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Abstract

The well-known Randić index of a graph G is defined as R(G) =
∑

(

du · dv
)−1/2

,

where the sum is taken over all edges uv ∈ E(G) and du and dv denote the degrees of

u and v, respectively. Recently, it was found useful to use its simplified modification:

R′(G) =
∑

(

max{du, dv}
)−1

, which represents a lower bound for the Randić index. In this

paper we introduce generalizations of R′ and its counterpart, R′′, defined as R′
α(G) =

∑

min{du
α, dv

α} and R′′
α(G) =

∑

max{du
α, dv

α}, for any real number α. Clearly, the former

is a lower bound for the generalized Randić index, and the latter is its upper bound.

We study extremal values of R′
α and R′′

α, and present extremal graphs within the classes

of connected graphs and trees. We conclude the paper with several problems.

Keywords: Randić index, connectivity index, branching index, index R’, index R”

1 Introduction

All graphs considered in this paper are connected and simple. Let G be a graph
with the vertex set V (G) and the edge set E(G), respectively. The degree of any
vertex u ∈ V (G) is denoted by du. For the other notation and notions refer to [3].
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In 1975, Randić [18] introduced a parameter to evaluate the branching of
molecules whose molecular graphs are trees. Later, Bollobás and Erdős [2] gen-
eralized this parameter to

Rα(G) =
∑

uv∈E(G)

(

dudv
)α

,

for every graph G and an arbitrary value of α. In the case when α = −1
2
, Rα is called

the Randić index (also the connectivity or branching index) of G, otherwise it
is referred to as the generalized Randić index. An interested reader is referred
to the monographs of Kier and Hall [8, 9] for details on chemical properties of
Randić index. A comprehensive study of its mathematical properties is done
in the monograph of Li and Gutman [11] and in the survey of Li and Shi [13].
For more results regarding the Randić index of various classes of graphs and its
generalized variations see e.g. [5, 6, 10, 12, 14, 15, 16, 17, 19].

In order to simplify arguments on various problems related to Randić index,
Dvořák, Lidický and Škrekovski [7] introduced a modified version, called R’ index,
and defined it as

R′(G) =
∑

uv∈E(G)

(

max{du, dv}
)−1

=
∑

uv∈E(G)

min{du
−1, dv

−1}.

Clearly, R′(G) is a lower bound for the Randić index of a graph G, i.e. R′(G) ≤
R(G). One can naturally introduce a counterpart of R′, the index R′′, defined as

R′′(G) =
∑

uv∈E(G)

max{du
−1, dv

−1},

which is an upper bound for R(G). Hence, R′(G) ≤ R(G) ≤ R′′(G). The purpose of
this paper is to generalize both parameters above as follows:

R′
α(G) =

∑

uv∈E(G)

min{du
α, dv

α} and R′′
α(G) =

∑

uv∈E(G)

max{du
α, dv

α}.

Since for every pair of vertices u and v it holds that

min{du
2α, dv

2α} ≤ (dudv)
α ≤ max{du

2α, dv
2α},

we can bound the generalized Randić index by R′
α and R′′

α:

Observation 1. For every graph G and α ∈ R,

R′
2α(G) ≤ Rα(G) ≤ R′′

2α(G).
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In the sequel we study extremal properties of both indices and introduce the
classes of graphs for which extremal values are achieved. First, observe the fol-
lowing:

R′
α(G) +R′′

α(G) =
∑

uv∈E(G)

min{du
α, dv

α}+
∑

uv∈E(G)

max{du
α, dv

α}

=
∑

uv∈E(G)

(du
α + dv

α) =
∑

u∈V (G)

du du
α,

which yields:

Observation 2. For every graph G and α ∈ R,

R′
α(G) +R′′

α(G) =
∑

u∈V (G)

du
1+α.

For α = −1, when R′
α = R′, we thus infer:

Observation 3. For a graph G on n vertices,

R′
−1(G) +R′′

−1(G) = n .

For a function f on graphs and a class of graphs G, we define the maximum

value of f on G and the minimum value of f on G as

Max (f,G) = max
G∈G

f(G) and Min (f,G) = min
G∈G

f(G).

In the following sections, the classes of all connected graphs, trees, and con-
nected regular graphs on n vertices are denoted by Cn, Tn, and Rn, respectively.
As usually, a complete graph, a cycle, a star, and a path on n vertices is denoted
by Kn, Cn, Sn, and Pn, respectively.

In Section 2 we determine the extremal values and the corresponding extremal
graphs for R′ and R′′ within the class of connected graphs, whereas trees are
investigated in Section 3.

2 Extremal values for connected graphs

In this section we present the extremal values of both indices in the class of
connected graphs, and introduce the corresponding extremal graphs. We start
with R′

α.

Theorem 4. The minimum values of R′
α for connected graphs on n vertices and the graphs

achieving these values are presented in Table 1.
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α (−∞, 0) 0 (0,∞)
Min (R′

α, Cn) (n− 1)1+α n− 1 n− 1
Extremal graphs Sn Tn Sn

Table 1: The minimum values of R′
α for connected graphs on n vertices and the corresponding

extremal graphs.

Proof. If α = 0, then R′
0(G) = |E(G)|, and so R′

0(G) is minimum when G is a tree.
Let α ∈ (0,∞). Since R′

α(G) =
∑

uv∈E(G) min{du
α, dv

α}, the minimum value of R′
α is

attained when G has the smallest possible number of edges, that is n−1, and each contributes
the smallest possible value, which is 1. Consequently, G is a tree with only pendant edges, so
G is isomorphic to Sn and Min (R′

α, Cn) = R′
α(Sn) = n− 1.

Finally, let α ∈ (−∞, 0). Then min{du
α, dv

α} = max{du, dv}
α. Again, R′

α(G) is minimum
if G has the smallest possible number of edges and each contributes the smallest possible
value. Since G has n vertices, the smallest possible contribution of an edge is (n − 1)α

(recall that α < 0). Hence, R′
α(G) is minimum if G is isomorphic to Sn in which case

Min (R′
α, Cn) = R′

α(Sn) = (n− 1)(n− 1)α.

Theorem 5. The maximum values of R′
α for connected graphs on n ≥ 3 vertices and the

graphs achieving these values are presented in Table 2.

α (−∞,−1) −1 (−1, 0) 0 (0,∞)
Max (R′

α, Cn) n2α n
2

(

n
2

)

(n− 1)α
(

n
2

) (

n
2

)

(n− 1)α

Extremal graphs Cn Rn Kn Kn Kn

Table 2: The maximum values of R′
α for connected graphs on n vertices and the corresponding

extremal graphs.

Proof. If α = −1, then R′
−1(G) = R′(G), and for this case it is proved in [1] that R′(G) ≤ n

2

and only regular graphs attain the value n
2
, see also [4]. If α = 0, then R′

0(G) = |E(G)|, and
so R′

0(G) is maximum when G is a complete graph.
If α ∈ (0,∞), then min{du

α, dv
α} = min{du, dv}

α. So R′
α is maximum if G has maximum

possible number of edges and each edge contributes the maximum possible value, that is
(n−1)α. Hence R′

α(G) is maximum if G is a complete graph and Max (R′
α, Cn) =

(

n
2

)

(n−1)α.
Now let α ∈ (−1, 0). Observe that

2R′
α(G) = 2

∑

uv∈E(G)

min{du
α, dv

α} ≤
∑

uv∈E(G)

(du
α + dv

α) =
∑

u∈V (G)

du
1+α , (1)

and so

R′
α(G) ≤

1

2

∑

u∈V (G)

du
1+α .

5



Since α ∈ (−1, 0), we have that 1 + α > 0 and hence du
1+α is maximum if du = n − 1. So

2R′
α(G) ≤ n(n−1)1+α, which means that R′

α(G) ≤
(

n
2

)

(n−1)α. The equality is attained only
if G has

(

n
2

)

edges, each contributing (n− 1)α, i.e. if G is isomorphic to Kn.
Finally, let α ∈ (−∞,−1). Analogously as above, we have 2R′

α(G) ≤
∑

u∈V (G) dudu
α.

Since G is connected and n ≥ 3, there is no edge with both endvertices of degree 1. Thus,
every edge contributes to R′

α(G) by at most 2α. This means that we can improve (1) to

2R′
α(G) ≤

∑

uv∈E(G)

(d̂u
α
+ d̂v

α
) =

∑

u∈V (G)

dud̂u
α
≤

∑

u∈V (G)

d̂ud̂u
α
, (2)

where d̂u = max{2, du}. Since α < −1, d̂u
α+1

is maximum if d̂u = 2. Then, 2R′
α(G) is

maximum if all the inequalities in (2) are equalities, which means that du = 2 for every u ∈
V (G). Consequently, R′

α(G) is maximum if G is the cycle Cn, in which case Max (R′
α, Cn) =

R′
α(Cn) = n2α.

Now we turn our attention to the index R′′
α.

Theorem 6. The minimum values of R′′
α for connected graphs on n ≥ 3 vertices and the

graphs achieving these values are presented in Table 3.

α (−∞,−1) −1 (−1, 0) 0 (0,∞)
Min (R′′

α, Cn)
(

n
2

)

(n− 1)α n
2

? n− 1 (n− 1)2α

Extremal graphs Kn Rn ? Tn Pn

Table 3: The minimum values of R′′
α for connected graphs on n vertices and the corresponding

extremal graphs. The case when α ∈ (−1, 0) is open (see Conjecture 11).

Proof. If α = −1, then the result follows from Theorem 5 and Observation 3. If α = 0, then
R′′

0(G) = |E(G)| and so R′′
0(G) is minimum when G is a tree.

Let α ∈ (0,∞). Since R′′
α(G) =

∑

uv∈E(G) max{du
α, dv

α}, the minimum value of R′′
α(G) is

attained when G has the smallest possible number of edges, that is n−1, and each contributes
the smallest possible value. Since G is connected and n ≥ 3, every edge has a vertex of degree
at least 2. Consequently, R′′

α(G) is minimum if G is a tree with maximum degree 2, that is G
is isomorphic to the path Pn. So Min (R′′

α, Cn) = R′′
α(Pn) = (n− 1)2α.

Let α ∈ (−∞,−1). Observe that

2R′′
α(G) = 2

∑

uv∈E(G)

max{du
α, dv

α} ≥
∑

uv∈E(G)

(du
α + dv

α) =
∑

u∈V (G)

du
1+α,

and hence

R′′
α(G) ≥

1

2

∑

u∈V (G)

du
1+α. (3)
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Since α ∈ (−∞,−1), we have 1 + α < 0 and so du
1+α is minimum if du = n − 1. By (3),

R′′
α(G) ≥ 1

2
n(n− 1)1+α =

(

n
2

)

(n− 1)α. The equality is attained only if G has
(

n
2

)

edges, each
contributing by (n− 1)α, i.e. if G is isomorphic to Kn.

Theorem 7. The maximum values of R′′
α for connected graphs on n vertices and the graphs

achieving these values are presented in Table 4.

α (−∞,−1) −1 (−1, 0) 0 (0,∞)
Max (R′′

α, Cn) n− 1 n− 1 ?
(

n
2

) (

n
2

)

(n− 1)α

Extremal graphs Sn Sn ? Kn Kn

Table 4: The maximum values of R′′
α for connected graphs on n vertices and the corresponding

extremal graphs. The case of α ∈ (−1, 0) remains open (see Problem 12).

Proof. If α = −1, then the result follows from Theorem 4 and Observation 3. If α = 0, then
R′′

0(G) = |E(G)| for every graph G and so R′′
0(G) is maximum when G is the complete graph.

Let α ∈ (0,∞). Then R′′
α attains its maximum if it has the maximum possible number

of edges, each of which contributes the maximum possible value. Since the maximum contri-
bution of an edge is (n − 1)α, R′′

α(G) is maximum if G is the complete graph Kn, and hence
Max (R′′

α, Cn) = R′′
α(Kn) =

(

n
2

)

(n− 1)α.
For two fixed positive integers, x and y, the function

f(α) = max{xα, yα}

is continuous and non-decreasing. This implies that for a fixed graph G, the function

g(α) = R′′
α(G) =

∑

uv∈E(G)

max{du
α, dv

α} (4)

is also continuous and non-decreasing. Since for α = −1 there is a unique extremal graph,
namely the star Sn, and for α ∈ (−∞,−1] the function R′′

α(Sn) is constantly equal to n− 1,
it follows that Max (R′′

α, Cn) = n− 1 and the unique extremal graph is Sn.

3 Extremal values for trees

In this section we present the extremal values of R′
α and R′′

α in the class of trees
and introduce the corresponding extremal graphs.

First, we introduce a procedure, called debranching, which transforms a tree
T on n vertices into the path Pn. A ray is a (directed) path with the initial vertex
of degree at least 3, the terminal vertex of degree 1, and all internal vertices (if
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any) of degree 2. The length of a ray is the number of its edges. Note that if T
is not isomorphic to Pn, then there are at least three rays in T . Denote by R one
of these rays and denote by r the first vertex of R. In debranching we repeatedly
perform the following procedure until we obtain the path Pn.

Debranching procedure. Let s be a vertex of degree at least 3 which is at the

greatest distance from r. Let S be a longest ray starting at s, S 6= R, and let w

be the last vertex of S. Delete the last edge of S and add the edge connecting w

with the last vertex of R.

Observe that the debranching procedure extends the ray R by an edge. Now
we state the main theorems of this section.

Theorem 8. The minimum and maximum values of R′′
α for trees on n ≥ 3 vertices and the

graphs achieving these values are presented in Table 5.

α (−∞, 0) 0 (0,∞)
Min (R′′

α, Tn) 2 + (n− 3)2α n− 1 (n− 1)2α

Extremal graphs Pn Tn Pn

Max (R′′
α, Tn) n− 1 n− 1 (n− 1)1+α

Extremal graphs Sn Tn Sn

Table 5: The minimum and maximum values of R′′
α for trees on n vertices and the corre-

sponding extremal trees.

Proof. Since R′′
0(T ) = |E(T )| = n − 1 for every tree T on n vertices, Min (R′′

0 , Tn) =
Max (R′′

0 , Tn) = n− 1 and every tree is an extremal graph.
If α ∈ (0,∞), then the result for Min (R′′

α, Tn) follows from Theorem 6, so we consider only
Max (R′′

α, Tn). The expression max{du
α, dv

α} is maximal if either du = n − 1 or dv = n − 1.
Hence, R′′

α(T ) attains its maximum if T is a tree in which every edge contains a vertex of degree
n− 1, i.e. if T is isomorphic to the star Sn. Hence Max (R′′

α, Tn) = R′′
α(Sn) = (n− 1)(n− 1)α.

Finally, let α ∈ (−∞, 0). Then, max{du
α, dv

α} is maximal if either du = 1 or dv = 1.
Hence, R′′

α(T ) attains its maximum if T is a tree in which every edge contains a vertex of
degree 1, i.e. if T is isomorphic to Sn, and so Max (R′′

α, Tn) = R′′
α(Sn) = n− 1.

It remains to consider the minimal values of R′′
α when α ∈ (−∞, 0). We show that

R′′
α(T ) ≥ R′′

α(Pn) for every tree T on n vertices and that the equality holds only if T is
isomorphic to Pn.

Let T be a tree on n vertices. We apply the debranching procedure to T . The value
of R′′

α(T ) does not change if the length of S is greater than 1, since the contribution of the
last two edges of S and the last edge of R to R′′

α(T ) before the procedure is equal to the
contribution of the last edge of S and the last two edges of R after the procedure. In both
cases it is 1 + 1 + 2α. Clearly, the contributions of other edges remain the same.
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So suppose that the length of S is 1. By the choice of s in the debranching procedure, there
is at most one edge incident to s which is not in a ray. Denote this edge (if it exists) by f . Let
e be the last edge of R before the procedure. The contribution of e to R′′

α(T ) is changed by
2α− 1, which is negative. However, there may be one more edge whose contribution changes,
namely the edge f . If the other endvertex of f has degree at least ds, then the contribution of
f to R′′

α(T ) changes by −ds
α+ (ds− 1)α; otherwise its contribution does not change. In what

follows, we prove that if ds ≥ 3, then the changes in contributions altogether are negative.
Indeed,

−1 + 2α − ds
α + (ds − 1)α < 0, (5)

which implies that if the length of S is 1, then the value of R′′
α(T ) after the procedure decreases.

Define f(x) = (x−1)α−xα, where x ≥ 2 and α < 0. Then, f ′(x) = α[(x−1)α−1−xα−1] < 0,
which means that f(x) is a decreasing function, and so f(2) > f(ds), or equivalently 1−2α >

(ds − 1)α − ds
α, which is equivalent to (5).

If T 6= Pn, then the last application of debranching procedure yields R′′
α(T ) > R′′

α(Pn),
so Pn is the unique extremal graph for Min (R′′

α, Tn) and Min (R′′
α, Tn) = R′′

α(Pn) = 2 + (n −
3)2α.

Theorem 9. The minimum and maximum values of R′
α for trees on n ≥ 3 vertices and the

graphs achieving these values are presented in Table 6.

α (−∞, 0) 0 (0, 1) 1 (1,∞)
Min (R′

α, Tn) (n− 1)1+α n− 1 (n− 1) (n− 1) (n− 1)
Extremal graphs Sn Tn Sn Sn Sn

Max (R′
α, Tn) (n− 1)2α n− 1 2 + (n− 3)2α 2n− 4 ?

Extremal graphs Pn Tn Pn Pn ?

Table 6: The minimum and maximum values of R′
α for trees on n vertices and the correspond-

ing extremal trees. The values of Max (R′
α, Tn) for α ∈ (1,∞) are not completely determined.

We partially consider them in Theorem 10, the remainder is proposed as Problem 13.

Proof. The results for Min (R′
α, Tn) follow from Theorem 4, so we consider only the extremal

values of Max (R′
α, Tn) in the sequel. If α = 0, then R′

0(T ) = |E(T )| = n− 1 for every tree T

on n vertices, thus Max (R′
0, Tn) = n− 1 and all trees in Tn are extremal graphs.

Let α ∈ (−∞, 0). Since n ≥ 3, every edge has a vertex of degree at least 2, and so
min{du

α, dv
α} ≤ 2α. Thus, Max (R′

α, Tn) ≤ (n− 1)2α and the extremal graph has all vertices
of degree at most 2, i.e. it is the path Pn. Hence, Max (R′

α, Tn) = R′
α(Pn) = (n− 1)2α.

Let α ∈ (0, 1) and let T be any tree on n vertices. We apply the debranching procedure
to T and we show that R′

α(T ) ≤ R′
α(Pn). We also show that the equality holds only if T is

isomorphic to Pn.
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Analogously as in the proof of Theorem 8, one can show that the debranching procedure
does not change R′

α(T ) if the length of S is greater than 1. On the other hand, if the length of S
is 1, then R′

α(T ) changes by 2α−1, which is positive, or by 2α−1−ds
α+(ds−1)α, where ds ≥ 3.

However, if α < 1, then f(x) = (x − 1)α − xα is an increasing function since its derivative
is greater than 0. Therefore, f(2) < f(ds), which implies that 2α − 1 − ds

α + (ds − 1)α > 0.
Consequently, Pn is the unique extremal graph for Max (R′

α, Tn) and Max (R′
α, Tn) = R′

α(Pn) =
2 + (n− 3)2α.

If α = 1, then we proceed in the same way as in the case α ∈ (0, 1). So, let us start with
an arbitrary tree T on n vertices and repeat the debranching procedure until the path Pn

is obtained. If the length of S is greater than 1, then the debranching procedure does not
change R′

1(T ), while if the length of S equals 1, then the debranching procedure does not
decrease R′

1(T ). However, the very last application of debranching procedure applies on a
tree with only three rays, two of which have length 1. In this case R′

1(T ) changes by 21 − 1,
which means that Pn is the unique extremal graph also in this case.

It is natural to expect that Theorems 8 and 9 are complementary in a sense
that Pn is the unique extremal graph for Max (R′

α, Tn) also for α ∈ (1,∞). In fact,
since for a fixed G the R′

α(G) is continuous as a function of α, for every n there is
a constant c′n, such that for α ∈ (1, c′n) the unique extremal graph for Max (R′

α, Tn)
is Pn. However, we show in the next theorem that for n ≥ 4 the path Pn is not an
extremal graph for Max (R′

α, Tn) if α is big enough.
So let n ≥ 4. Take two stars S⌊n

2
⌋ and join their centers by an edge. This yields

a balanced double star. If n is odd, then subdivide also one of the pendant edges.
Denote by Dn the resulting tree, see Figure 1 for D8 and D9.

Figure 1: The trees D8 and D9.

Theorem 10. For every n ≥ 4, there exists a constant cn > 1 such that Dn is the unique

extremal graph for Max (R′
α, Tn) whenever α ∈ (cn,∞). If n is even, then Max (R′

α, Tn) =
⌊

n
2

⌋α
+ n− 2, while if n is odd, then Max (R′

α, Tn) =
⌊

n
2

⌋α
+ 2α + n− 3.

Proof. Let α > 0. Then min{du
α, dv

α} attains its maximum in a tree if both du ≥ ⌊n
2
⌋ and

dv ≥ ⌊n
2
⌋. We say that a tree is nice if it has an edge e = uv such that du ≥ ⌊n

2
⌋ and dv ≥ ⌊n

2
⌋.
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Let T+ and T− be trees on n vertices such that T+ is nice and T− is not nice. Then
R′

α(T
+) ≥ ⌊n

2
⌋α while R′

α(T
−) ≤ (n − 1)(⌊n

2
⌋ − 1)α. Obviously, there is cn > 0 such that

⌊n
2
⌋α > (n − 1)(⌊n

2
⌋ − 1)α for every α ≥ cn, which means that for α ∈ (cn,∞) the tree T−

cannot be extremal for Max (R′
α, Tn).

It remains to find all nice trees. If n is even then the unique nice tree is Dn, while if n is odd
there are exactly two nice trees. The first is Dn and the other, Tn, is obtained by taking the
stars S⌊n

2
⌋ and S⌈n

2
⌉ and connecting their centers by an edge. Then R′

α(Dn) = ⌊n
2
⌋α+2α+n−3,

while R′
α(Tn) = ⌊n

2
⌋α + n− 2.

4 Discussion and further work

In the paper, we presented the extremal values of generalized indices R′
α and

R′′
α for most values of α. There are, however, some intervals on which the exact

bounds are not determined yet. We discuss them here.
In Theorem 6, the case α ∈ (−1, 0) remains open. However, due to the conti-

nuity of R′′
α(G) as a function of α, it is obvious that an extremal graph for α close

to −1 must be regular, while an extremal graph for α close to 0 must be a tree.
From (3) one can see that the regular graph is the cycle Cn, while the tree is the
path Pn, by Theorem 8 below. Since for α ∈ (−1, 0) we have R′′

α(Cn) = n2α and
R′′

α(Pn) = 2 + (n− 3)2α, and since these values are equal for α = log2(
2
3
), we propose

the following conjecture.

Conjecture 11. For α ∈ (−1, log2(
2
3
)), Min (R′′

α, Cn) = n 2α and the extremal graph is Cn.

For α ∈ (log2(
2
3
), 0), Min (R′′

α, Cn) = 2 + (n− 3)2α and the extremal graph is Pn.

In Theorem 7, the extremal values are not established for α ∈ (−1, 0). By the
continuity of g(α) in (4), we can deduce that Sn is an extremal graph also for
α ∈ (−1, c1(n)] and Kn is an extremal graph for α ∈ [c2(n), 0) for some c1(n) and
c2(n), where −1 < c1(n) ≤ c2(n) < 0. However, here the situation seems to be much
more complicated than in the case of Min (R′′

α, Cn). For example, if n = 4 then
c1(4) < c2(4), and for α ∈ [c1(4), c2(4)] the extremal graph is Kn−e, i.e. the complete
graph without one edge. Obviously, for n > 4 the number of extremal graphs for
α in the interval (c1(n), c2(n)) is increasing.

Problem 12. Determine the constants c1(n) and c2(n) for every n and the extremal graphs

for R′′
α, with α ∈ [c1(n), c2(n)].

The values of Max (R′
α, Tn) which are left undetermined in Theorem 9 are par-

tially considered in Theorem 10, but not established completely.

Problem 13. Determine the exact bounds for Max (R′
α, Tn) for α ∈ (1,∞).
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index, Australas. J. Comb., 56 (2013), 61–75.
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MATCH Commun. Math. Comput. Chem., 64 (2010), 453–458.

[11] X. Li, I. Gutman, Mathematical aspects of Randić - Type molecular struc-

ture descriptors, Mathematical chemistry monographs No.1, Kragujevac,
2006.

[12] X. Li, J. Liu, L. Zhong, Trees with a given order and matching number that
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