum for the star.

among graphs G on n vertices

Keywords: Wiener index, Gutman Index, Line graph

1 Introduction

For a graph G, let deg(u) and d(u,v) denote the degree of a vertex u € V(G) and the
distance between vertices u,v € V(G), respectively. Let L(G) denote the line graph of
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G, that is, the graph with vertex set E(G) and two distinct edges e, f € E(G) adjacent
in L(G) whenever they share an end-vertex in GG. Furthermore, for e, f € E(G), we let
d(e, f) denote the distance between e and f in the line graph L(G).

In this paper we consider three important graph invariants, called Wiener indez (de-
noted by W(G) and introduced in [36]), edge- Wiener indez (denoted by W.(G) and in-
troduced in [21]) and Gutman indez (denoted by Gut(G) and introduced in [12]), which
are defined as follows:

{u}CV(G)

W(G) = ) dlef),
{e.f}ICE(G)

Gut(G) = > deg(u)deg(v) d(u,v).
{u}CV(G)

Observe that the edge-Wiener index of GG is nothing but the Wiener index of the line
graph L(G) of G. Note also that in the literature a slightly different definition of the
edge-Wiener index is sometimes used; for example, in [20] edge-Wiener index is defined
to be W.(G) + (3) where W,(G) is defined as above and n is the order of G.

The Wiener index and related distance-based graph invariants have found extensive
application in chemistry, see for example [14, 15, 34], and [2, 8, 16, 17, 18, 30, 31] for
some recent studies. The Wiener index of a graph was investigated also from a purely
graph-theoretical point of view (for early results, see for example [9, 33|, and [4, 25, 26, 38|
for some surveys). Generalizations of Wiener index and relationships between these were
studied in a number of papers (see for example [3, 5, 6, 20]), and relationships between
generalized graph entropies and the Wiener index (among other related topological in-
dices) were established in [28]. New results on the Wiener index are constantly being
reported, see for instance [10, 19, 23, 29, 35| for recent research trends.

Wu [37] showed that W, (G) > W(G) for graphs of minimum degree 2 where equality
holds only when G is a cycle. Similarly, in [24] it was shown that W.(G) > Z=2W/(G)
where § denotes the minimum degree in GG. In this paper, we improve these two results by
showing that W,.(G) > %W(G) with equality satisfied only if G is a path on 3 vertices or
a cycle. One of the closely related distance-based graph invariant is the Szeged index [11],
and a relation between the Szeged index and its edge version was recently established in
[27].

In [3] it was proved that W,(G) < & 4+ O(n??) for graphs of order n. Using the result

of [32] we improve this bound to W, (G) < g—? + O(n?). We also consider the ratio Mm//"‘((g))

and show that this ratio is minimum if G is the star S,, on n vertices. Consequently, if G

is a graph on n vertices, then Vlel/e((g)) > 2(7;21)'

2 Distances, average distance and D, relations

Note that for any two distinct edges e = ujup and f = v1vy in E(G), the distance between
e and f equals

d(e, f) = min{d(u;,v;) : i,j € {1,2}} + L. (1)

In the case when e and f coincide, we have d(e, f) = 0. In addition to the distance
between two edges we will also consider the average distance between the endpoints of



two edges, defined by

(d(ul, ’Ul) + d(ul, ’Ug) + d(UQ, ’Ul) + d(UQ, ’Ug)).

==

s(urug, v10;) =

Notice that s(e, f) = % when e and f coincide. The average distance of endpoints is in
an interesting relationship with the Gutman index of a graph. Namely, if one likes to
consider the version of edge-Wiener index where the distances between edges are replaced
by the average distances of their endpoints, then what one gets is essentially the Gutman
index, see Lemma 1.

A variation to the following result was mentioned in [24, 37], where the sum in (2) is
taken over all ordered pairs of edges. In our case the sum runs over all 2-element subsets

of E(G).
Lemma 1. Let G be a connected graph. Then
1
> sle.f) = 7(Gut(@) - 1E@)). 2)
{e.f}CE(G)

Proof. Consider the sum on the left-hand side of (2). We can rewrite it as

1

1 Z (d(u, v) +d(u, z) + d(w,v) + d(w, z)) :

{vw,vz}CE(G)

Now, for any two non-adjacent vertices of G, say u and v, the distance d(u,v) appears in
the above sum precisely once for each pair of edges, where one of these edges is incident
with u and the other is incident with v. Thus, d(u,v) appears in total precisely deg(u) -
deg(v) times. And, if v and v are two adjacent vertices of G, then the distance d(u,v) =1
appears in that sum precisely deg(u) - deg(v) — 1 times. Thus, the above sum equals

11X destpestoatu )+ 3 (denu)den) —1)d(u. )],
weB(Q) weE(G)

which is the right-hand side of (2). O

Now we define the following notions. Let G be a graph. For a pair of edges e and f
of G we define the difference

D<e7f):d<€7f>_8<e7f)'

Moreover, if D(e, f) = «, we say that e, f form a pair of type D, or that the pair e, f

belongs to the set D,. Note that if e = f, then D(e, f) = —%. Denote by Z the set
EG
{0,4,3, 7,1} Note that Z |Ds| = <| (2 )|) Next easy lemma shows that D(e, f) € Z
acl

whenever e # f.

Lemma 2. In a connected graph, every pair of distinct edges belongs to D, for some
acl.



Proof. Let e = ujug and f = vyvy be two distinct edges. We may assume that

d(uy,v1) = min {d(u;,v;)}.

i,5€{1,2}
Let k = d(uq,v1). Notice that
d(uy,va),d(ug,v1) € {k,k+1} and  d(ug,ve) € {k,k+ 1,k + 2}.

If d(ug,ve) = k + 2, then it must hold d(uj,ve) = d(us,v;) = k + 1, and hence
D(e, f) = 0, which means that the pair e, f belongs to Dy. So, in the sequel, we assume
that d(ug,vy) = k or k + 1. Suppose d(u1,ve) = d(us,v1) = k. If d(ug,v2) = k, then
the pair e, f belongs to Dy. And, if d(us,v9) = k + 1 then the pair e, f belongs to Ds.
Suppose now that d(uy,vs) = k + 1 and d(ug,v1) = k. If d(us,ve) = k, then again the
pair e, f belongs to Ds. On the other hand, if d(ug,v2) = k + 1, then the pair e, f
belongs to D1. We arg&e similarly if d(uy,v9) = k and d(uy,v1) = k+ 1. Finally, suppose
that al(ul,vg)2 = d(ug,v1) = k+ 1. If d(us,vs) = k, the pair e, f belongs to Di. If
d(uz,v9) = k + 1, the pair e, f belongs to D%. C O

To prove our main result we will have to distinguish two possibilities for a = %

If (according to the notation in the proof of Lemma 2) d(uy,vy) = d(ug,v2) = k and
d(uy,v9) = d(ug,v1) = k + 1 then we say that the pair belongs to D', and if d(uy,v;) =
d(uz,v1) = k and d(uq,v2) = d(ug,v2) = k + 1, we say that the Sair belongs to D7 .
In Figure 1, where all different configurations of pairs of edges are presented, full lines
represent the edges ujus and vyvs.

Proposition 3. Let G be a connected graph. Then

_Cui(G)  |E(G)]

We(G) 4 4

1 1 3
FIDi]+ 11Dy 1+ 51Dy |+ 21Dy 3)
Proof. By Lemma 1, we have

W@ = ) dle))

{e,f}CE(G)
= > slef)+ D Dlef)
{G&f}%g)G) \E(G’)| {e,f}CE(G)
ut

{e.,f}ICE(G)
Now, as every pair e, f belongs to precisely one of D, for some o € Z, we have
1 1 3
Y. Def) =0-|Do[+ 7 [Daf + 5 - [Dyl+ 7 - [Da+1-[Di,
{e.f}€E(G)

and the proof follows. O



3 Bounds for W,.(G)

Klavzar and Lipovec [22] proved the following result.

Lemma 4. Let G be a 2-connected graph that is not a cycle. Then G contains two
isometric cycles C; = ujs ... UgUgyy - . Uy and Cy = ujls ... UpUkiq - . . Vs, where
r>s>k>2andv; #u; fori,j > k+1.

Note that the path S = ujus ... u; cannot contain more than half of the edges of one
of the cycles C; and (s, otherwise the other cycle would not be isometric. Thus S is
a shortest path among the three paths between u; and u; in Cy; U C5, and as such it is
isometric (otherwise again a contradiction is obtained with Cy and Cy being isometric).
This fact will be of use in the proof of the next lemma.

Lemma 5. In a 2-connected graph G, we have
2|Di[ + Dy | = [E(G)]. (4)
Moreover, equality holds if and only if G is a cycle.

Proof. Let G be a 2-connected graph. It is well-known that if an edge e = xy belongs to a
cycle, then it must belong to an isometric cycle. (In order to obtain such a cycle just take
the edge e and a shortest path distinct from the path e connecting x and y, which must
exist since zy lies on a cycle.) Let Fy (resp. Fj) be the set of edges that belong to some
isometric cycle in G of even (resp. odd) length. Since |E(G)| = |Eo| + |Er| — |Eo N E4|,
we have |E(G)| < |Eo| + |E1.

Notice that if e is an edge of an even isometric cycle C, and €’ is its antipodal edge on
C', then the pair e, ¢’ belongs to D}. Let Gy be a graph such that V(Gy) = Ey and two
vertices are adjacent in Gy if the Cérresponding edges in G belong to a pair in D’ . This

2

gives us

|Eol = [V(Go)l < ) deg(v) = 2|E(Gy)| = 2|D1], (5)
veV (Go)
as every vertex in V' (Gy) is of degree at least 1, since every edge of Fj is at least in some
pair of D’ .
2
Similarly, if e is an edge of an odd isometric cycle C, and ey, e5 are antipodal edges of
e, then the pairs e, e; and e, e; belong to D%. Defining a graph G with V(G;) = E; and
two vertices being adjacent in (G; if the corresponding edges in G belong to a pair in D 1
we get

2B | =2[V(Gy)| < ) deg(v) = 2|E(Gy)| = 2|Ds], (6)
veV (Gr)
since every vertex in V(Gy) is of degree at least 2, as every edge of F; is at least in two
pairs of Dy1. Thus |Ey| < |Di| and 2| D) | + |D%| > |Eo| + |Er| > |E(G)).
If G is an even cycle, we clearly have |Eo| = 2|D’\| and |Ey| = 0, and if G is an odd
cycle, then |Ey| = |D%| and |Ep| = 0. Thus, if G is a éycle, we have equality in (4). Now,
we show that as soon as G is not a cycle, strict inequality holds in (4). By Lemma 4,

there exist two different isometric cycles C' and C” such that C' N C" is a path of length at
least one. Denote this path by S and let ujus be the first edge on this path.
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If one of the cycles C' and C” is even and the other is odd, we have ujus € Fy N Fy,

thus |F(G)| < |Eo| 4+ |E1], which readily implies |E(G)| < 2| D% | + |Di"
2

Now assume that both C' and C” are even. Observe that every pair of edges that lie on
an isometric path belongs to Dy. Thus, since S is isometric, the edge that is antipodal to
the edge ujug on C' (€, respectively) belongs to C'\ S (C”\ 9, respectively). This means
that the degree of the vertex in G that corresponds to ujus is at least 2, which implies
strict inequality in (5), i.e |Ey| < 2|D’ | and thus |E(G)| < |Eo| + |E1| < 2|D’ | + |D1|

Similarly, if both C' and C” are odd we observe that the two antipodal edges of uqus
in C are different from the antipodal edges of ujuy in C’. This yields a strict inequality

in (6) (since the vertex corresponding to ujus is of degree at least 4 in ;) and the result
follows. O

To prove the main theorem in case of regular graphs the following observation will be
needed.

Lemma 6. Suppose that G # Ky is a regqular graph containing bridges. Then every
end-block of G contains an edge e such that for every bridge b the pair e, b is in D .
2

Proof. Let G be a regular graph of degree k. Since G # Ky, we have k > 2. Let B be an
end-block, and let v be the cut-vertex incident with B. Since k > 2, B contains at least
3 vertices. Moreover, all vertices of B are of degrees k in B except v.

We claim that B is a non-bipartite graph. Suppose to the contrary that B is bipartite
with bipartition L, R of V(B). Assume that v € R. Then k|L| = |[E(B)| = k(|R| — 1) +
degg(v), which implies that k divides degg(v), a contradiction.

For each ¢ > 0, denote by L; the vertices of B at the distance ¢ from v. As B is
non-bipartite, some L; will contain adjacent vertices. Hence, there is an edge e = ujuy of
B with d(uy,v) = d(ug,v).

Now we will show that e is the required edge. For any bridge b = v;v9 notice that

d(vi,v) # d(vy,v), otherwise we obtain that b lies on a cycle. So, we may assume that
d(vi,v) = d(vg,v) + 1. As B is an end-block attached to the rest of the graph at v, every
shortest path from a vertex of B to a vertex in G — B must contain the vertex v. Hence

d(uy,ve) = d(uy,v) + d(v, v2) = d(ug, v) + d(v,ve) = d(ug, va),
and similarly, d(uq,v1) = d(ug, v1). Thus,
d(uy,ve) = d(ug,v9) = d(ug,v1) — 1 = d(ug,v1) — 1,
and hence the pair e, b is in D%’. O
Now we are ready to prove the main result.

Theorem 7. Let G be a connected graph of minimum degree §. Then,

W)= Zwie) )

with equality holding if and only if G is isomorphic to a path on three vertices or a cycle.



Proof. We distinguish two cases.

Case 1: G is non-reqular.

Then G has a vertex w € V(G) of degree at least § + 1. By Proposition 3, we have

4W.(G) Gut(G) — [E(G)| +4|Di[ + [D1| + 2[Dy| 4 3| Ds|

> Gut(G) — |E(G)|
> 0% Y dw)+(6+1) Y deg(u)d(u,w) — [E(G)|
{upreV(G)\{w} ueV(G)\{w}
> FW(G)+ Y deg(u)—|E(G)
ueV(G)\{w}
> PW(Q).

Note that in order to obtain equality in (7), no edge lies on a cycle by Lemma 5, otherwise
we have |Di‘ > 0 or |D}| > 0. This implies that G is a tree, and so 6 = 1. Moreover, each
2

edge is incident with w, as we need that Z deg(u) = |E(G)|, which implies that
uweV(G)\{w}

G is a star. And finally, we need deg(w) = § + 1 = 2, which implies that G is isomorphic

to Ps. This establishes the case.

Case 2: G 1is regular.

Let B be the set of bridges of GG and let E, be the set of edges of GG that lie on at least one
cycle. Then F(G) = BUE,. and BN E, = ). One can check that if a pair of edges belongs
to D1 or D1 then this pair belongs to the same block. Now, applying Lemma 5 to every

nontrivial block of G, i.e. to every block containing a cycle, we obtain cumulatively that
2\D%| + |Di‘ > |E|.

If G has bridges, i.e. if B # (), then G has at least two end-blocks. Now, Lemma 6
assures the existence of two distinct edges e’ and e” such that for every bridge b each of
the pairs b, ¢’ and b, e’ belongs to D]. So we have

2

D] = 2|B|.

Now, starting with the equality (3) and using the fact that Gut(G) = §*W(G) for
regular graphs, we obtain

AWL(G) = Gut( ) = |E(G)| +4|Dy| + | D1 | +2|Dy| + 3| Ds |

W(G) = |E.| — |B| +41D1| + |Dy| + 21D} | + 2| D}| + 3/ Ds|
> 8W(G) ~ |E.| — | B +4|Di| + || +4|B| + 3|Ds |

— 82V(G) +4|Dy| + 3|B| + 3| Dy

> SW(G).

Note that in order to obtain equality in (7), B = (), i.e., G must have no bridges. So
there are no trivial blocks in G. Next, in order to have the equality, by Lemma 5 every
nontrivial block must be a cycle. This means that all blocks of G are cycles. Consequently,
since GG is regular, we conclude that G is a cycle. O

Now we consider the upper bound for W,(G). In [32] we have the following theorem:
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Theorem 8. Let G be a connected graph on n vertices. Then
4

2
Gut(G) < gng’ +O(n?).

Using this theorem we prove the following statement.

Theorem 9. Let G be a connected graph on n vertices. Then
2

WA(@) < %rﬁ + 0.
Proof. For all pairs of edges e, f € E(G) and for all u;,v;, where e = ujus, f = v3v, and
i,j € {1, 2}, we sum the distances dp)(e, f). In this way we get 4W,(G). Now we group
these distances according to the pairs u;, v;. That is, for all pairs of vertices u,v € V(G)
(including the pairs of identical vertices) we take all edges e incident to u, all edges f
incident to v, and we sum dp (e, f). Let e be an edge incident to v and let f be an edge
incident to v. Then

dL(G’)<e7 f) < dG(“a U) + L

By c(u,v) we denote the sum > _,drg)(e, ) taken over all edges e, f such that e is
incident with u and f is incident with v. Then

c(u,v) = Z dre (e, f) < deg(u)deg(v) <dG(u, v) + 1).
e.f

By Theorem 8, we have
AWL(G) = Z c(u,v) + Z c(u,u)
uF£v U

< Y deglu)deg(v) (do(u,v) +1) + D (deg(w))? -1

UFv

Gut(G) + Y deg(u)deg(v) + Y _ (deg(u))®

uFv U

(n') +O(n") + O(n”)

IN

IA
|
S
+
S

4 A lower bound for W,.(G)/W(G)

The problem of finding the graphs on n vertices, whose line graph has maximal Wiener
index (i.e. whose edge-Wiener index is maximal) was given by Gutman [13] (see also [7]).
Moreover, Dobrynin and Mel'nikov [7] proposed to estimate the ratio W (L'(GQ))/W(G),
where L'(G) stands for an iterated line graph, defined inductively as

L(G) = { LLYG)) ifi>0.
In this section we consider the case ¢+ = 1 and give a tight lower bound for Wmf((g)).

We need two well-known results. While the first one is already a folklore (and follows
from a result in [9]), the second was proved by Buckley in [1].
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Theorem 10. Among all trees on n vertices, the star S, has the smallest Wiener index.

Theorem 11. If T is a tree on n vertices, n > 2, then W.(T) = W(T) — (3).

Now we are able to prove our lower bound.

We(G)

W(Q) 5 minimum

Theorem 12. Among all connected graphs on n vertices, the fraction

We(G) _ n—2
W@ — 2n-1)"

for the star S,, in which case

We(G)

Proof. First we prove that if G is not a tree, then W)

> % Thus, assume that G is not

a tree. We start with the following claim.

Claim 1. There is f : V(G) — E(G) such that for every v € V(G) the edge f(v) is
incident with v and f(u) # f(v) whenever u # v.

By Claim 1, G has a collection of n edges that can be considered as a system of distinct
representatives for the vertices in such a way, that a vertex and an edge representing the
vertex must be incident.

Proof of Claim 1. We start with trees. Since trees have only n — 1 edges, they cannot
satisfy Claim 1. However, for every tree T and for every vertex vy € V(T'), one can find
[ V(T)\ {vo} = E(T) satisfying Claim 1. To see this, it suffices to set f(v) to be the
first edge of the unique v, vg-path in T

Now let eq be an edge of GG such that deleting eg results in a connected graph. Further,
let T" be a spanning tree of G which does not contain ey. Denote by vy a vertex incident
with eg in G and construct f : V(T) \ {vo} — E(T) as described above. Then the
extension of f to V(T') = V(G) by setting f(vg) = eq satisfies Claim 1.

Now we proceed with the proof of Theorem 12. Consider a function f satisfying

Claim 1. We have
W(G) = Y dyele )= D dye(f(u). f(v),

{e.f3CE(G) {uv}CV(G)

where the sums are taken over all pairs of distinct elements of E(G) and V(G), respec-

tively. Hence,
> due(f(u), f(v)
WS(G) > {u,v}CV(G)
w(G) — >, da(u,v)
{u.0}CV(G)

The fraction on the right-hand side is the smallest when the denominator is as big as
possible compared with the numerator. Since dp)(f(u), f(v)) > dg(u,v) — 1, that is
dg<u,’U) S dL(G)(f(“)v f(’U)) + 17 we get
> die(f(u), f(v))
We(G) > {u,v}CV(G)
B (drie)(f(u), f(v) +1)

{uv}CV(G)

Since f(u) # f(v) whenever u # v, we have dp)(f(u), f(v)) > 1, which gives VV[[/,“"((g)) >

N[

Thus, assume that G is a tree. By Theorem 11, we have

We(G) _ W(G) —(3)

w(G)  W(G)
Hence, Vvl[/;((g)) achieves its minimum for a tree with the minimum Wiener index. Since
W(S,) =2(",") + (n—1) = (n—1)%, Theorem 10 completes the proof. O
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