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9.1 Introduction

We consider the molecular descriptor Wiener index, W, of graphs and their line
graphs. This index plays a crucial role in organic chemistry. It was studied by chemists
decades before it attracted attention of mathematicians. In fact, it was studied long
time before the branch of discrete mathematics, which is now known as graph theory,
was born. Nowadays, there are many indices known used to describe the molecules.

In this chapter, we first introduce the concept of topological indices and list some
of them. Next, in the third section, we focus on the Wiener index and expose some of
its properties. Furthermore, we compare the values W(G) and W(L(G)), in particular
when they are equal for G being in various classes of graphs. In addition, we expose
some bounds of the Wiener index of the line graph in terms of the Gutman index of
the original graph. In the next section, we consider the equality W(G) = W(L(G)) for
graphs with large girth. Finally, we consider the same equality for trees but for higher
iterations of line graphs, W(T) = WI(L(T)). The sixth section is dedicated to the case
i = 2. In the seventh section, we show that a solution of

W(L(T)) = W(T) (i >3)

exists only for i = 3, and it is one particular class of trees, all homeomorphic to the
letter H. The smallest such tree has 388 vertices.

279



280 Quantitative Graph Theory: Mathematical Foundations and Applications

9.2 Indices in Chemical Graph Theory

Graphs and networks can be described in quantitative terms using different mea-
sures or indices. They function as a universal language to describe the chemical struc-
ture of molecules, the chemical reaction networks, ccosystems, financial markets, the
World Wide Web, and social networks. In chemical graph theory, we refer to these
measures as topological indices or molecular descriptors.

Considering chemical structures as graphs is an important methodology for under-
standing chemical structures and reactivity. In molecular graphs, the atoms are rep-
resented by vertices and the bonds by edges. In chemistry, the degree of a vertex is
called its valence. Double bonds or lone-pair electrons can be represented by multi-
ple edges and self loops [55.57]. In this way. graph theory provides simple rules by
which chemists may obtain qualitative predictions about the structure and reactivity
of various chemical compounds [59].

Topological indices are numerical invariants of molecular graphs, and they may
be used as numerical descriptors to derive quantitative structure—property relation-
ships (QSPR) or quantitative structure—activity relationships (QSAR). Both QSAR
and QSPR are showing the tendency o predict the properties of a compound based
on its molecule structure.

When talking about topological indices (as quantitative graph measures), one can
distinguish them in groups, for example,

e Distance based (Wiener index, etc.),

e Degree based (Zagreb indices, etc.),

e Graph spectra based (Estrada index, etc.),
 Information-theoretic indices based on Shannon’s entropy.

The oldest topological index related to molecular branching is the Wiener index [61],
which was introduced in 1947 as the path number. The same quantity has been studied
and referred o in mathematics as the gross status [41], the distance of graphs [24],
and the transmission [60]. The Wiener index of a graph G, denoted by W(G), is the
sum of distances between all (unordered) pairs of vertices of G

W(G) = Z d(u,v). ©.1)

{luv}CV(G)

Though the Wiener index is the most common topological characteristic of a graph,
nowadays, we know over 200 indices, and we devote this section to listing a few
of them.

For an edge e = ij, let n (i) be the number of vertices of G being closer to i than
to j and n,(j) be the number of vertices of G lying closer to j than to i. The Szeged
index of a graph G is delined by
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Sz2(G) = Z He(D)ie ().

e=ijeE(G)

This invariant was introduced by Gutman [30] during a stay at the Attila Jozsef
University in Szeged, and he named it after this place.
The first Zagreb index M| and the second Zagreb index M7 were defined in [39] as

M (G) = Z (/(v)2 and M»>(G) = Z d(u)d(v),
veV(G) wel(G)

where d(u) and d(v) denote the degree of 1 and v. Zagreb indices are used by various
researchers in their QSPR and QSAR studics [12], as well as in molecular complex-
ity [54]. In 1975, the Randic index R(G) of a graph G was defined as

R(G) = Z (d(u)d(\/‘))*'/z.

wek(G)

It has been proved to be suitable for measuring the extent of branching of the
carbon-atom skeleton of saturated hydrocarbons [56].

In 1989, led by the idea of characterizing the alkanes, Schultz detined a new index
that is degree and distance based [58]. Recently, this index is known as Schultz index
(of first kind ), and it is defined by

S(G) = Z (d(u) +d(v))d(u,v).

(URY IS (@)

Inspired by the Schultz index, Gutman [31] back in 1994 introduced a new index,

Gut(G) = Z d(u)d(v)d(u,v),

{uv}CV(G)

and named it the Schultz index of second kind. Nowadays, this index is also known as
the Gutman index.

All of the aforementioned topological indices are degree- and distance-based
molecular descriptors, but there are also indices of a different kind. The Hosoya index,
also known as the Z index, of a graph describes the total number of matchings within
the graph. This index was introduced by Hosoya in [42] and is often used for inves-
tigations of organic compounds [44]. A high correlation exists between the Hosoya
index and the boiling points of acyclic alkanes.

The Estrada index was introduced in 2000 as a measure of the degree of a protein
folding [25]. Later, the Estrada index was used also to measure the centrality of other
complex networks, such as communication, social, and metabolic networks [26,27].
This index includes the eigenvalues A;, i = 1, ..., n, ol the adjacency matrix of a graph
G and is defined as

n
EE(G) = Z oM
=1
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(a) (b) ()

FIGURE 9.1:  (a) Graph, (b) its line graph, and (c¢) its second iterated line graph.

For the entropy-based indices, see the books Bonchev [6] and Dehmer [9] and the
articles [10,11] as well.

Since we focus on line graphs in this chapter, let us recall the definition of (iter-
ated) line graphs. Let G be a graph. Its line graph, L(G), has vertex set identical with
the set of edges of G and two vertices of L(G) are adjacent if and only if the corre-
sponding edges are adjacent in G (see Figure 9.1 for illustration). {terated line graphs
are defined inductively as follows:

) G iti=0,
LY(G) = .
L(ILNG)) ifi> 0.

We recall that although there is a characterization of line graphs by forbidden sub-
graphs [2], there does not exist a similar characterization for i-iterated line graphs for
i>2.

9.3 Wiener Index

Atfirst, the Wiener index was used for predicting the boiling point of paraftin [59],
but later, strong correlation between the Wiener index and the chemical properties of a
compound was found. Nowadays, this index is a tool used for preliminary screening of
drug molecules [ 1]. The Wiener index also predicts binding energy of protein-ligand
complex at a preliminary stage.
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Besides introducing (new) index, Wiener also stated a theorem that shows how the
Wiener index of a tree can be decomposed into easily calculable edge—contributions.
Denote by N> (F) the sum over all pairs of components of the product of the number
of vertices of two components of a forest F, that is,

NiaF)= ) (T,

I<i<j=p

where Ty, T, ..., T, is the set of components of £ If p = 1, that is, if F'is connected,
then No(F) = 0.

Theorem 9.3.1 [61] For a tree T, the following holds:

W(T)= Y Ni(T —e). 9.2)
eeE(T)

Proof. Notice that in a tree any two vertices are connected by a unique path, which
is the shortest one. So, an edge ¢ = ij contributes 1 to W(T) for each pair of vertices
for which the unique path between them contains e. And, this is a case when 7 and j
are in distinct components of T — e. As the number of such paths is N2 (F — ¢), the
proof follows. O

As T is a tree, for every edge e = ij of T, the forest T — e is composed of two
components, one of size n,(i) and the other of size n.(j), which gives No(T — ¢) =
ne()ne(j). Thus, one can restate (9.2) as

W= > nedne(). (9.3)
e=ije(T)

So the Szeged index and the Wiener index coincide on trees. In fact, the Szeged index
was defined from (9.3) by relaxing the condition that the graph is a tree.

In analogy to the classical Theorem 9.3.1, we have the following vertex version
(see [38]):

Theorem 9.3.2 Let T be a tree on n vertices. Then,
W= Y Nl —v)+ <:> (9.4)
veV(T) K

A theorem given by Doyle and Graver [22] is of a similar kind. In order to state it,
denote by N3(F) the sum over all triplets of components of the product of the number
of vertices of three components of a forest F, that is,

Ns(Fy= Y a(T)n(T)) n(To).

| <i<j<k<p

Note thatif p = 1 or p = 2, then N3(F) = 0. This theorem claims the following.
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Theorem 9.3.3 (Doyle and Graver) Let T be a tree on n vertices. Then,

|
W(T) = (”: >— 3 N(T -,

ve V(T)

The Wiener index is also closely related to other quantities. For example, in computer
science, the average distance p(G) is used, where

W(G)

VG-
("5
It is important to know the average distance traversed by a message in the network.
Networks with small p(G) are related to small worlds.

In the theory of social networks, the Wiener index is closely related to the
betweenness centrality of a vertex that quantifies the number of times a vertex lays on
a shortest path between two other vertices. More precisely, the betweenness centrality
B(x) of a vertex x € V(G) is the sum of the [raction of all-pairs shortest paths that
pass through x, that is,

wG) =

Bo= Y Zwtd 9.5)
uyeV(G) ey
UFV X

where
0., denotes the total number of shortest (i, v) paths in G
0,.-(x) represents the number of shortest (i, v) paths passing through the vertex x.

This is onc of the most important centrality indices. It was introduced by
Anthonisse [3] and popularized later by Freeman [28].

The following result tells that the sum of the betweenness centrality of all vertices
of a graph is related to its Wiener index. Moreover, it is a generalization of (9.4) to
connected graphs with cycles [38].

Theorem 9.3.4 For any connected graph G, the following holds:
n
WGy = > B+ <v)
veV(G) 5

Since for any pair of vertices in a tree the shortest path between them is unique, the
Wiener index of a tree is much easier to compute than that of an arbitrary graph.
Furthermore, it is easy to see that for trees on n vertices, the maximal Wiener index

is obtained for the path P,,, and
n+1
W(Pn) = 3 .

On the other hand, the tree with minimal Wiener index is the star S, and

W(S,) = (n— 1)°.



o
o
)]
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Thus, for every tree T on n vertices, we have
7 n+ 1
(n—17"=W(T) =< 3 )

As the distance between any two distinct vertices is at least one, we have that K, has
the smallest Wiener index between all graph on n vertices. So for any connected graph

G on n vertices, it holds:
n n+1
<W(G) < .
2 3

Among the 2-connected graphs on n vertices (or even more, among the graphs of
minimum degree 2), the n-cycle has the largest Wiener index

n’ .
1t n1s even,

o |

W(C,) =

n —nH

if nis odd.
The Wiener index is easy to obtain for some classes of graphs. For graphs G and H,
the Wiener index of their Cartesian product G U H 1s

W(G O H) = |n(G)> - W(H) + [n(H)]”> - W(G),

see [29]. From this result follows a simple formula for the Wiener index of hyper-
cubes O,

25—
W(Qu) = n220" 0.
We conclude this section with an interesting connection between the Wiener index
and Laplacian spectrum of a tree.

Theorem 9.3.5 Let T be u tree with Laplacian eigenvalues Ny > Ay > --- > A,_| >
A = 0. Then,

n—1

|
W(T) :IIZ =
=1

In 1988, Hosoya [43] introduced

A
H(G.x) = Z d(G, k),.\'k,

k=1
where
G is a graph
d(G, k) is the number of pairs of vertices in the graph G at distance k.
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Originally, this polynomial was named Wiener polynomial, but later, it was renamed
into Hosoya polynomial. The first derivative of H(G,x) for x = 1 is equal to the
Wiener index of the graph G. This property of the Hosoya polynomial gives an alter-
native way of calculating the Wiener index and in a way makes the Hosoya poly-
nomial a generalization of W(G). Higher derivatives ol Hosoya polynomial are also
used as molecular descriptors (the hyper-Wicener index, e.g., is one half of the second
derivative of H(G, x) forx = 1).

For further details and results on the Wiener index, sce [15,16,23,37,40] and the
references cited therein.

9.4 Wiener Index of Graphs and Their Line Graphs

The concept of line graphs and iterated line graphs in chemical graph theory is
introduced in order to study the molecule complexity. The number of edges in the
line graph of the molecular graph is a measure of the branching, and then the iterated
line graphs are used to find complete ordering of the molecules [5]. See [33,36] for
some more applications in physical chemistry.

On the other hand, mathematicians started to study the connection between W(G)
and W(L(G)). In particular, they focused on graphs G satisfying

W(L(G)) = W(G). 9.6)

Although 1t is not clear on which graph parameters or structural properties the dif-
ference W(L(G)) — W(G) depends, the problem of characterizing graphs G with
W(L(G)) = W(G) is interesting, and it seems (o be rather difficult.

In this section, we summarize some results on this issue, for more results on the
topic, see [8,18,19,33.35]. Let us remark that in the literature, one casily encounters
the term edge-Wiener index of G, which is actually the Wiener index of the line graph,
sometimes in addition shifted by ('7') see |45].

The following remark of Buckl_cy [7] is a pioneering work in this area.

Theorem 9.4.1 (Buckley, 1981) Forevery tiee T, W(L(T)) = W(T) — (g)

Proof. Let u,v be two distinet vertices of T. On their shortest (and unique) path in
T. let ¢, be the edge incident with « and ¢, the edge incident with v. Notice that ¢,
and ¢, coincide when w and v are adjacent. There is an obvious one-to-one correspon-
dence between the pairs of distinet vertices i, v and their corresponding pairs of edges
ey €. As there are ('7') pairs ol vertices, and for cach such pair u,v, it holds

diory(eysey) =dr(u,v) — 1, we conclude the statement of the theorem. O

In particular, the alorementioned result tells that regarding the acyclic graphs, the
Wiener index ol a line graph is strictly smaller than the Wicener index of the original
eraph. An interesting generalization of this was given by Gutman [32]:
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Theorem 9.4.2 [f G is a connected graph with n vertices and m edges, then
1
W(L(G)) > W(G) —n(n—1)+ ;m(m +1).
In addition, regarding Theorem 9.4.1, Gutman and Pavlovi¢ [35] showed that the

Wiener index of the line graph is smaller than the Wiener index of the original graph
even it we allow just one cycle in the graph.

IA

Theorem 9.4.3 If G is a connected unicyclic graph with n vertices, then W (L(G))
W(G), with equality if and only if G is a cycle of length n.

In connected bicyclic graphs, all the three cases W(L(G)) < W(G), W(L(G)) =
W(G), and W(L(G)) > W(G) occur [35]. It is known that the smallest bicyclic graph
with the property W(L(G)) = W(G) has nine vertices and it is unique. There are
already 26 ten-vertex bicyclic graphs with the same property [34].

The following result tells us that in most cases (9.6) does not hold for graphs of
minimum degree at least 2.
Theorem 9.4.4 Let G be a connected graph with 5(G) > 2. Then,

W(L(G)) = W(G).

Moreover, the equality holds only for cycles.

This was proved independently and simultancously in [7,62]. In [7]. a direct proof
of this result is given. On the other hand, Wu [62] obtained it as a corollary from his
interesting result on the bounds of the Wiener index of line graphs in terms of the

Gutman index:

Theorem 9.4.5 Let G be a connected graph of size m. Then, it holds
1 1
Z(Gul(G) —m) < W(IL(G)) < Z(Gut(G) —m) + (Z)

Moreover; the lower bound is attained if and only if G is a tree.

Let k;(G) denote the number of i-cliques in a graph G. In [48], the lower bound
of the aforementioned theorem is improved in the following way.

Theorem 9.4.6 Ler G be a connected graph. Then,
1 1 3 i
W(L(G)) = ZGuI(G) = ZIE(G)I + 1K3(G) +3Kk4(G) (9.7)
with the equality in (9.7) if and only if G is a tree or a complete graph.

The aforementioned theorem implies the following interesting corollary.
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Corollary 9.4.1 Let G be a connected graph of minimal degree d > 2. Then,

-9 Y

82 1 82— 1
W(L(G)) = IW(G) = ZIE(G)I >

W(G).

Proof. Note that

Gui(G) = Z d(w)d(v)d(u,v) > Z 82d(u.v) = 5°W(G).
{uviCV(G) {uy}CV(G)

Now, since d>2, the graph G is not a tree, and so Theorem 9.4.6 implies the
first inequality in the corollary. The second inequality then follows, it one observes
that, since every pair of adjacent vertices contributes exactly | to the Wiener index
of the graph (while the nonadjacent ones contribute even more), we have that
IE(G)] = W(G). ]

We expect that Corollary 9.4.1 can be improved to W(L(G)) > %EW(G), with
equality holding for cycles, which would correspond to the result of Wu for 8 = 2.

9.5 Graphs with Large Girth

A conncected graph G is isomorphic to L(G) if and only if G is a cycle. Thus,
the cycles provide a trivial infinite family of graphs for which W(G) = W(L(G)). In
addition, for every positive number g, there exists a graph G with girth g for which
W(G) = W(L(G)).

Dobrynin and Mel’nikov [ 17] have constructed infinite family of graphs of girths
3 and 4 with the property W(G) = W(L(G)) and stated the following problem.

Problem 9.5.1 (Dobrynin and Mel’nikov) /s it true that for every integer g > 5
there exists a graph G # Cy of girth g, for which W(G) = W(L(G))?

The aforementioned problem was solved by Dobrynin [14] by considering the
following construction. Let Gy(d,s.r) be a graph ol girth g constructed from a
path P, by

I. Identifying a vertex of a distinct copy of the g-cycle Cy with cach of the end
vertices of Py

o

Identifying the center ol disjoint copies of the g4 -star with one end vertex and
of the §,41-star with the other end vertex of Py

Observe that G is a bicyclic graph of girth ¢ with 2¢ +d + s + r — 2 vertices (see
Figure 9.2). In [14], the following result is shown.
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FIGURE 9.2:  The graph G, (d, r,s) with W(G,(d,r.s)) = W(L(G,(d. 1, 5))).

Theorem 9.5.1 (Dobrynin) The Wiener indices of Gy(d.s,r) and L(Gy(d,s.r))
coincide provided that the graph parameters satisfy the following relations:

(a) Forevery even g > 6,

d=(g>—6g+4)/4, s=(g>—6g+8)/8, r=(g>—6g+16)/8.
(b) Forevery odd g = 9,

d=(g>—8g+3)/4, s=(g —8g+15)/8, r=(g° —8g+23)/8.

Theorem 9.5.1 overlooks the values ¢ = 5 and ¢ = 7. For ¢ = 5, see the graph Gs on
Figure 9.3. Both G5 and its line graph L(G5) have Wiener indices 288. For g = 7, the
graph G7 = G7(6,4,5) satistiecs W(G7) = W(L(G7)) = 1698.

The authors of [7] showed that for infinitely many girths, there exist infinitely
many solutions of Problem 9.5.1.

Theorem 9.5.2 For every positive integer go, there exists ¢ > go such that there are
infinitely many graphs G of girth g satisfying W(G) = W(L(G)).

FIGURE 9.3: The graph G5 of girth 5 with W(Gs) = W(L(Gs)).
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I !

FIGURE 9.4:  Graphs ® (k. p. ¢) and L(D(k, p,q)).

The aforementioned result encourages the authors of [7] to state the following
conjecture. Notice that it is true for girths 3 and 4, see [17].

Conjecture 9.5.1 For every integer g > 3, there exist infinitely many graphs G of
girth g satisfying W(G) = W(L(G)).

In what follows, we give a sketch of the proof of Theorem 9.5.2. For positive inte-
gers k. p, g, we define the graph @ (k, p, ¢) as follows (sce Figure 9.4 for an illustra-
tion). The graph ® (&, p, ¢) 1s simple and composed of two cycles, Cy = ujuy .. . Uy
and C2 = v va ... v, and two paths P, =xjx2...x5and P, =y ya...y, such that
all the vertices are distinct except for vy = i) = x) and y| = vogy) = Uyl

We are now interested in computing the difference W(L(®(k, p,q))) —
W(®(k,p,q)), which is used in the prool of Theorem 9.5.4. The proof is straight-
forward and rather technical.

Theorem 9.5.3 for integers, k,p.q > 1, let G = ®(k,p,q) with girth g = 2k + 1.
Then,
|
W(L(G)) = W(G) = (g™ + (p — )* +5(p+q — 3) — 2(p +q — 3)).
Theorem 9.5.3 implies the following result:

Theorem 9.5.4 For every nonnegative integer h, there exist infinitely many graphs G
of girth ¢ = I° + h + 9 with W(L(G)) = W(G).

Theorem 9.5.2 is an immediate corollary of Theorem 9.5.4. For every positive
integer go, we can choose a nonnegative integer 4 such that g = i+ h+9 > go- By
Theorem 9.5.4, there are infinitely many graphs G of girth ¢ with W(L(G)) = W(G).
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9.6 Second Line Graph Iteration

The graph L>(G) = L(L(G)) is also called the quadratic line graph of G. As
mentioned carlier, for nontrivial tree T, we cannot have W(L(T)) = W(T) although
there are graphs G such that W(L(G)) = W(G). For quadratic line graphs, we
can have

W(L*(T)) = W(T), (9.8)

even if T is a tree (see [13,20,21]). Obviously, the simplest trees are such which have
aunique vertex of degree greater than 2. Such trees are called generalized stars. More
precisely, generalized t-star is a tree obtained Irom the star K, + > 3, by replacing
all its edges by paths of positive lengths. In [17], we have the following theorem.

Theorem 9.6.1 Let S be a generalized t-star with g edges and branches of length
ki, ko, ... ki Then,

W(LA(S)) = W(S) + %(r; 1) (Z K2 +q> . +6(;). 9.9)
- - i=1

Based on this theorem, it is proved in [ 17] that W(L2(S)) < W(S)ifSisa generalized
3-star, and W(L2(S)) > W(S) if Sis a generalized r-star where 1 > 7. Thus, prop-
erty (9.8) can hold for generalized r-stars only when r € {4,5,6}. In [17], for every
t € {4,5,6}, several generalized f-stars with property (9.8) are found. The smallest
generalized f-stars with property (9.8) are listed in Table 9.1 (see also [17]).

From Table 9.1, one can expect that it might be casier to find generalized t-stars
with property (9.8) when 1 € {5, 6} than in the case 1 = 4. Indeed, in [17], the authors

TABLE 9.1: Smallest Generalized r-Stars with the Property (9.8)

t q ki ky ki kg ks ke q ki ky kz kg ks kg
4 27 1 2 3 21 — — 90 3 7 8 72 — —
42 1 2 6 33 — — 102 2 3 16 81 — —
69 2 6 6 5 — — 105 4 5 12 84 — —
72 1 3 11 57 — — 105 2 9 10 84 — —
90 4 5 9 72 — — 111 4 9 9 8 — —
5 18 2 3 33 7 — 30 4 4 4 4 14 —
24 2 3 3 6 10 — 30 3 3 3 8 13 —
24 2 2 5 5 10 — 30 1 4 5 7 13 —
24 1 4 4 5 10 — 36 4 4 4 7 17T —
24 1 2 6 6 9 — 36 3 4 6 6 17 —
6 50 7 7 7 8 10 11 60 7 8 8 10 13 14
50 6 7 8 9 9 11 60 6 8 9 11 12 14
50 5 8 9 9 9 10 60 6 7 10 12 12 13
60 8 8 8 9 12 IS5 60 5 10 10 10 11 14
60 6 9 10 10 10 15 60 5 8 I 12 12 12
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TABLE 9.2: Infinitc Familics of Generalized t-Stars, t € {5, 6}, with the
Property (9.8)

t ki k> k3 k4

5 k6

5 1 2 2% —k+5 2kP—k+5 2kT+2k+5 —
1 2 2% —2k+5 2k +k+5 2k +k+5 —
12 22+ 6 2% +3k+6 2k +3k+9 —

6 3 4kP+33 kT —k+36 4k —k+36 4kT+k+36 4k +k+36

TABLE 9.3: Infinite Families of Generalized 4-Stars with the
Property (9.8)

ky ka k3 kg

aj (k) apk+1) A4k + k) —3 4k +ko+k3)—3
| as (k) ar(k+1) (k) + ko + k3) —
2 az(k) azy(k+1) 4k +kr+k3) =3
3 ay (k) agk+1) 4(k) +kr+k3) —
4 as (k) as(k+ 1) 4(ki +ka+k3) =3
5 ap (k) dp(k+ 1) d(ky +kr+kz)—3
6 aq (k) ark+1) 4k +kr+k3) =3
| 2 ag (k) ag(k + 1)

4 5 ay (k) ag(k + 1)

4 5 ayo(k) ajplk+1)

found infinite families of these generalized t-stars for ¢ € {5, 6}. They found three
infinite families for 1 = 5 and one for r = 6, see Table 9.2, where k is nonnega-
tive integer. Observe that the first two infinite families of generalized 5-stars can be
regarded as one provided that k € Z only.

The problem of existence of an analogous infinite family of generalized 4-stars is
leftopen in [ 17]. This problem is solved in [53], where several infinite families of gen-
eralized 4-stars with the property (9.8) are constructed. The constructions are grouped
into three classes, and there is an infinite number of familics in two of these three
classes. Some ol these constructions, grouped into families, are listed in Table 9.3,
where k& € Z. As regards the values of sequences ay, . . ., ayg, we have

m(j):£<5+\/§) (2—\/\;)/1L ; <5~\/§) (2+~/§)j+;

cz:(j):%(15+3\/~)< ﬁ)t%(xs—zﬁ)(mﬁ)/—%
= o549 o ) 149 o5 -
a4(j):1—12(33+9\/§> (2—J§)"+l—lz(zz—9ﬁ) 2+ﬁ)/—§
R T S T
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a5 = = (15— 33v3) (2= V) + L (154 3333) (24 V) - 2
o= (2215) (oY 2 9-25) (o 5y
as(j) = %(45 21v3) (2 - \/’)’+%(45+21ﬁ>(2+ﬁ>/_§
a(j) = %(13 75V3) (2- V3) + %(15z+75\/§><+ 2/7%
) =5 (397 165V3) (2 Y 5 (27 165V5) (2 3) - 2

These results suggest the following conjecture:

Conjecture 9.6.1 Let T be a nontrivial tree such that W (Lz(T)) = W(T). Then, there
is an infinite family of trees T homeomorphic to T, such that W(L>(T')) = W(T").

Of course, more interesting is the question which types of trees satisty (9.8). Per-
haps such trees do not have many vertices of degree at least 3. Let 7 be a class of
trees that have no vertex of degree two, and such that 7 € T if and only if there
exists a tree 7" homeomorphic to T, and such that W (L*(T")) = W(T"). (Recall that
graphs G| and G» are homeomorphic if and only if the graphs obtained from them
by repeatedly removing a vertex of degree 2, and making its two neighbors adjacent,
are isomorphic.)

Problem 9.6.1 Characterize the trees in T . In particular, prove that T is finite.

By the aforementioned results, among the stars, only K 4, K} 5, and K| g arein 7.
We expect that no tree in 7 has a vertex of degree exceeding 6. Based on our experi-
ence, we also expect that there is a constant ¢ such that no tree in 7 has more than ¢
vertices of degree at least 3. Consequently, we believe that the set 7 is finite.

9.7 Higher Line Graph Iterations

As we have seen, there is no nontrivial tree for which W(L(T)) = W(T) and there
are many trees 7, sa[isl‘ying W(L*(T)) = W(T). However, it is not casy to find a tree
T and i > 3 such that W(L'(T)) = W(T). In [15], the following problem was posed.

Problem 9.7.1 [15] Is there any tree T satisfying equality W(L\(T)) = W(T) for
some [ > 37

Observe that if T is a trivial tree, then W/(LI(T)) = W(T) for every i > 1, although
here the graph L(T) is empty. The real question is, of course, if there is a nontrivial
tree T and i > 3 such that W(L/(T)) = W(T). The same question appeared 4 years
later in [17] as a conjecture. The authors expressed their belief that the problem has
no nontrivial solution.
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Conjecture 9.7.1 (Dobrynin, Entringer) There is no tree T satisfying equality
W(T) = W(L(T)) for any i > 3.

In a series of papers [4,47.49-52], Conjecture 9.7.1 was disproved. In fact, all
solutions of Problem 9.7.1 were found. The smallest tree disproving Conjecture 9.7.1
has 388 vertices (sce the remark below Theorem 9.7.7) and this tree is unique. If
we take in mind that there are approximately 7.5 - 1073 nonisomorphic trees on 388
vertices while the number of atoms in the entire universe is estimated (o be only within
the range of 1078 10 1032, then o find « needle in a haystack is a trivially easy job
compared to finding a counterexample when using only the brute force of (arbitrarily
many) real computers.

A function f: {0, 1,...} — Ris convex it f(i) + f(i +2) = 2f(i + 1) for every
i > 0. If the inequality is strict, then f is strictly convex. In [50], it is proved that
for every connected graph G, the function f (i) = W(L’(G)) is convex in variable i.
Morcover, f¢; (i) 1s strictly convex i’ G is distinct from a path, a cycle, and the claw
K 3. The following result is a straightforward consequence of this fact.

Theorem 9.7.1 Let T be a tree such that W(L3(T)) > W(T). Then, for every i >3,
the inequality W(L'(T)) > W(T) holds.

Let G be a graph. A pendant path (or a ray for short) R in G is a (directed) path;
the first vertex of which has degree at least 3, its last vertex has degree 1, and all of
its internal vertices (if any exist) have degree 2 in G. Observe that if R has length 1,
1 > 2, then the edges of R correspond to vertices of aray L(R) in L(G) of length t—1.
In [50], we have the following theorem.

Theorem 9.7.2 Let T be a tree distinct from a path and the claw K| 3 such that all of
its rays have length 1. Then, VV(LS(T)) > W(T).

In [49], this statement was extended to trees with arbitrarily long rays. Denote
by H a tree on six vertices, two of which have degree 3 and the remaining four have
degree 1. Thatis, H is the graph which looks like the letter H. The main result of [49)
is the following theorem.

Theorem 9.7.3 Let T be a tree not homeomorphic to a path, claw K, 3, and H. Then,
W(L3(T)) > W(T).

Combining Theorems 9.7.1 and 9.7.3, we obtain the following consequence,
which proves Conjecture 9.7.1 for trees T satisfying the assumption in Theorem 9.7.3.

Theorem 9.7.4 Let T be a tree not homeomorphic to a path, claw K, 3, and H. Then,
W(LAT)) > W(T) for every i > 3.

Since the case when T is a path is trivial (in this case, W(LI(T)) < W(T) whenever
i > 1,and T has at least two vertices), it remains to consider graphs homeomorphic
to the claw K 3 and those homeomorphic to H.

First, consider the case of the claw K| 3 itself. Then, LI(K, 3) is a cycle of length
3 forevery i > 1. Since W(K,3) =9 and the Wiener index of the cycle of length 3
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1s 3, we have W(Li(K1,3)) < W(K,3) forevery i > 1. For other trees homeomorphic
to K 3, the opposite inequality is proved in [52], provided that i > 4.

Theorem 9.7.5 Let T be a tree homeomorphic to K3, such that T # K, 3. Then,
W(L'(T)) > W(T) for every i > 4.

Notice that it was enough to prove the aforementioned theorem for the case i = 4,
since then the inequalities with higher powers follow from the convexity of f; (i) =
W(L'(G)). Analogous statement for trees homeomorphic to H was proved in [51].

Theorem 9.7.6 Let T be a tree homeomorphic to H. Then, W(Li(T)) > W(T) for
every i > 4.

Consequently, with the exception of paths and the claw K 3, for every tree 7., it
holds W(L'(T)) > W(T) whenever i > 4. We can summarize the results for i > 4 as
follows.

Corollary 9.7.1 Let T be a tree and i > 4. Then, the following holds:

w (Li(T)) < W(T) ifT isthe claw K, 3 or a path P, with n > 2;

W (L'(T)) = W(T) if T is the trivial graph Pi;

4 (Li(T)) > W(T) otherwise.
Hence, Conjecture 9.7.1 is true for i > 4. However, for i = 3, the infinite class of
trees described in Theorem 9.7.7 violates Conjecture 9.7.1 (see [47]).

Let H,p - be atree on a + b+ ¢ +4 vertices, out of which two have degree 3, four
have degree 1, and the remaining a+b+c¢—2 vertices have degree 2. The two vertices
of degree 3 are connected by a path of length 2. Finally, there are two pendant paths
of lengths ¢ and b attached (o one vertex of degree 3 and two pendant paths of lengths
c and | attached to the other vertex of degree 3 (see Figure 9.5 for H32.4). We have
Theorem 9.7.7 For every j, k € Z, define

a=128+3% +3k> — 3jk +,
b=128+3% +3k> — 3jk +k,
c=128+3/% + 3k — 3jk +j+ k.

Then, W(L* (Hyp.o)) = W(Hype).

o

FIGURE 9.5:  Graph H, .-
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Let ¢ € {.k.j + k}. Since for every integers j and k the inequality 3j%+ 34> — 3jk+
¢ > 0 holds, we sce that a, b, ¢ > 128 in Theorem 9.7.7. Therefore, the smallest graph

The case i = 3 and T being homeomorphic either to the claw or H is rather inter-
esting. In some cases (when there are not many long rays), we can prove W(L3(T)) >
W(T), but in other ones, only the congruence arguments yield W(L3(T)) # W(T).
These results are summarized in [46] in the following (wo statements.

Theorem 9.7.8 Let T be a tree homeomorphic to K, 3. Then, W(L3(T)) # W(T).

Theorem 9.7.9 Let G be a graph homeomorphic to H. Then, the equation
W(L3(G)) = W(G) has a solution if und only if G is of type Hyyp. as stated in
Theorem 9.7.7.

These statements not only disprove Conjecture 9.7.1 (and give a positive answer
10 Problem 9.7.1) but completely characterize trees T and integers i > 3 such that
W(LI(T)) = W(T). This may be surprising since for i = 2, we do not know answers
1o much weaker problems (see the previous section).

We conclude this chapter with two problems.

Problem 9.7.2 Find all graphs (with cycles) G and powers i for which
W(L'(G)) = W(G).

This problem for i = 1 is obviously very rich with many different solutions, so it
probably will not be possible to find all of them. But still, stating it as a problem could
serve as a motivation for scarching of various graph classes that satisty the equation.
Nevertheless, we want to emphasize the case i > 2. In this case, the problem is
still rich with many solutions, particularly among the trees, but abandoning the class
of trees can reduce the solutions significantly. At the moment, cycles are the only
known cyclic graphs G for which W(L'(G)) = W(G) holds for some i > 3. Thus, we
formulate another, much weaker problem:

Problem 9.7.3 Let i > 3. Is there a graph G, different from a cycle and a tree,
such that

WL (G)) = W(G)?

9.8 Summary and Conclusion

In this chapter, we studied the Wiener index of graphs and their (iterated) line
araphs and also some related problems. Although the situation is completely solved
for trees and their iterated line graphs, other than quadratic, for general graphs, the
problem is still open. Of course, from the chemist’s perspective, important role is
played by chemical graphs and by graphs that do not have many cycles. We expect
that this arca can be very prolific, producing many nice results in the future.
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