
This is a preprint of an article accepted for publication in Physica A c©2013
(copyright owner as specified in the journal).

1
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Abstract

Using very symmetric graphs we generalize several deterministic self-similar models

of complex networks and we calculate the main network parameters of our generalization.

More specifically, we calculate the order, size and the degree distribution, and we give

an upper bound for the diameter and a lower bound for the clustering coefficient. These

results yield conditions under which the network is a self-similar and scale-free small

world network. We remark that all these conditions are posed on a small base graph

which is used in the construction. As a consequence, we can construct complex networks

having prescribed properties. We demonstrate this fact on the clustering coefficient. We

propose eight new infinite classes of complex networks. One of these new classes is so

rich that it is parametrized by three independent parameters.

1 Introduction

In last years, many real-life networks from very different areas were studied, see e.g. [13],
and it was observed that, typically, these networks have some common properties. They have
small average degree, small distances between the vertices and big clustering. More precisely,
if n is the order (the number of vertices) of the network then:

(A1) The number of edges is in O(n lnn).

(A2) The diameter is in O(lnn).

(A3) For the clustering coefficient C(G) we have C(G) ≥ c for some positive constant c.
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These three properties define small world networks as proposed by Watts and Strogatz in
[15]. Later, Barabási and Albert observed that many complex networks are scale-free. More
precisely:

(A4) The proportion of vertices of degree at least k is approximately equal to k1−γ, where γ
typically satisfies 2 ≤ γ ≤ 3.

Next property of complex-networks is self-similarity, see [14].
There appeared many random models of networks satisfying (A1)–(A4) and also several

deterministic ones. The deterministic models, whose advantage is that their properties can
often be computed analytically, have usually some common features. We define here a general
construction, such that the networks introduced in [7, 12, 22, 23, 24], and with a slight
modification also those of [17, 18, 19, 20], are special cases of our construction. However,
there are some deterministic constructions, such as the hierarchic models of [3, 4] and the
model based on edge valuations [21], which we do not generalize.

After introducing our model, we calculate the number of vertices and edges of the network,
we find the degree distribution and we calculate γ from (A4). We also find a good upper bound
for the diameter and a lower bound for the clustering coefficient, so that (A2) and (A3) can
be checked easily. Then we demonstrate our results on three previously invented models. Our
choice of these models was such that they are as different as possible. As expected, all our
results agree for these networks.

Finally, based on our general construction, we introduce eight new deterministic models
of complex networks. All our constructions yield infinite classes of networks, and one of
them, namely Construction 6, can be parametrized by three independent parameters. Non
self-repetitive version of another one, namely Construction 5, generalizes both the Farey
network and the Apollonian network constructions, see [12, 1]. In the process of modelling
these constructions we focussed our attention to the clustering coefficient. Three of these
new constructions have clustering coefficient close to 1 and three have this coefficient close
to 1

2
. The first three are based on the complete graph Kk and the second three are based on

the complete tripartite graph Kk,k,k. The last two constructions have clustering coefficient 0.
One is based on the complete bipartite graph Kk,k and one on the graph of a prism. These
last two constructions do not satisfy (A3), but we include them here as some of the previous
models of self-similar networks also have clustering coefficient 0 (to demonstrate this fact see
Constructions 1 and 2 below). We point out that in all these new models all the parameters
mentioned above are obtained by simple substitution of relevant constants to the derived
formulae.

2 Three previously invented models

We recall here three constructions of self-similar networks. The first construction appeared
in Zhang and Comellas [16], the second in Comellas, Zhang and Chen [8] and the third in
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Comellas, Fertin and Raspaud [6]. However, we define these constructions in slightly different
words than in [16, 8, 6]. The reason for this is that we like to point out their common features,
which are generalized in the next section. For illustration of these constructions see Figure 1.

Construction 1. Let H be a graph with one special edge U , endvertices of which are
connected by j internally-vertex-disjoint paths of length 3. Thus, if j = 1 then H is a square,
while if j > 1 then H consists of j squares sharing the edge U . Denote by T the set of edges
of H that contain exactly one vertex of U . Then T has 2j edges and we call them active
edges. The construction is following:

• If t = 0, Gj(0) has two vertices connected by an active edge.

• If t > 0, Gj(t) is obtained from Gj(t− 1) by identifying every active edge of Gj(t− 1)
with the edge U of a copy of H . Hence, if Gj(t− 1) contains q(t − 1) active edges, we
glue to Gj(t) exactly q(t − 1) new copies of H . In Gj(t), the active edges are exactly
the edges of T ’s in just attached q(t− 1) copies of H .

Construction 2. Let H be the graph of a cube, that is, H has 8 vertices all of which have
degree 3. Denote by U one square of H . Let T be the set of squares of H which share exactly
one edge with U . Then T has four squares and we call them active squares. The construction
is following:

• If t = 0, G(0) consists of one active square.

• If t > 0, G(t) is obtained from G(t − 1) by identifying every active square of G(t − 1)
with the square U of a copy of H , so that the edges of U are identified with the edges of
the active square of G(t− 1). Hence, if G(t− 1) has q(t− 1) active squares, we glue to
G(t− 1) exactly q(t− 1) copies of H . In G(t) the active squares are exactly the squares
of T ’s in just attached q(t− 1) copies of H .

Construction 3. Let H be the complete graph on j + 1 vertices, Kj+1, and let U be one of
its induced subgraphs on j vertices. Then U is a complete graph on j vertices Kj. Denote by
T the set of all induced j-vertex subgraphs of H , including U itself. The complete graphs of
T are active. The construction is following:

• If t = 0, Gj(0) consists of an active complete graph on j vertices.

• If t > 0, Gj(t) is obtained from Gj(t − 1) by identifying every active Kj with U of a
copy of H . Hence, if Gj(t − 1) has q(t − 1) active Kj ’s, we glue to Gj(t − 1) exactly
q(t− 1) copies of H . In Gj(t), active copies of Kj are exactly the graphs of T ’s in just
attached copies of H .
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Figure 1: Graphs H for each of Constructions 1–3, where j = 2 in Constructions 1 and 3.
The graph U is an edge in Constructions 1 and 3 and this edge is circled. In Construction 2
the graph U is a 4-cycle. Copies of U belonging to T are shaded.

In our notation, G(0) is isomorphic to U and G(1) is isomorphic to H in Constructions 1–
3. In Construction 3, if some copy of Kj is active once, then it is active forever. Therefore we
call Construction 3 self-repetitive, while Constructions 1 and 2 are non self-repetitive. In [6],
Construction 3 is defined in a slightly different way. It says that in t-th iteration we find all
the copies of Kj in Gj(t− 1) and to all vertices of every such Kj we connect one new vertex.
But it is easy to see that our definition is equivalent with this one.

3 Generalized deterministic model of a self-similar net-

work

In this section we will unify the constructions introduced in the previous section. For this,
we recall here some notions used in graph theory. Let G be a graph with vertex set V (G).
An automorphism of G is a bijective mapping ϕ : V (G) → V (G), such that if uv is an edge
in G, u, v ∈ V (G), then also ϕ(u)ϕ(v) is an edge of G. The set of all automorphisms of G
is denoted by Aut (G). If there exists ϕ ∈ Aut (G) such that ϕ(x) = y, then we say that x
and y belong to the same orbit of Aut (G). If there is just one orbit in Aut (G), then G is
vertex-transitive. More about algebraic graph theory can be found in [9].

Though Constructions 1–3 are rather different, they have similar features. In every case,
the vertices of U belong to the same orbit of the group of automorphisms of H , Aut (H), and
so U is a vertex-transitive graph. Also, the vertices ofH which are not in U belong to one orbit
of Aut (H). Thus, there are at most two orbits in Aut (H) and consequently, vertices of H
have at most two distinct degrees. Nevertheless in each of these three constructions, vertices
of the network G(t) which appear in the i-th iteration do not belong to one orbit of Aut (G(t))
although these vertices all have the same degree. To satisfy these degree conditions, every
vertex of U must be incident with the same number of active copies of U , and analogous
property must hold for the vertices of H which are not in U . Moreover, since the construction
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is deterministic, if we attach H to G(t−1) via U , the resulting structure with active copies of
U must be independent of the way of attaching. That is, every automorphism of U must be
extendable to such an automorphism of H , which maps the elements of T to themselves. Now
we summarize all these requirements and we introduce parameters q, r and s used throughout
the rest of this paper.

Definition 1. Let H be a graph with a subgraph U , such that there is at least one vertex of
H which is not in U . Further, let T be a set of (not necessarily all) copies of U in H. The
graphs of T are the active copies of U . We call the triple (H,U , T ) an S-structure, if there
are parameters q, r ≥ 2 and s ≥ 1 and the following are true:

• All the vertices of U belong to one orbit of H.

• All the vertices of H which are not in U belong to one orbit of H.

• Every automorphism of U is extendable to such an automorphism of H which maps the
graphs of T to themselves.

• The set T contains exactly q copies of U .

• Every vertex of U is incident with r active copies of U .

• Every vertex of H which is not in U is incident with s active copies of U .

Of course, Constructions 1–3 satisfy the requirements above, which can be easily veri-
fied on Figure 1. Now we are in a position to introduce a construction which generalizes
Constructions 1–3.

Construction 4. Let H be a graph with a subgraph U , and with a set T of copies of U ,
such that (H,U , T ) is an S-structure. The construction is following:

• If t = 0, G(0) consists of an active copy of U .

• If t > 0, G(t) is obtained from G(t − 1) by identifying every active copy of U with U
in a copy of H . Hence, if G(t− 1) has q(t− 1) active copies of U , we glue to G(t− 1)
exactly q(t− 1) new copies of H . In G(t), the active copies of U are exactly the graphs
of T ’s in the q(t− 1) attached H ’s.

In Figure 2 we have a schematic description of Construction 4. Obviously, G(t) is a
self-similar network which generalizes Constructions 1–3. However, it also generalizes five
constructions of deterministic networks introduced in [7, 12, 22, 23, 24], and the networks
studied in [17, 18, 19, 20] differ only in the graph G(0) which is not isomorphic with U .
However, if G(0) = U , we have a nice recursive description of Construction 4.

Recursive modular construction. The graph G(t) can also be defined as follows:
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Figure 2: Schematic description of Construction 4. Above is H with U and T , where T
consists of the shaded copies of U . Below are G(0), G(1) and G(2), and in all these graphs
the shaded regions represent the active copies of U .

• If t = 0, G(0) consists of an active copy of U . We denote this copy by U .

• If t = 1, G(1) is obtained from G(0) by identifying U with U in a copy of H .

• If t ≥ 2, G(t) is obtained from G(1) and q copies of G(t− 1) by identifying every active
copy of U in G(1) with U in a copy of G(t− 1).

We remark that the recursion step has also a more general version:

• If t ≥ 2, then for every i, 1 ≤ i < t, G(t) is obtained from G(i) and several copies of
G(t− i) by identifying every active copy of U in G(i) with U in a copy of G(t− i).

4 Properties of the generalized construction

Though Construction 4 is rather general, we are able to calculate the main network parameters
of G(t). Particularly, we can state conditions under which (A1)–(A4) are satisfied. We prove
here the following theorem by a set of claims:
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Theorem 1. Let (H,U , T ) be an S-system and let q, r and s be as in Definition 1. Moreover,
let c be the clustering coefficient of such a vertex of H which is not in U . Then Construction 4
yields a model of a self-similar network with properties (A1)–(A4) if the parameters satisfy

q ≥ 2, r ≥ 2, s ≥ 1, 1 ≤ ln(q)
ln(r)

≤ 2 and c > 0.

Observe that the parameters q, r, s and c can be verified by analyzing H , together with
U and T . That is, we do not need to consider G(t). This allows to propose networks with
specified properties as will be demonstrated in Section 6.

Now we study the order, size, degree distribution, diameter and the clustering coefficient.
All the notation introduced below will be used through the rest of the paper.

Order of G(t). Let q(t) be the total number of active copies of U in G(t). Then q(t) =
q · q(t − 1) = q2 · q(t − 2) = · · · = qt · q(0) = qt as G(0) consists of a unique active copy
of U . Denote by N(t) the number of vertices of G(t). Further, denote by N0 the number
of vertices of U and denote by N1 the number of vertices of H . Then N(0) = N0 and
N(1) = N1 = N0+(N1−N0). For t > 1 we have N(t) = N(t−1)+ q(t−1)(N1−N0) since to
G(t−1) we attach q(t−1) copies of H , each with (N1−N0) new vertics. Since q(t−1) = qt−1

and q ≥ 2, we get N(t) = N(t−1)+ qt−1(N1−N0) = · · · = N0+ q0(N1−N0)+ q1(N1−N0)+

· · ·+ qt−1(N1 −N0) = N0 +
qt−1
q−1

(N1 −N0). Hence, we have shown:

Claim 1. The order N(t) satisfies

N(t)−N(t− 1) = qt−1(N1 −N0) and N(t) = N0 +
qt − 1

q − 1
(N1 −N0).

Observe that for arbitrary graph G and two of its vertices, say x and y, if both x and y
belong to a common orbit of Aut (G), then they have the same degree. This implies that all
the vertices of U have the same degree and also all vertices of H which are not in U have the
same degree. Now we find the size of G(t).

Size of G(t). Let d0 be the degree of a vertex in U . Further, let d1 be the degree of
a vertex of H which is in U , and let de be the degree of a vertex of H which is not in U .
Denote by M(t) the number of edges of G(t). Further, denote by F the graph obtained from
H by removing the edges of U . Then F has N0 vertices of degree (d1 − d0) and (N1 − N0)
vertices of degree de. Thus, F has 1

2
[(d1 − d0)N0 + de(N1 − N0)] edges. If we attach to a

network a copy of H through U , then the new edges are exactly the edges of F . Therefore
M(t) = M(t− 1) + q(t− 1)1

2
[(d1 − d0)N0 + de(N1 −N0)]. Since M(0) = 1

2
d0N0, we have:

Claim 2. The size M(t) satisfies

M(t) =
1

2
d0N0 +

qt − 1

q − 1

1

2

[

(d1 − d0)N0 + de(N1 −N0)
]

.
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Hence M(t) ∈ O(N(t)) ⊆ O(N(t) ln[N(t)]), which means that G(t) allways satisfies (A1).

Degree distribution. The degrees are in Table 1, where in the G(t) case we have 1 ≤ i ≤
t− 1.

Graph its degrees numbers of vertices

G(0) d0 N0

G(1) d0 + (d1 − d0) N0

de N1 −N0

G(2) d0 + (d1 − d0) + r(d1 − d0) N0

de + s(d1 − d0) N1 −N0

de q(N1 −N0)
G(3) d0 + (d1 − d0) + r(d1 − d0) + r2(d1 − d0) N0

de + s(d1 − d0) + rs(d1 − d0) N1 −N0

de + s(d1 − d0) q(N1 −N0)
de q2(N1 −N0)

G(t) d0 +
rt−1
r−1

(d1 − d0) N0

de +
rt−i−1
r−1

s(d1 − d0) qi−1(N1 −N0)

de qt−1(N1 −N0)

Table 1: Degrees of vertices of the network.

Let ∆(t) be the maximum degree of G(t). From Table 1 it follows that ∆(t) = max{d0 +
rt−1
r−1

(d1−d0), de+
rt−1−1
r−1

s(d1−d0)}. The degrees de+
rt−i−1
r−1

s(d1−d0) grow in a very regular way

for 1 ≤ i ≤ t−1. However, even if ∆(t) = d0+
rt−1
r−1

(d1−d0), then ∆(t) cannot “jump” much out

of this regularity. Since s ≥ 1, we have de ≥ d0. Hence, d0+
rt−1
r−1

(d1−d0) ≤ de+
rt−1
r−1

s(d1−d0)

and consequently ∆(t) ≤ de +
rt−1
r−1

s(d1 − d0).
Denote by N(k, t) the number of vertices of degree k in G(t). We find γ such that

∑

k′≥k

N(k′, t)/N(t) ∼ k1−γ . (1)

From Table 1, there are qi−1(N1−N0) vertices of degree de+
rt−i−1
r−1

s(d1−d0), 1 ≤ i ≤ t−1.
Out of this regular sequence there are qt−1(N1 −N0) vertices of degree de, but these vertices
are not important for (1) as their degree is constant. There are also N0 vertices of degree
d0+

rt−1
r−1

(d1−d0), but they are as well not important for (1) as their number is constant. Let

k = de +
rt−i−1
r−1

s(d1 − d0) for some i, where 1 ≤ i ≤ t− 1. Then

∑

k′≥k

N(k′, t) ∼
[

qi−1 + qi−2 + · · ·+ 1
]

(N1 −N0) =
qi − 1

q − 1
(N1 −N0).
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Substituting to (1) yields

(

de +
rt−i − 1

r − 1
s(d1 − d0)

)1−γ

∼

[

qi − 1

q − 1
(N1 −N0)

]/[

qt − 1

q − 1
(N1 −N0) +N0

]

.

For t large we get (s(d1 − d0)r
t−i−1)1−γ ∼ qi−t and so

1− γ ∼
ln(qi−t)

ln
(

s(d1 − d0)rt−i−1
) ∼

(i− t) ln(q)

ln
(

s(d1 − d0)
)

− ln(r) + (t− i) ln(r)
∼ −

ln(q)

ln(r)
.

We get:

Claim 3. For γ we have

γ ∼ 1 +
ln(q)

ln(r)
.

Thus, if r ≥ 2 and 1 ≤ ln(q)
ln(r)

≤ 2, then G(t) satisfies (A4).

We remark that all the networks introduced in Constructions 5–11 below satisfy the in-
equality 1 ≤ ln(q)

ln(r)
≤ 2. In the last construction we demonstrate that Construction 4 can yield

networks with arbirtarily large γ, so the last construction does not satisfy ln(q)
ln(r)

≤ 2.

Diameter. Denote by D(H) the diameter of H and denote by D(t) the diameter of G(t).
Since G(1) is a graph isomorphic to H , we have D(1) = D(H). In H , the eccentricity of every
vertex of U is at most D(H), and so D(t) ≤ D(t − 1) + 2D(H) ≤ · · · ≤ (2t − 1)D(H). We
get:

Claim 4. For the diameter D(t) we have

D(t) ≤ (2t− 1)D(H).

If q ≥ 2 then N(t) grows exponentially and hence D(t) ∈ O(ln(N(T ))), which means that
G(t) satisfies (A2).

We remark that in some cases the bound D(t) ≤ (2t−1)D(H) is tight, see Construction 5
below.

Clustering coefficient. Clustering coefficient of a vertex equals the number of edges in its
(open) neighbourhood, divided by

(

d
2

)

, where d is its degree. Hence, clustering coefficient
is the proportion of the number of existing edges to the number of all possible edges in the
neighbourhood of a vertex. Clustering coefficient of a network is the average of clustering
coefficients taken over all the vertices of the network.

Let C(t) be the clustering coefficient of G(t). Recall that c is the clustering coefficient of
a vertex of H which is not in U . There are N(t)−N(t− 1) = qt−1(N1 −N0) vertices in G(t)
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with clustering coefficient equal to c, while all the other vertices have clustering coefficient at
least 0. By Claim 1, we have N(t) = qt−1

q−1
(N1 −N0) +N0, and so

C(t) ≥
c[N(t)−N(t− 1)]

N(t)
=

c
[

qt−1(N1 −N0)
]

qt−1
q−1

(N1 −N0) +N0

. (2)

Since for q → ∞ the limit of the right-hand side of (2) is c(q−1)
q

, we have shown the following:

Claim 5. For the clustering coefficient C(t) we have

C(t) ≥ c
(

1−
1

q

)

.

Hence if q ≥ 2 and c > 0, then C(t) > 0, and consequently G(t) satisfies (A3).

5 Revisiting the three previously invented models

We demonstrate the results of the previous section on Constructions 1–3. That is, using the
parameters q, r and s defined in Definition 1 and d0, d1, de, N0 and N1 defined in the previous
section, we calculate the order, size, the degrees, and the bounds from Claims 4 and 5 and
we compare these results with those found in [16, 8, 6].

In Construction 1 we have q = 2j, r = j, s = 1, d0 = 1, d1 = j+1, de = 2, N0 = 2 andN1 =

2+2j. Thus N(t) = N0+
qt−1
q−1

(N1−N0) =
(2j)t+1+2j−2

2j−1
andM(t) = 1

2
d0N0+

qt−1
q−1

1
2
[(d1−d0)N0+

de(N1 − N0)] =
3j(2j)t−j−1

2j−1
. There are N0 = 2 vertices of degree d0 +

rt−1
r−1

(d1 − d0) =
jt+1−1
j−1

;

N(i)−N(i−1) = qi−1(N1−N0) = (2j)i vertices of degree de+
rt−i−1
r−1

s(d1−d0) = 1+ jt−i+1−1
j−1

,

where 1 ≤ i ≤ t − 1; and N(t) − N(t − 1) = (2j)t vertices of degree de = 1 + j−1
j−1

. Next,

γ = 1 + ln(q)
ln(r)

= 1 + ln(2j)
ln(j)

, and all these parameters agree with [16]. We have D(t) ≤ (2t +

1)D(H) = 4t+2, but in fact D(t) = 2t+1. Since H does not contain triangles, we have c = 0
and consequently we obtain the trivial inequality C(t) ≥ 0. In fact, the clustering coefficient
of G(t) is 0.

In Construction 2 we have q = 4, r = 2, s = 2, d0 = 2, d1 = 3, de = 3, N0 = 4 and
N1 = 8. Thus N(t) = N0 +

qt−1
q−1

(N1 −N0) =
4t+1+8

3
and M(t) = 1

2
d0N0 +

qt−1
q−1

1
2
[(d1 − d0)N0 +

de(N1 − N0)] =
2·4t+1+4

3
. There are N0 = 4 vertices of degree d0 +

rt−1
r−1

(d1 − d0) = 2t + 1;

N(i) − N(i − 1) = qi−1(N1 − N0) = 4i vertices of degree de +
rt−i−1
r−1

s(d1 − d0) = 2t−i+1 + 1,

where 1 ≤ i ≤ t− 1; and N(t)−N(t− 1) = 4t vertices of degree de = 3. Next, γ = 1+ ln(q)
ln(r)

=

1+ ln(4)
ln(2)

= 3, and all these parameters agree with [8]. We have D(t) ≤ (2t+1)D(H) = 6t+3,

but in fact D(t) = 2t + 1. Since H does not contain triangles, we have c = 0 implying the
trivial inequality C(t) ≥ 0. In fact C(t) = 0.
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In Construction 3 we have q = j + 1, r = j, s = j, d0 = j − 1, d1 = j, de = j,

N0 = j and N1 = j + 1. Thus N(t) = N0 +
qt−1
q−1

(N1 − N0) = j + (j+1)t−1
j

and M(t) =
1
2
d0N0+

qt−1
q−1

1
2
[(d1− d0)N0+ de(N1−N0)] =

j(j−1)
2

+(j+1)t− 1. There are N0 = j vertices of

degree d0+
rt−1
r−1

(d1−d0) = j−1+ jt−1
j−1

; N(i)−N(i−1) = qi−1(N1−N0) = (j+1)i−1 vertices of

degree de+
rt−i−1
r−1

s(d1−d0) = j+ jt−i−1
j−1

j, where 1 ≤ i ≤ t−1; and N(t)−N(t−1) = (j+1)t−1

vertices of degree de = j. Next, γ = 1+ ln(q)
ln(r)

= 1+ ln(j+1)
ln(j)

, and all these parameters agree with

[6]. We have D(t) ≤ (2t + 1)D(H) = 2t + 1, but in fact D(t) ∼ 2t/j + 2. For the clustering
coefficient we have C(t) ≥ 1− 1

j+1
, but in fact C(t) ≥ 3j−2

3j−1
= 1− 1

3j−1
.

6 New deterministic models of self-similar networks

Now we introduce several new deterministic models of self-similar networks. All they are
special cases of Construction 4.

We start by choosing complete graph on k vertices for H , since then the clustering coeffi-
cient of H is c = 1, and hence we can expect the largest clustering coefficient in the network.
In our calculations we omit the size and the degrees, but it is easy to find them by substituting
the relevant constants to the formulae derived above.

Construction 5. Let H be the complete graph on k vertices, k ≥ 3, and let T be the
set of all j-vertex induced subgraphs of H , j ≥ 2. Further, let U be one of the graphs of
T . Obviously, every automorphism ϕ of U is extendable to such an automorphism of H ,
which preserves T (it suffices to choose the extension of ϕ outside U to be the identity).
Since the other properties of Definition 1 are trivially satisfied, (H,U , T ) is an S-structure.
Thus, we can apply Construction 4 on (H,U , T ), and we denote the resulting construction as
Construction 5.

Observe that Construction 5 is a straightforward generalization of Construction 3, which is
obtained when k = j+1. We have q =

(

k
j

)

, r = s =
(

k−1
j−1

)

, d0 = j−1, d1 = de = k−1, N0 = j

and N1 = k. Thus N(t) = N0 +
qt−1
q−1

(N1 −N0) = j +
(kj)

t
−1

(kj)−1
. Next, γ = 1+ ln(q)

ln(r)
= 1+

ln (kj)
ln(k−1

j−1)
,

and so 2 < γ < 3. We have D(t) ≤ (2t + 1)D(H) = 2t + 1. However, if k ≥ 2j then
D(t) ≥ D(t− 1) + 2, and so D(t) = 2t+ 1 in this case. Finally, C(t) ≥ c(1− 1

q
) = 1− 1/

(

k
j

)

,
as the clustering coefficient c of every vertex in a complete graph is 1.

When we change Construction 5 from self-repetitive to non self-repetitive, we obtain very
similar values of the above mentioned parameters. This modification generalizes the Farey
network construction (k = 3 and j = 2) and the Apollonian network construction (k = 4 and
j = 3), see [12, 1].

We can modify Construction 5 by forbiding some configurations, to obtain the next con-
struction.
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Construction 6. Let H be the complete graph on k vertices, k ≥ 3, and let ℓ divides k.
Let the vertex set of H be decomposed into k/ℓ sets of size ℓ and let j satisfies 2 ≤ j ≤ k/ℓ.
Denote by T the set of all induced j-vertex subgraphs of H , which do not contain a pair of
vertices from a common set of the decomposition. Further, denote by U one of the graphs
of T . Obviously, every automorphism of U is extendable to such an automorphism of H ,
which preserves T (it suffices to respect the decomposition of the vertex set of H). Since
the other properties of Definition 1 are trivially satisfied, (H,U , T ) is an S-structure. Thus,
apply Construction 4 on (H,U , T ) and denote the resulting construction as Construction 6.

Let a, b and c be three integer parameters, a, b ≥ 2 and c ≥ 0. Set ℓ = a, j = b and
k/ℓ = b + c. Then k = a(b + c) and for different values of a, b and c we get different in-
stances of Construction 6. Hence, this construction can be parametrized by three independent
parameters.

Observe that if ℓ = 1, Construction 6 reduces to Construction 5. We have q =
(

k/ℓ
j

)

ℓj ,

r = s =
(

k/ℓ−1
j−1

)

ℓj−1, d0 = j − 1, d1 = de = k − 1, N0 = j and N1 = k. Thus N(t) =

N0 +
qt−1
q−1

(N1 −N0) = j +

[

(k/ℓj )ℓj
]t

−1

(k/ℓj )ℓj−1
(k− j). Next, γ = 1+ ln(q)

ln(r)
= 1+

ln(k/ℓj )+j ln(ℓ)

ln (k/ℓ−1
j−1 )+(j−1) ln(ℓ)

, and

so 2 < γ ≤ 3. We have D(t) ≤ 2t+ 1 and C(t) ≥ 1− [
(

k/ℓ
j

)

ℓj]−1.
Probably the most interesting cases ocure when k is small:

• For k = 4 and ℓ = j = 2 we get q = 4, r = s = 2, d0 = 1, d1 = de = 3, N0 = 2 and
N1 = 4. So N(t) = 2 + 4t−1

3
2, γ = 3, D(t) ≤ 2t− 1 and C(t) ≥ 3/4.

• For k = 6, ℓ = 3 and j = 2 we get q = 9, r = s = 3, d0 = 1, d1 = de = 5, N0 = 2 and
N1 = 6. So N(t) = 2 + 9t−1

2
, γ = 3, D(t) ≤ 2t− 1 and C(t) ≥ 8/9.

• For k = 6, ℓ = 2 and j = 3 we get q = 8, r = s = 4, d0 = 2, d1 = de = 5, N0 = 3 and
N1 = 6. So N(t) = 3 + 8t−1

7
3, γ = 1 + 3

2
= 2.5, D(t) ≤ 2t− 1 and C(t) ≥ 7/8.

Construction 7. Let k = 2ℓ−1, ℓ ≥ 3. We denote the vertices ofKk, V (Kk), by 0-1 vectors of
length ℓ, avoiding the vector having all coordinates 0. That is, V (Kk) = Z

ℓ
2 \ (0, 0, . . . , 0). Let

T be the set of triples of vectors x, y, z of V (Kk), such that when summing every coordinate
in Z2, we get (0, 0, . . . , 0). Then T forms a projective Steiner triple system, see e.g. [5]. Every
pair of vertices of Kk is in a unique triple of T and it is known that T is doubly-transitive,
which means that if a mapping ϕ maps an ordered pair of vertices to any other (but fixed)
pair of ordered vertices, then ϕ can be extended to an automorphism of T . Let H = Kk and
let U be one of the triples of T . Since every mapping of U to itself is determined uniquely by
the images of two vertices of U , doubly-transitivity of T implies that every automorphism of
U is extendable to an automorphism of H which preserves the triples of T . Since the other
properties of Definition 1 are trivially satisfied, (H,U , T ) is an S-structure. Thus, apply
Construction 4 on (H,U , T ) and denote the resulting construction as Construction 7.
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We have q =
(

k
2

)

/3 = k(k−1)
6

, r = s = k−1
2
, d0 = 2, d1 = de = k − 1, N0 = 3 and

N1 = k. Thus N(t) = N0 +
qt−1
q−1

(N1 − N0) = 3 +

(

k(k−1)
6

)t

−1

k(k−1)
6

−1
(k − 3). Next, γ = 1 + ln(q)

ln(r)
=

1 + ln(k(k−1)
6

)/ ln(k−1
2
), and so 2 < γ ≤ 3. We have D(t) ≤ 2t+ 1 and C(t) ≥ 1−

[k(k−1)
6

]−1
.

Our second choice for H is the complete tripartite graph Kk,k,k. Its vertex set consists of
three disjoint subsets of order k, and a pair of vertices is connected by an edge if and only if the
vertices belong to distinct subsets. The clustering coefficient of H is c = k2/

(

2k
2

)

= 1
2
+ 1

4k−2
,

and so we can expect that the networks will have clustering coefficient close to 1
2
. Observe

that the graph of a regular octahedron is K2,2,2.

Construction 8. Let H be the complete tripartite graph on 3k vertices, k ≥ 2, and let U
be one of the triangles of H . Let T be the set of all triangles of H , including U . Obviously,
every automorphism of U is extendable to an automorphism of H which preserves the triples
of T . Since the other properties of Definition 1 are trivially satisfied, (H,U , T ) is an S-
structure. Thus, apply Construction 4 on (H,U , T ) and denote the resulting construction as
Construction 8.

We have q = k3, r = s = k2, d0 = 2, d1 = de = 2k, N0 = 3 and N1 = 3k. Thus
N(t) = N0 +

qt−1
q−1

(N1 − N0) = 3 + k3t−1
k3−1

3(k − 1). Next, γ = 1 + ln(q)
ln(r)

= 1 + ln k3

ln k2
= 2.5,

and so 2 < γ < 3. Since D(H) = 2, we have D(t) ≤ (2t + 1)D(H) = 4t + 2. Finally,
C(t) ≥ k

2k−1
(1− 1

q
) = 1

2
+ k2−2

4k3−2k2
.

A map is an embedding of a graph into a surface (compact 2-manifold) such that when
we cut the surface along the embedded edges, the pieces of the surface (faces) will be home-
omorphic to open discs. If all the faces are bounded by exactly 3 edges, then the map is a
triangulation of the surface. If a map has the property that for every two triples (v1, e1, f1)
and (v2, e2, f2), where ei is an edge incident with the vertex vi and the face fi, 1 ≤ i ≤ 2,
there exists an automorphism ϕ of the map mapping v1 to v2, e1 to e2 and f1 to f2, then the
map is called regular, see e.g. [11]. (An automorphism of a map is an automorphism of the
underlying graph which maps faces to faces.)

Construction 9. In [10] it is proved that for every k ≥ 1 there is a unique regular triangu-
lation of H = Kk,k,k in an orientable surface. Let T be the set of all facial triangles of such a
map and k ≥ 2. Denote by U one triangle of T . Since every automorphism of U is determined
by the image of one of its vertices and an incident edge, every automorphism of U is extend-
able to such an automorphism of Kk,k,k which preserves the elements of T (the faces). Since
the other properties of Definition 1 are trivially satisfied, (H,U , T ) is an S-structure. Thus,
apply Construction 4 on (H,U , T ) and denote the resulting construction as Construction 9.

Since Kk,k,k has 3k
2 edges, we have q = 2(3k2)/3 = 2k2, r = s = 2k, d0 = 2, d1 = de = 2k,

N0 = 3 and N1 = 3k. Thus N(t) = N0 +
qt−1
q−1

(N1 − N0) = 3 + (2k2)t−1
2k2−1

3(k − 1). Next,
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γ = 1+ ln(q)
ln(r)

= 3− ln 2k2

ln 2k
, and so 2 < γ < 3. We have D(t) ≤ 4t+2 and C(t) ≥ k

2k−1
(1− 1

q
) =

1
2
+ k−1

4k2−2k
.

Let k = 2. Then the map used in Construction 9 is the regular octahedron. In this case,
non self-repetitive version of Construction 9 differs from the construction present in [22] only
by one active triangle (the one oposite to U).

Construction 10. The map used in Construction 9 is face two-colourable, see [10]. That
is, we can colour its faces by two colours, say black and white, so that every white triangle
shares edges only with black triangles and vice-versa. Denote by T the set of white triangles
of this map and denote by U one white triangle of T . Further, denote H = Kk,k,k, where
k ≥ 2. Since every automorphism of the map which maps U to itself maps white triangles
to white triangles and black triangles to black ones, (H,U , T ) is an S-structure. Thus, apply
Construction 4 on (H,U , T ) and denote the resulting construction as Construction 10.

We have q = k2, r = s = k, d0 = 2, d1 = de = 2k, N0 = 3 and N1 = 3k. Thus
N(t) = N0 +

qt−1
q−1

(N1 −N0) = 3 + k2t−1
k2−1

3(k − 1). Next, γ = 1 + ln(q)
ln(r)

= 3, and so 2 < γ ≤ 3.

We have D(t) ≤ 4t+ 2 and C(t) ≥ k
2k−1

(1− 1
q
) = 1

2
+ k−2

4k2−2k
.

We remark that the triangles T in Construction 10 form the cyclic Latin square, see [10].
Observe that if we choose U to be not white, but a black triangle, then the parameters will
remain completely unchanged, but the resulting construction will be non self-repetitive.

Our last two constructions are based on graphs with clustering coefficients 0. We consider
such graphs here as also the networks from Constructions 1 and 2 have the clustering coefficient
0.

Construction 11. Let H be the complete bipartite graph Kk,k on 2k vertices, k ≥ 2. The
vertex set of Kk,k consists of two disjoint subsets of order k, and a pair of vertices is connected
by an edge if and only if the vertices belong to distinct subsets. Let j satisfy 1 ≤ j < k, and
let U be an induced subgraph of H having j vertices in each of the two subsets defining the
bipartition of H . Then U is isomorphic to Kj,j. Let T contain all subgraphs of H isomorphic
to Kj,j. Obviously, every automorphism of U is extendable to such an automorphism of H ,
which maps the graphs of T to themselves (it suffices to respect the bipartition of H). Since
the other properties of Definition 1 are trivially satisfied, (H,U , T ) is an S-structure. Thus,
apply Construction 4 on (H,U , T ) and denote the resulting construction as Construction 11.

We have q =
(

k
j

)2
, r = s =

(

k
j

)(

k−1
j−1

)

, d0 = j, d1 = de = k, N0 = 2j and N1 = 2k. Thus

N(t) = N0 +
qt−1
q−1

(N1 − N0) = 2j +
(kj)

2t
−1

(kj)
2
−1

2(k − j). Next, γ = 1 + ln(q)
ln(r)

= 1 +
2 ln (kj)

ln(kj)+ln(k−1
j−1)

,

and so 2 < γ < 3. Since D(H) = 2, we have D(t) ≤ (2t + 1)D(H) = 4t + 2. Finally,
C(t) ≥ 0(1− 1

q
) = 0, and it is easy to see that in fact C(t) = 0.

Construction 12. Let H be the graph of a k-sided prism. Then H has 2k vertices and 3k
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edges and for every edge e there is an automorphism ofH which interchanges the endvertices of
e. Denote one edge of H by U and denote the set of all edges of H by T . Then (H,U , T ) is an
S-structure. Thus, apply Construction 4 on (H,U , T ) and denote the resulting construction
as Construction 12.

We have q = 3k, r = s = 3, d0 = 1, d1 = de = 3, N0 = 2 and N1 = 2k. Thus

N(t) = N0 +
qt−1
q−1

(N1 − N0) = 2 + (3k)t−1
3k−1

2(k − 1). Next, γ = 1 + ln(q)
ln(r)

= 1 + ln 3k
ln 3

, and so

γ → ∞ as k → ∞. Since D(H) = ⌊k
2
⌋, we have D(t) ≤ (2t + 1)⌊k

2
⌋. Finally, if k ≥ 4 then

c = 0 and consequently also C(t) = 0.

7 Conclusion

In this paper we invented a construction which generalizes some of the previous models
of deterministic self-similar networks, and we found several invarians of this construction.
Our results allow designing models of complex networks with specific parameters, which we
partially demonstrated on the clustering coefficient in Constructions 5–12.

As regards further generalizations, our calculations of N(t), M(t), degree distribution, γ,
D(t) and C(t) in Construction 4 can be provided analogously if G(0) is different from an
active copy of U , although the formulae will be a little bit more complicated. However, to
find the correlation coefficient or the strength distribution, we need more information about
H . Hence, these invariants should be calculated separately for every single construction.

By our opinion, the biggest disadvantage of Construction 4 (and all the constructions it
generalizes) is that it produces networks with too many symmetries (automorphisms). So a
further generalization of Construction 4, such that the resulting self-similar network can be
rigid (that is, can have just the trivial automorphism), is a challenge for the future research.
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complete tripartite graphs, Discrete Math. 306 (2006), 600–606.

[11] J. L. Gross, T. W. Tucker, Topological Graph Theory, John Wiley, New York, 1987.

[12] A. Miralles, F. Comellas, L. Chen, Z. Zhang, Planar unclustered graphs to model tech-
nological and biological networks, Phys. A 389 (2010), 1955–1964.

[13] M. Newman, The structure and function of complex networks, Siam Rev. 45 (2003),
167–256.

[14] C. Song, S. Havlin, H. Makse, Self-similarity of complex networks, Nature 433 (2005),
392–395.

[15] D. Watts, S. Strogatz, Collective dynamics of ‘small world’ networks, Nature 393 (1998),
440–442.

[16] Z. Zhang, F. Comellas, Farey graphs as models for complex networks, Theor. Comput.
Sci. 412 (2011), 865–875.

[17] Z. Zhang, L. Rong, F. Comellas, Evolving small-world networks with geographical at-
tachment preference, J. Phys. A, Math. Gen. 39 (2006), 3253.

[18] Z. Zhang, L. Rong, C. Guo, A deterministic small-world network created by edge itera-
tions, Physica A 363 (2006), 567–572.

17



[19] Z. Zhang, L. Rong, S. Zhou, A general geometric growth model for pseudofractal scale-
free web, Phys. A 377 (2007), 329–339.

[20] Z. Zhang, S. Zhou, L. Chen, Evolving pseudofractal networks, Eur. Phys. J. B 58 (2007),
337–344.

[21] Z. Zhang, S. Zhou, L. Chen, J. Guan, L. Fang, Y. Zhang, Recursive weighted treelike
networks, Eur. Phys. J. B 59 (2007), 99–107.

[22] Z. Zhang, S. Zhou, L. Fang, J.Guan, Y. Zhang, Maximal planar scale-free Sierpinski
networks with small-world effect and power-law strength-degree correlation, Europhys.
Lett. 79 (2007), 38007.

[23] Z. Zhang, S. Zhou, T. Zou, L. Chen, J. Guan, Incompatibility networks as models of
scale-free small-world graphs Eur. Phys. J. B 60 (2007), 259–264.

[24] Z. Zhang, S. Zhou, W. Xie, L. Chen, Y. Lin, J. Guan, Standard random walks and
trapping on the Koch network with scale-free behavior and small-world effect Phys. Rev.
E 79 (2009), 061113.

18


