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Abstract

Let G be a graph. Denote by Li(G) its i-iterated line graph and denote
by W (G) its Wiener index. We find an infinite class of trees T satisfying
W (L3(T )) = W (T ), which disproves a conjecture of Dobrynin and Entringer
[Electronic Notes in Discrete Math. 22 (2005) 469–475].
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1 Introduction

Let G be a graph. We denote its vertex set and edge set by V (G) and E(G),
respectively. For any two vertices u, v let d(u, v) be the distance from u to v. The
Wiener index of G, W (G), is defined as

W (G) =
∑

u 6=v

d(u, v),

where the sum is taken over unordered pairs of vertices of G. The Wiener index was
introduced by Wiener in [23]. Since it is related to several properties of chemical
molecules (see [15]), it is widely studied by mathematical chemists. The interest
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of pure mathematicians was attracted in 1970’s, when it was reintroduced as the
transmission and the distance of a graph; see [22] and [12], respectively. Wiener index
(and its variations) has now become a classical topic in mathematical chemistry
spurring numerous interesting articles (see for example [4, 16, 17, 18]) surveys [7, 8]
and even special issues of journals [13, 14].

An important variation of a Wiener index is that of the Wiener index of the
line graph (also called the edge-Wiener index); see for example [2, 3, 11, 19, 24].
The topic of this paper is a natural generalization of the edge-Wiener index, namely
the Wiener index of iterated line graphs. This notion has attracted quite a bit of
attention (see [5, 6, 7, 9, 10]) and a number of interesting conjectures have been
posed. The main result of this paper is a counterexample to a conjecture posed in
[6] (see Conjecture 1.2 and Theorem 1.3. Let us explain this in more detail.

The line graph of G, L(G), has vertex set identical to the set of edges of G and
two vertices of L(G) are adjacent if and only if the corresponding edges share an
endvertex in G. Iterated line graphs are defined inductively as follows:

Li(G) =

{

G if i = 0,
L(Li−1(G)) if i > 0.

The Wiener index of the line graph of a tree T can easily be computed from
W (T ) by using the following result of Buckley [1]:

Theorem 1.1 Let T be a tree on n vertices. Then W (L(T )) = W (T )−
(

n

2

)

.

Since
(

n

2

)

> 0 if n ≥ 2, there is no tree for which W (L(T )) = W (T ) (with the
exception of the tree with a single vertex). However, there are trees T satisfying
W (L2(T )) = W (T ), see e.g. [5]. In [6], Dobrynin and Entringer stateded the
following conjecture:

Conjecture 1.2 There is no tree T satisfying equality W (T ) = W (Li(T )) for any
i ≥ 3.

By the definition, if G has a unique vertex, then W (G) = 0. In this case, we
say that the graph G is trivial. We set W (G) = 0 also when the set of vertices of G
is empty. Of course, if T is a trivial tree, then W (Li(T )) = W (T ) for every i ≥ 1,
although here the graph Li(T ) is empty. Therefore, Conjecture 1.2 should be viewed
in the context of nontrivial trees T .

Let H ′
a,b,c be the tree on a + b+ c + 4 vertices, out of which two have degree 3,

four have degree 1 and the remaining a+ b+ c− 2 have degree 2. The two vertices
of degree 3 are connected by a path of length 2. Finally, there are two pendant
paths of lengths a and b attached to one vertex of degree 3 and two pendant paths
of lengths c and 1 attached to the other vertex of degree 3, see Figure 1 for H ′

3,2,4.
Here we prove the following theorem which disproves Conjecture 1.2:
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Figure 1: The graph H ′
a,b,c.

Theorem 1.3 For every i, j ∈ Z define

a = 128 + 3i2 + 3j2 − 3ij + i,

b = 128 + 3i2 + 3j2 − 3ij + j,

c = 128 + 3i2 + 3j2 − 3ij + i+ j.

Then W (L3(H ′
a,b,c)) = W (H ′

a,b,c).

Let k ∈ {i, j, i+j}. Since for every integer i and j the inequality 3i2+3j2−3ij+
k ≥ 0 holds, we see that a, b, c ≥ 128 in Theorem 1.3. Hence, the smallest graph
satisfying the assumptions is H ′

128,128,128 on 388 vertices obtained when i = j = 0.
We remark that for i ≥ 4, Conjecture 1.2 is true; see [21]. In fact, in a forthcom-

ming paper we prove that the class of trees described in Theorem 1.3 is the unique
class of trees (beside the trivial tree) violating Conjecture 1.2.

In the next section we state a formula which enables us to calculate W (L3(T ))−
W (T ) and we prove Theorem 1.3.

2 Proofs

A degree of a vertex, say v, is denoted by dv. Analogously as a vertex of L(G)
corresponds to an edge of G, a vertex of L2(G) corresponds to a path of length 2
in G. For x ∈ V (L2(G)) we denote the corresponding path in G by B2(x). For
two subgraphs S1 and S2 of G, the shortest distance in G between a vertex of S1

and a vertex of S2 is denoted by d(S1, S2). If S1 and S2 share an edge, then we set
d(S1, S2) = −1.

Let x and y be two vertices of L2(G), such that u is the center of B2(x), the
vertex v is the center of B2(y) and u 6= v. Then

dL2(G)(x, y) = d(B2(x), B2(y)) + 2.

Let u and v be distinct vertices of G. Let βi(u, v) denote the number of pairs
x, y ∈ V (L2(G)), with u being the center of B2(x) and v being the center of B2(y),
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such that d(B2(x), B2(y)) = d(u, v)− 2 + i. Since d(u, v)− 2 ≤ d(B2(x), B2(y)) ≤
d(u, v), we have βi(u, v) = 0 for all i /∈ {0, 1, 2}. Moreover,

∑2
i=0 βi(u, v) =

(

du
2

)(

dv
2

)

.
In [20, Proposition 2.5] we have the following statement:

Proposition 2.1 Let G be a connected graph. Then

W (L2(G)) =
∑

u 6=v

[(

du

2

)(

dv

2

)

d(u, v) + β1(u, v) + 2β2(u, v)

]

+
∑

u

[

3

(

du

3

)

+ 6

(

du

4

)]

,

where the first sum is taken over unordered pairs of vertices u, v ∈ V (G) and the
second one is taken over u ∈ V (G).

Let

h(u, v) =

((

du

2

)(

dv

2

)

− 1

)

d(u, v) + β1(u, v) + 2β2(u, v). (1)

Then we have:

Lemma 2.2 Let G be a connected graph. Then

W (L2(G))−W (G) =
∑

u 6=v

h(u, v) +
∑

u

[

3

(

du

3

)

+ 6

(

du

4

)]

,

where the first sum is taken over unordered pairs of vertices u, v ∈ V (G) such that
either du 6= 2 or dv 6= 2, and the second one is taken over u ∈ V (G).

Proof. Observe that if du = dv = 2, then β0(u, v) = 1 and β1(u, v) = β2(u, v) =
0, and hence h(u, v) = 0. Since W (G) =

∑

u 6=v d(u, v), the proof follows from
Proposition 2.1.

Now we can state a formula counting the difference W (L3(H ′
a,b,c))−W (H ′

a,b,c).

Lemma 2.3 Let a, b, c ≥ 2. Then

W (L3(H ′
a,b,c))−W (H ′

a,b,c) = 3(a2 + b2 + c2)− 3(ab+ ac+ bc)− a− b+ c+ 128.

Proof. Denote ∆ = W (L3(H ′
a,b,c)) − W (H ′

a,b,c). We prove the lemma by
counting the distances in L(H ′

a,b,c) instead of in H ′
a,b,c and L3(H ′

a,b,c). Denote
LH ′ = L(H ′

a,b,c). Since a, b, c ≥ 2, the graph LH ′ has eight vertices whose de-
gree is different from 2. The three vertices of degree 1 we denote by x1, x2 and
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Figure 2: The graph LH ′ = L(H ′
a,b,c).

x3, while the five vertices of degree 3 we denote by x4, x5, . . . , x8, see Figure 2 for
LH ′ = L(H ′

3,2,4).
Define Ai =

∑

u

h(u, xi), where u ∈ V (LH ′) \ {x1, x2, . . . , xi}. Observe that
∑8

i=1Ai sums h(u, v) for all pairs {u, v} of vertices such that either du 6= 2 or dv 6= 2.
Since H ′

a,b,c has a+ b+ c+ 4 vertices, we have W (H ′
a,b,c) = W (LH ′) +

(

a+b+c+4
2

)

, by
Theorem 1.1. Thus, by Lemma 2.2, we have

∆ = W (L2(LH ′))−W (LH ′)−
(

a+b+c+4
2

)

=

8
∑

i=1

Ai + 5 · 3
(

3
3

)

−
(

a+b+c+4
2

)

,

since there are just five vertices of degree 3 in LH ′ and all the other vertices have
degree at most 2.

Now we evaluate Ai, 1 ≤ i ≤ 8. Since deg(x1) = 1, we have βj(u, x1) = 0,
0 ≤ j ≤ 2. Hence, h(u, x1) = −d(u, x), see (1). The sum of distances from x1 to
all vertices of x1 − x2 path is 1 + 2 + · · · + (a+b−1) =

(

a+b

2

)

(see Figure 2). The
sum of distances from x1 to all vertices of x1−x3 path, not included in the previous
calculation, is a + (a+1) + · · ·+ (a+c+1) =

(

a+c+2
2

)

−
(

a

2

)

. In this way we get:

A1 = −
(

a+b

2

)

−
(

a+c+2
2

)

+
(

a

2

)

− (a+2),

A2 = −
(

a+b−1
2

)

−
(

b+c+2
2

)

+
(

b

2

)

− (b+2),

A3 = −
(

a+c+1
2

)

−
(

b+c+1
2

)

+
(

c+2
2

)

− c.

If 4 ≤ i ≤ 8, then in Ai we sum h(u, xi), where du = 2 or du = 3. If du = 2, then
regardless of the choice of u we have β0(u, xi) = 2, β1(u, xi) = 1 and β2(u, xi) = 0.
Since

(

du
2

)(

dxi
2

)

− 1 = 2, we have h(u, xi) = 2d(u, xi) + 1 in this case. Thus, the sum
of h(u, x4) for interior vertices u of x4 − x1 path is 2(1+ 2+ . . .+ (a−2))+ (a−2) =
2
(

a−1
2

)

+ (a−2) (see Figure 2). If du = 3 then
(

du
2

)(

dxi
2

)

− 1 = 8 and β0(u, xi) = 4. If
u and xi lie in a common triangle, then d(u, xi) = 1, β1(u, xi) = 5 and β2(u, xi) = 0,
while if u and xi do not lie in a common triangle, then β1(u, xi) = 4 and β2(u, xi) = 1.
This means that h(x4, x5) = 8d(x4, x5) + 5 = 13, while h(x4, x6) = 8d(x4, x6) + 6.
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In this way we get the following formulae, where we first count the contribution of
vertices u with degree 2 and then the contribution of vertices of degree 3.

A4 = 2
(

a−1
2

)

+ (a−2) + 2
(

b

2

)

+ (b−4) + 2
(

c+2
2

)

+ (c−14)

+ (2 · 3 + 1) + 13 + (8 · 3 + 6) + 13 + (8 · 2 + 6),

A5 = 2
(

a

2

)

+ (a−4) + 2
(

b−1
2

)

+ (b−2) + 2
(

c+2
2

)

+ (c−14)

+ (2 · 3 + 1) + (8 · 3 + 6) + 13 + (8 · 2 + 6),

A6 = 2
(

a+2
2

)

+ (a−14) + 2
(

b+2
2

)

+ (b−14) + 2
(

c−1
2

)

+ (c−2)

+ (2 · 1 + 1) + (8 · 2 + 6) + 13,

A7 = 2
(

a

2

)

+ (a−4) + 2
(

b

2

)

+ (b−4) + 2
(

c+1
2

)

+ (c−8)

+ (2 · 2 + 1) + (8 · 1 + 6),

A8 = 2
(

a+1
2

)

+ (a−8) + 2
(

b+1
2

)

+ (b−8) + 2
(

c

2

)

+ (c−4)

+ (2 · 1 + 1).

Now expanding the terms (using a computer package, for instance), we get ∆ =
3(a2 + b2 + c2)− 3(ab+ ac+ bc)− a− b+ c+ 128 as required.

Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Denote ∆ = W (L3(H ′
a,b,c))−W (H ′

a,b,c). By Lemma 2.3,
we have

∆ = 3(a2 + b2 + c2)− 3(ab+ ac+ bc)− a− b+ c+ 128

= 3
2

[

(a− b)2 + (c− b)2 + (c− a)2
]

− a− b+ c + 128

= 3
2

[

(i− j)2 + i2 + j2
]

− 3i2 − 3j2 + 3ij

= 0,

which completes the proof.
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