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Abstract

In this note we present a sharp lower bound on the number of vertices in
a regular graph of given degree and diameter.

1 Introduction

The degree/diameter problem consists in determination of the largest order N(d, k)
of a graph with (maximum) degree d and diameter k. An upper bound for N(d, k) is
the Moore bound M (d, k) =1+d+d(d—1)+...+d(d—1)*"! and graphs achieving
this bound are called Moore graphs. As shown in [1, 3, 5], Moore graphs exist only
when d = 2 or k = 1 or when k£ = 2 and the degree is either 3 or 7 or possibly
57. For all other pairs (d, k) we have N(d,k) < M(d, k) — 2, see [2, 4]. Recently,
there are plenty of papers dealing with the degree/diameter problem, some of them
constructing “large” graphs of given degree and diameter, which increases the lower
bound for N(d, k) for special pairs (d, k), other decreasing N (d, k) for special classes
of graphs. For a nice survey see [7].

In this note we consider the inverse of degree/diameter problem. Since usually
the degree/diameter problem is formulated for regular graphs (although some au-
thors require only that d is the maximum degree), we ask what is the minimum
order n(d, k) of a regular graph of degree d and diameter k. In this note we answer
this question completely.

We start with some notation. Let G be a graph, G = (V(G), E(G)). For two
of its vertices, say x and y, by distg(x,y) we denote their distance in G. By N;(x)
we denote the set of vertices that are at distance i from z. As usual, N;(z) is often
abbreviated to N(z). The longest distance in G is the diameter diam(G). The
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complete graph on n vertices is denoted by K,, and the discrete graph on n vertices
(the complement of K,,) is denoted by D,,. If G is a graph, then by G=Y (and G(~2))
we denote a graph obtained from G by removing all the edges of one 1-factor (one
2-factor).

If G and H are graphs, then G + H denotes the join of G and H, that is, a
graph obtained from the disjoint union of G and H by adding all edges xy, where
x € V(G) and y € V(H). The sequential join of graphs G, Gs, ..., G, is denoted
by Gy + Go + ...+ G, and is defined by

Gi+Go+...+G. = (G +G)U(Ga+G3)U...U(G,_1 + G,).

Thus, one can obtain G7 + Gy + ...+ G, from the disjoint union Gy UGy U ... UG,
by adding all edges xy where x € V(G;) and y € V(Giyq) fori =1,2,...,r—1. To
simplify the expressions, instead of

GG+ G we write e+ (G4

k times

Finally, denote by G = H a graph obtained from the disjoint union of G and H
by adding all edges of one 1-factor, every edge of which joins a vertex of G with a
vertex of H. Obviously, G + H is defined only if |V(G)| = |V(H)|. Analogously as
in the case of join, by G; +~ G5 = ... + G, we denote the graph (G; + G3) U (G2 +
G3)U...U(G,_1 +G,). We can form also more complicated expressions using both
+ and <. In such a way, K; + Dy + Dy =+ K5 is a cycle of length 7; see Figure 1.

Figure 1: The graph K; 4+ Dy + Dy + K.

2 Results

For small diameters we have the following statement.
Proposition 2.1. Let d > 2. We have:

(i) n(d,1) =d+1;

(ii) if d is even then n(d,2) = d + 2;



(iii) if d is odd then n(d,2) = d+ 3;
(iv) n(d,3) = 2d + 2.

Proof. The case k = 1 is obvious since K41 is the unique graph of diameter 1 and
degree d.

Let k = 2. Let G be a d-regular graph of diameter 2, and let =,y € V(G) such
that distg(z,y) = 2. Then {z} U N(z) = Ny(z) U Ny(z), which gives |Ny(z)| +
|Ni1(x)] = d+ 1. Since y € Ny(z), we have |V(G)| = |No(z)| + | Ni(z)| + | No(x)| >
d + 2, which gives n(d,2) > d + 2. However, if d is odd then |V (G)| cannot be odd
and so n(d,2) > d + 3 in this case. If d is even then Kf;lz) is a d-regular graph of

diameter 2 on d+2 vertices, which shows n(d, 2) < d+2; while if d is odd then K&;?
is a d-regular graph of diameter 2 on d + 3 vertices, which shows n(d,2) < d + 3.
Finally, let £ = 3. Analogously as above, let GG be a d-regular graph of diameter
3, and let z,y € V(G) such that distg(x,y) = 3. Then {x} UN(x) = No(z)U Ny (z),
which gives |No(z)|+ |Ni(z)| = d+1, and {y} UN(y) C No(z) U N3(z), which gives
[No(@)] + |Ns(2)] > d+ 1. Thus, [V(G)| = [No(2)| + [Ny ()] + | Na()] + [ Na(z)| >
2d + 2, and so n(d,3) > 2d + 2. On the other hand, denote by K,,,, a complete
bipartite graph on 2n vertices in which the two partite sets have n vertices each.
Then Ké:rll),d +1 is a d-regular graph of diameter 3 on 2d + 2 vertices, which shows
n(d,3) < 2d + 2. O

Now we turn our attention to larger diameters. Since there are only two 2-regular
graphs of diameter k£, namely the cycle on 2k vertices and the cycle on 2k+1 vertices,
we have the following trivial observation.

Proposition 2.2. If k > 4 then n(2, k) = 2k.
For larger degrees we have a slightly different bound.

Theorem 2.3. Let k = 35 +t, where k > 4 and 0 <t < 2, and let d > 3. Then
n(d,k) = (d+1)(j+1)+t+ 3, where § = 1 if either d is odd and t =1 or d is even
and t = 2. Otherwise § = 0.

Proof. First we prove a lower bound for n(d, k). Let G be a regular graph of degree d
and diameter k and let z,y € V(G) such that distg(z,y) = k. Denote n; = |N;(x)|.
Since x € Ny(z), we have {x} U N(x) C No(x) U Ny(z). Thus, ng +mn; > d+ 1.
Analogously ny_1 + nx > d + 1 since y € Ni(x). Further, for every i, 1 <7 < j—1,
we have nz;_1 + n3; + nsi1 > d + 1 since for z; € Ny;(z) it holds {z;} U N(z;) C
Ngi_l(l') U Ngl(l’) U N3i+1(.§(7). Finally, if ¢ Z 1 then Np_1—¢ Z 1 where 1 S 14 S t.
Summing up all these inequalities we get

V(@)=Y ni>@d+1)(G+1)+t

1=0



If t = 2 then we used n,_3 > 1 and n,_o > 1. But if d is even then G cannot have
a bridge, and so 1 _s+n_s > 3. Thus, we get |V (G)| = S35 n; > (d+1)(j+1)+t+1
in this case.

Similarly, if ¢ = 1 and d is odd then (d 4+ 1)(j + 1) + t is an odd number.
But a regular graph of odd degree cannot have an odd number of vertices, and so
V(G)| =K yni > (d+1)(j+1)+t+1 also in this case.

To prove the upper bound we construct extremal graphs, that is, regular graphs
of degree d and diameter k on n(d, k) vertices. First we define an extremal graph G
for odd d. The case k = 4 is treated separately. If d = 3 then one extremal graph
G is on Figure 2. For d > 5 we set:

G =Ko+ K Y +Dy+Dy+ Ky

Figure 2: An extremal graph for d = 3 and k = 4.

Recall that k = 35 +t. To cover the remaining diameters, that is, 5, 6, 7, ..., in
the next we assume j > 1ift =2, and j >2ift=0o0rt=1:

G=Ko+ K )+ K +K +Kg1);o + K + K + KV + K, ift =2
G=Ky+ K )+ (K +K + Ko1)o+ K1 + Ky + Koo = KUV Ky ift =0
G=Ko+ KV + (K + K +Ky1); o+ K+ K+ KV 4+ Dy + Dy + Ky if £ = 1.

Now we define an extremal graph G for even d. To cover all possible diameters,
that is, 4, 5, 6, ..., in the next we assume j > lift =1lort =2, and j > 2if t =0:
G=Ks+ K )+ ® +Ky+Kys)j1 +Ki+Dy+ Koy ift=1;

G=Ks+ K\ Y+ (K + Ko+ Kyn)j 1 + Ko+ Ko+ KUY + Ky t=2;
G=Ks+ K\ )+ (K + Ko+ Kyn)jo+ K1 + Ko+ Ky o = KUV 4Ky ift=0.
Observe that in all these graphs, whenever we removed a 1-factor out of K, then

the number of vertices ¢ was even. Obviously, in each case G has diameter k£ and it
is a matter of routine to check that G is a regular graph of degree d. (For example,

a vertex in the last copy of K g:;’ in the last graph is joined to 1 vertex of K, o,

d—4 vertices of KE;? and to 3 vertices of Kj, so its degree is 1 +d — 4+ 3 = d.)
Also, in each of these cases the number of vertices of G attains the bound of the
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theorem. To verify this statement it suffices to check the number of vertices for the
smallest admissible values of j since in each case in the brackets we have exactly
d + 1 vertices. O

By Proposition 2.2, if d = 2 then n(d, k) = dk. However, for higher degrees
we get n(d, k) ~ 3dk. Denote by nyr(d, k) the minimum number of vertices in a
vertex-transitive d-regular graph with diameter k. As shown in [6], for £ > 4 and
“large” d we have nyr(d, k) ~ 2dk, and so ny.(d, k) = 2n(d, k) in this case. On the
other hand, since the extremal graphs constructed in the proof of Proposition 2.1
are vertex-transitive, we have ny(d, k) = n(d, k) when k < 3.
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