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Abstract. An independent set of vertices S of a graph dominates the graph efficiently
if every vertex of the graph is either in S or has precisely one neighbour in S. In this
paper we prove that a connected cubic vertex-transitive graph on a power of 2 vertices
has a set that dominates it efficiently if and only if it is not isomorphic to a Möbius
ladder.
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1. Introduction

Let X be a simple graph. A vertex u of X is dominated by a vertex v if either u = v or
u is adjacent to v. A set S ⊆ V (X) is a dominating set of X provided that every vertex of
V (X) is dominated by a vertex in S, and is an efficient dominating set provided that every
vertex of V (X) is dominated by exactly one vertex in S. Note that an efficient dominating
set is an independent set S of vertices of X , such that every vertex of X that is not contained
in S has precisely one neighbour in S.

A graph is said to admit efficient domination if its vertex set contains an efficient domi-
nating set. The notion of an efficient domination set has several interesting interpretations
in other areas of discrete mathematics; for example, an efficient domination set is precisely
a perfect 1-code in a graph (see [2]) as well as a closed neighbourhood packing of a graph (see
[21]).

Determining whether a given graph admits efficient domination is an NP-complete prob-
lem (see [1]). In order to obtain any efficient characterisation of graphs admitting efficient
domination, it is thus necessary to restrict to a suitably chosen class of graphs. Efficient
domination has been studied in the context of several very special families of graphs, such as
Cartesian and direct products of cycles [5, 8, 13], or circulants and other Cayley or general
vertex-transitive graphs [6, 7, 9, 14]. The graphs in these special classes often exhibit a
considerable level of symmetry, such as vertex-transitivity. (A graph is vertex-transitive if
its automorphism group acts transitively on the set of the vertices.) It is thus natural to
pose the following general problem:

Problem 1.1. Characterise vertex-transitive graphs that admit efficient domination.

In this paper we shall consider the above problem in the context of vertex-transitive
graphs of the smallest interesting valency, namely valency 3. (Note that a regular graph of
valence 2 admits efficient domination if and only if it is isomorphic to a disjoint union of
cycles the lengths of which are all divisible by 3.)

Regular graphs of valence 3 are often called cubic. The study of cubic vertex-transitive
graphs has a long and fruitful history, going back to Tutte’s seminal paper [23], and later
on, a heroic work of Coxeter, Frucht and Powers [4], who compiled an extensive hand-made
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census of cubic Cayley graphs. In the last decade, the major source of information on small
cubic vertex-transitive graphs was a webpage [20], maintained by Gordon Royle, which
contains an incomplete census of cubic vertex-transitive graphs on up to 258 vertices. This
work was superseded only recently by Spiga, Verret and the second author of the present
paper, who compiled a complete census of all cubic vertex-transitive graphs on up to 1280
vertices [15, 16].

By applying a brute force, depth-first search algorithm to the graphs presented in [15],
we were able to decide which cubic vertex-transitive graphs on at most 76 vertices admit
efficient domination (the complexity of such an algorithm prevented us from going much
further than this number of vertices). The data is summarised in Table 1. (Note that orders
that are not divisible by 4 are not listed, since cubic graphs of these orders clearly do not
admit an efficient domination.) The data in Table 1 refers to connected graphs only. In
fact, unless stated otherwise, all the graphs in this paper are assumed to be connected.

Table 1: Cubic vertex-transitive graphs of given order that admit efficient domination

|V | 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

# 1 2 4 4 7 11 6 10 12 12 7 32 10 16 38 26 12 37 11
#D 1 1 2 3 2 6 2 9 3 6 1 23 2 8 4 25 2 19 1

First row: order of graphs;

Second row: number of cubic vertex-transitive graphs (of specified order);

Third row: number of cubic vertex-transitive graphs that admit efficient domination.

An obvious pattern that can be observed in Table 1 occurs at orders that are powers of 2,
where all but one graph seem to admit efficient domination. The main result of this paper is
a proof that this behaviour is not a speciality of small orders (see Theorem 1.2). The proof
is inductive and uses the theory of lifting automorphisms along covering projections, as was
presented in [10].

The Möbius ladder Mn is the cubic graph obtained from the cycle C2n by adding a perfect
matching connecting pairs of opposite vertices in C2n. The edges of this perfect matching
will be called spokes. Observe that Mn has 2n vertices and that the smallest Möbius ladders
M2 and M3 are isomorphic to K4 and K3,3, respectively.

Theorem 1.2. Let m be an integer greater than or equal to 2 and let X be a connected simple
cubic vertex-transitive graph with 2m vertices. Then X does not admit efficient domination
if and only if m ≥ 3 and X is isomorphic to the Möbius ladder M2m−1 .

The proof of the theorem is presented in Section 4. In Section 2 we prove some auxiliary
results concerning certain special families of cubic vertex-transitive graphs, while Section 3
introduces the necessary theory of quotients and covers of graphs that is used essentially in
the proof of Theorem 1.2.

2. Special families

In this section, we prove Theorem 1.2 for four specific families of graphs, which occur as
special cases in the proof of Theorem 1.2. In particular, Lemma 2.2 proves one direction of
Theorem 1.2.

For n ≥ 3, let Pn denote the Cartesian product Cn�K2, called the prism on 2n vertices.
Observe that P4 is a cube.

Lemma 2.1. A prism Pn admits efficient domination if and only if n is divisible by 4.
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Proof. Denote the vertices of Pn by u0, u1, . . . , un−1, v0, v1, . . . , vn−1 in such a way that
E(Pn) = {uiui+1, vivi+1, uivi : i ∈ Zn}. Suppose that Pn has an efficient domination set
S. Without loss of generality, we assume that u0 ∈ S. Then u1 and v0 are dominated by
u0, implying that v0, v1, u1, u2 6∈ S. But since v1 has to be dominated by a vertex in S
and two of its neighbours, namely v0 and u1, are already excluded from S, the third of its
neighbours, namely v2, is contained in S.

By repeating this argument with v2 in place of u0, we see that u4 ∈ S, and proceeding
in this way, we see that uk ∈ S if and only if k ≡ 0 mod 4 and vk ∈ S if and only if
k ≡ 2 mod 4.

On the other hand, since un−1 and v0 are already dominated by u0, we see that un−2, vn−1 6∈
S, implying that vn−2 ∈ S. In view of the previous paragraph, this implies that n − 2 ≡
2 mod 4, or equivalently, that 4 | n.

To prove the sufficiency, observe that if 4 | n, then S = {u0, u4, . . . , un−4, v2, v6, . . . , vn−2}
is an efficient dominating set. �

Lemma 2.2. The Möbius ladder Mn admits efficient domination if and only if n ≡ 2
(mod 4), or equivalently, if and only if |V (Mn)| ≡ 4 (mod 8).

Proof. Denote the vertices and edges of the prism Pn as in the proof of Lemma 2.1. It is
easy to see that Mn can be obtained from Pn by removing the edges un−1u0, vn−1v0 and
replacing them by edges un−1v0, vn−1u0. In the same way as in in the proof of Lemma 2.1,
one can show that for k ≤ n − 1 we have uk ∈ S if and only if k ≡ 0 mod 4 and vk ∈ S
if and only if k ≡ 2 mod 4. However, here it also follows that un−2 ∈ S, showing that
n ≡ 2 mod 4.

On the other hand, if indeed n ≡ 2 mod 4, then S = {u0, u4, . . . , un−2, v2, v6, . . . , vn−4}
is an efficient domination set. �

The next two lemmas deal with graphs of a very specific structure. For a graph X and a
set of vertices B ⊆ V (X), let X [B] denote the subgraph of X induced by B. Similarly, for
two disjoint sets B1, B2 ⊆ V (X), let X [B1, B2] denote the bipartite graph with vertex set
B1 ∪B2 and an edge between a vertex u ∈ B1 and a vertex v ∈ B2 whenever uv is an edge
of X .

Lemma 2.3. Let X be a connected cubic graph the vertex set of which admits a partition
B = {B0, B1, . . . , B4k−1} into 4k sets Bi of equal size, such that the following holds:

(i) for each i ∈ Z4k, the graph X [Bi] is edgeless;
(ii) for each i ∈ Z4k, the bipartite graph X [B2i, B2i+1] is a perfect matching;
(iii) for each i ∈ Z4k, the bipartite graph X [B2i−1, B2i] is a disjoint union of 4-cycles.

Then X admits efficient domination.

Proof. We construct an efficient dominating set S = S0 ∪ S1 ∪ · · · ∪ Sk−1, such that every
Si contains only vertices from B4i ∪ B4i+1 and such that Si dominates all the vertices of
B4i−1 ∪B4i ∪B4i+1 ∪B4i+2 (the addition in subscripts computed within Z4k).

Let C0 be an auxiliary graph with vertex set B0∪B1 and with edges of the following three
types: Every 4-cycle of X [B4k−1, B0] contains two vertices of B0 and these two vertices are
joined by an edge in C0. Analogously, every 4-cycle of X [B1, B2] contains two vertices of B1

and these two vertices are joined by an edge in C0. Finally, C0 contains also all the edges of
perfect matching X [B0, B1]. Observe that C0 consists of cycles whose lengths are multiples
of 4. Though C0 is a bipartite graph, every vertex of C0 has one neighbour in B0 and one
in B1. Let S0 be an independent set in C0 of maximum size. Then |S0| =

1
2 |V (C0)|. We

show that S0 is a dominating set in X [B4k−1 ∪B0 ∪B1 ∪B2].
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Let F be any 4-cycle in X [B4k−1, B0] or in X [B1, B2]. Since C0 contains two vertices of
F and these two vertices are adjacent in C0, one vertex of F is in S0. Denote this vertex by
u and denote by v the other vertex of F in C0. Further, denote by z the other neighbour of v
in C0, that is, z 6= u. In X , the vertex u dominates all the vertices of F except v. However,
since u ∈ S0, we see that z ∈ S0, and v is dominated by z in X . Thus, S0 dominates all the
vertices of F , which implies that S0 is a dominating set in X [B4k−1 ∪B0 ∪B1 ∪B2]. Since
X is cubic and |S0| = |Bj |, where j ∈ {4k−1, 0, 1, 2}, the set S0 is an efficient dominating
set in X [B4k−1 ∪B0 ∪B1 ∪B2].

Now construct S1, S2, . . . , Sk−1 analogously as S0. Then S = S0 ∪ S1 ∪ · · · ∪ Sk−1 is an
efficient dominating set in X . �

Lemma 2.4. Let X be a connected cubic graph the vertex set of which can be partitioned
into two sets, B0 and B1, of equal size, in such a way that the graph X [Bi] is a perfect
matching for each i ∈ {0, 1} and the graph X [B0, B1] is a disjoint union of cycles of length
4. Then the graph X admits efficient domination.

Proof. We proceed similarly as in the proof of Lemma 2.3. Let C be a graph, possibly with
parallel edges, obtained from X [B0] by adding 1

2 |B0| edges in such a way that for every
4-cycle F of X [B0, B1] we add to C an edge eF joining the two endvertices of V (F ) ∩ B0.
Then C consists of even cycles. Let S be an independent set in C of maximum size. We
show that S is a dominating set in X .

Let F be any 4-cycle in X [B0, B1]. Then one of the endvertices of eF is in S. Denote this
vertex by u and denote by v the other vertex of eF . Further, denote by z a neighbour of v
in C such that vz is an edge in X [B0]. Then u, z ∈ S. Observe that if (u, v, u) is a cycle of
length 2 in C, then z = u; otherwise z 6= u. In X , the vertex u dominates all the vertices of
F except v, which is dominated by z. Thus, S dominates all the vertices of F which implies
that S dominates X . Since X is cubic and |S| = 1

2 |B0|, the set S is an efficient dominating
set in X . �

3. Concerning graphs, covers and quotients

The main tool that will be used in the proof of Theorem 1.2 is the technique of normal
quotients and regular covers. When talking about normal quotients, it is convenient to use
a slightly more general definition of a graph, which allows the graphs to have loops, parallel
edges and semiedges. In what follows, we briefly introduce this concept of a graph and refer
the reader to [10, 12] for more detailed explanation.

A graph is an ordered 4-tuple (D,V ; beg, inv) where D and V 6= ∅ are disjoint finite sets
of darts and vertices, respectively, beg : D → V is a mapping which assigns to each dart x
its initial vertex beg x, and inv : D → D is an involution which interchanges every dart x
with its inverse dart, also denoted by x−1.

The orbits of inv are called edges. The edge containing a dart x is called a semiedge if
inv x = x, a loop if inv x 6= x while beg (x−1) = beg x, and is called a link otherwise. The
endvertices of an edge are the initial vertices of the darts contained in the edge. Two links
are parallel if they have the same endvertices.

A graph with no semiedges, no loops and no parallel links is called a simple graph and
can be given uniquely in the usual manner, by its vertex-set and edge-set. Conversely, any
simple graph, given in terms of its vertex-set V and edge-set E can be easily viewed as the
graph (D,V ; beg, inv), where D = {(u, v) | uv ∈ E}, inv(u, v) = (v, u) and beg(u, v) = u for
any (u, v) ∈ D.

Let X = (D,V ; beg, inv) and X ′ = (D′, V ′; beg′, inv′) be two graphs. A morphism of
graphs, f : X → X ′, is a function f : V ∪ D → V ′ ∪ D′ such that f(V ) ⊆ V ′, f(D) ⊆ D′,
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f◦beg = beg′ ◦f and f◦inv = inv′ ◦f . A graph morphism is an epimorphism (automorphism)
if it is a surjection (bijection, respectively). The group of automorphisms of a graph X is
denoted by Aut (X). The graph X is called vertex-transitive (dart-transitive, respectively),
provided that Aut (X) acts transitively on vertices (darts, respectively) of X . (Note that
in the context of simple graphs, a dart is often called an arc of a graph; hence the term
arc-transitive is also used as a synonym for dart-transtive.)

The valency of a vertex v is the number of darts having v as their initial vertex. A graph
is cubic if all of its vertices have valency 3. The following lemma, the proof of which is trivial
and is omitted, can serve as an illustration of the concepts defined above.

Lemma 3.1. A connected cubic vertex-transitive graph is not simple if and only if it is
isomorphic to one of the following graphs:

(1) the dipole D3, having two vertices and three parallel edges between them;
(2) the graph D′

2, having two vertices, two parallel edges between them, and a semiedge
attached to every vertex;

(3) the graph C̄2n obtained from the cycle C2n by attaching an edge parallel to every
second edge of the cycle;

(4) the graph K◦

2 obtained from the complete graph K2 by attaching a loop to each of the
two vertices;

(5) the graph K′′

2 obtained from K2 by attaching a pair of semiedges to each of the two
vertices;

(6) the graph C′

n obtained from Cn by attaching a semiedge to every vertex of the cycle;
(7) the graph K◦′

1 obtained from K1 by attaching a loop and a semiedge;
(8) the graph K′′′

1 obtained from K1 by attaching three semiedges.

Figure 1. Quotients from Lemma 3.1.

We shall now describe the concept of a normal quotient (a concept that has roots in the
work of Peter Lorimer [11] and was later developed into a powerful tool to study simple
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arc-transitive graphs by Cheryl E. Praeger [17, 18]). Note that the extension of this method
to the more general graphs (as defined in this section) captures more information and can
thus be used in some instances where the original method does not yield the desired results.

Let N ≤ Aut (X) and let DN and VN denote the sets of N -orbits on darts and vertices of
X , respectively. Further, for a dart x of X and its N -orbit [x] ∈ DN let begN [x] = [beg x]
be the N -orbit of the vertex beg x, and let invN [x] = [inv x] be the N -orbit of the dart
inv x. This defines the quotient graphXN = (DN , VN ; begN , invN ) together with the obvious
epimorphism ℘N : X → XN , mapping x ∈ V ∪ D onto its N -orbit [x], called the quotient
projection relative to N .

If the group N acts on V semiregularly (that is, if the stabiliser Nv of any vertex v of X
is trivial), then the quotient projection ℘N : X → XN is also a local bijection on darts and
℘N is called a regular covering projection (or also an N -covering projection if we want to
specify the group N). In this case, the graph X can be reconstructed from XN in terms of
the voltage assignments on XN ; let us explain this in more detail.

Let Y = (DY , VY , begY , invY ) be an arbitrary connected graph, let N be a group and
let ζ : DY → N be a mapping (called a voltage assignment) satisfying the condition ζ(x) =
ζ(invY x)−1 for every x ∈ DY . Then Cov(Y, ζ) is a graph with DY ×N and VY ×N as the
sets of darts and vertices, respectively, and the functions beg and inv defined by beg(x, a) =
(begY x, a) and inv(x, a) = (invY x, aζ(x)). Note that there is a natural covering projection
℘ζ : Cov(Y, ζ) → Y mapping (x, a) onto x for any vertex or dart (x, a) of Cov(Y, ζ). The
following is a well-known fact in the theory of graph coverings (see [10, 12, 22], for example).

Lemma 3.2. Let ℘N : X → XN be a regular covering projection and let T be a spanning tree
in the graph XN . Then the graph X is isomorphic to the graph Cov(XN , ζ) for some voltage
assignment ζ : D(XN ) → N which maps the darts of the tree T onto the trivial element
of the group N . The isomorphism f : X → Cov(XN , ζ) can be chosen in such a way that
℘N = f ◦ ℘ζ.

Observe that the covering graph Cov(Y, ζ) is connected if and only if the set {ζ(x) : x ∈
DY } generates the group N . Since ζ can be assumed to be trivial on the darts of a spanning
tree, this implies that N can be generated by β elements, where β is the number of cotree
edges of Y (this number is also known as the Betti number of Y ). This fact is particularly
useful when the group N is elementary abelian (that is, isomorphic to Z

α
p for some prime p

and some integer α). Namely, in this case we can conclude that α ≤ β, whenever Cov(Y, ζ)
is connected.

Regular covering projections behave particularly nicely towards the group of automor-
phisms: Suppose that G is a subgroup of Aut (X) and that N is a normal subgroup of G
(that is, N P G ≤ Aut (X)). Further, suppose that ℘N : X → XN is the corresponding
quotient projection. If G acts transitively on the set of vertices (darts), then G/N acts
transitively (but not necessarily faithfully) on the vertices (darts, respectively) as a group
of automorphisms of XN . If, in addition, N acts semiregularly on the vertices of X , then
the quotient group G/N acts faithfully on the set VN ∪ DN . In this case we say that the
group G/N (and each of its elements) lifts along ℘N . In particular, a group H ≤ Aut (XN )
lifts along ℘N if there exists some G ≤ Aut (X) containing N as a normal subgroup such
that G/N = H .

There exists a very nice combinatorial condition for an automorphism of a graph Y to
lift along a derived covering projection ℘ζ : Cov(Y, ζ) → Y . For a directed cycle C =
(x1, x2, . . . , xn), traversing the darts x1, x2 . . . , xn (in that order), define the voltage ζ(C)
to be the product ζ(C) = ζ(x1)ζ(x2) . . . ζ(xn). If this product happens to be the identity of
the voltage group, then we say that C has a trivial voltage. The following criterion for an
automorphism of a graph to have a lift was proved in [22].
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Lemma 3.3. Let Y be a connected graph with dart-set D and let ζ : D → N be a voltage
assignment. Then a group H ≤ Aut (Y ) lifts along the covering projection ℘ζ : Cov(Y, ζ) →
Y if and only if each g ∈ H preserves the set of cycles with trivial voltage.

Lemma 3.3 will be used to determine all vertex-transitive Z2-covers of a Möbius ladder.
But first we need to determine the automorphism group of Mn.

Lemma 3.4. If n ≥ 4, then Aut (Mn) ∼= D2n.

Proof. Observe that if n ≥ 4, then every spoke of Mn lies on two 4-cycles while a “non-
spoke” edge lies on just one 4-cycle. Since D2n is obviously a subgroup of Aut (Mn), the
set of spokes forms an orbit under Aut (Mn). Consequently, the automorphism groups of
Mn and the cycle C2n obtained from Mn by removing the spokes are the same. Hence
Aut (Mn) ∼= Aut (C2n) ∼= D2n, as claimed. �

Lemma 3.5. Let n be an even integer greater than 2 and let ℘ : X → Mn be a Z2-covering
projection along which a vertex-transitive subgroup of Aut (Mn) lifts. Then X is isomorphic
to the prism P2n.

Proof. Denote the vertices of Mn by u0, u1, . . . , u2n−1 in such a way that the edge set of Mn

is {uiui+1; 0 ≤ i ≤ 2n−1}∪{uiun+i; 0 ≤ i ≤ n−1}, the addition in subscripts computed in
Z2n. In view of Lemma 3.2, we may assume that X = Cov(Y ; ζ) for some voltage assignment
ζ : D(Mn) → Z2. Moreover, ζ may be chosen in such a way that ζ(x) = 0 for every dart on
the spanning path u0, u1, . . . , u2n−1 of Mn. (In Figure 2, the edges of this spanning tree are
depicted by thick lines.)

By Lemma 3.4, the automorphism group of Mn is isomorphic to D2n in its natural action
on the vertex set of Mn. Hence Aut (Mn) has just two minimal vertex-transitive subgroups,
namely 〈ρ〉 ∼= C2n, where ρ is a rotation mapping ui → ui+1, and 〈τ, ρ2〉 ∼= Dn, where τ
is a reflection mapping ui → u2n−1−i. In view of Lemma 3.3 one of these two subgroups
preserves the set of cycles with voltage 0.

Figure 2. Möbius ladder Mn.

In what follows, we denote by Ci the (n + 1)-cycle (ui, ui+1, . . . , ui+n), 0 ≤ i ≤ 2n− 1.
Further, for a walk W in Mn, we denote by ζ(W ) the sum of the voltages of the darts that
W traverses in positive sense, and we denote by ai the voltage of the dart (ui, un+i); i.e.
ai = ζ(ui, un+i), 0 ≤ i ≤ n− 1. We distinguish two cases:
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Case 1. The automorphism ρ lifts. Since the voltages on the path u0, u1, . . . , u2n−1 are
all 0, we have ζ(Ci) = ai for 0 ≤ i ≤ n − 1. Observe that ρ(C0) = C1. Hence, if a0 = 0,
then ζ(C0) = 0 and consequently ζ(C1) = 0 by Lemma 3.3. Since a1 = ζ(C1), we obtain
a0 = a1. On the other hand, if a0 = 1, then ζ(C0) = 1 and consequently ζ(C1) cannot be 0
by Lemma 3.3. Thus ζ(C1) = 1 = a1, and hence a0 = a1, as above. Since ρ(Ci) = Ci+1 for
i ∈ {0, . . . , n − 2}, we see in a similar way as above that a0 = a1 = · · · = an−1. However,
ρ(Cn−1) = Cn. Hence a0 = an−1 = ζ(Cn−1) = ζ(Cn) = a0 + ζ(u2n−1u0), which gives
ζ(u2n−1u0) = 0. Observe that if all the voltages in Mn are trivial, then the covering graph
is disconnected, which contradicts our assumptions. Therefore a0 = a1 = · · · = an−1 = 1
and the lift of Mn is the prism P2n.

Case 2. The automorphisms τ and ρ2 lift. Analogously as above, since ζ(Ci) = ai and
ρ2(Ci) = Ci+2, 0 ≤ i ≤ n − 1, we obtain a0 = a2 = · · · = an−2 and a1 = a3 = · · · = an−1

(observe that n is even). Moreover, since τ(C0) = Cn−1, we see that a0 = ζ(C0) = ζ(Cn−1) =
an−1. Hence we see that a0 = a1 = · · · = an−1. Since ρ2(Cn−1) = Cn+1, we deduce that
an−1 = ζ(Cn−1) = ζ(Cn+1) = a1 + ζ(u2n−1u0), which gives ζ(u2n−1u0) = 0. Since not all
the voltages in Mn are trivial, we see that a0 = a1 = · · · = an−1 = 1, and the lift of Mn is
the prism P2n, as required. �

In the context of “generalized graphs” (V,D; beg, inv), one needs to be careful when
defining domination. The appropriate extension of domination from simple graphs is as
follows:

Definition 3.6. For a non-negative integer k we say that a vertex v of a graph X =
(V,D; beg, inv) is k-dominated by a set S ⊂ V provided that

k = |{x ∈ D | beg(x) = v and beg(x−1) ∈ S}|.

If v is k-dominated by S for some k ≥ 1, then we say that S dominates v. A set S ⊆ V
dominates the graph X efficiently if every v ∈ S is 0-dominated by S and every v ∈ V \S is
1-dominated by S. If X is dominated efficiently by some S ⊆ V , then we say that X admits
efficient domination.

Note that in view of the above definition S dominates every v ∈ S such that v = beg(x)
for some semiedge or some loop x. Moreover, if vertices u and v are adjacent by a pair of
parallel edges and one is contained in S, then the other is k-dominated by S for some k ≥ 2.
This shows that a non-simple graph in which every vertex is an endpoint of a semi-edge, a
loop or a pair of parallel edges, does not admit an efficient domination. In particular, no
vertex-transitive non-simple graph admits an efficient domination.

The following lemma, which will be used substantially in the proof of Theorem 1.2, follows
directly from the fact that covering projections are local bijections, that is, that for each
vertex ṽ of a graph X̃ the set of darts x̃ with beg(x̃) = ṽ projects by a covering projection

℘ : X̃ → X bijectively onto the set of darts x for which beg(x) = ℘(ṽ).

Lemma 3.7. Let ℘ : X̃ → X be a covering projection. If a set S ⊆ V (X) dominates X

efficiently, then the preimage ℘−1(S) = {ṽ ∈ V (X̃) | ℘(ṽ) ∈ S} dominates the graph X̃
efficiently.

4. Proof of Theorem 1.2

In the proof of Theorem 1.2, we will use some basic notions and results from group theory.
For example, recall that a finite group is called a p-group (where p is a fixed prime) provided
that the order of the group is of the form pm for some integer m ≥ 0; see [19, Chapter 4] for
basic facts about p-groups. Further, we shall need the famous Lagrange theorem, stating
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that whenever a prime p divides the order of a group G, there exists an element g ∈ G of
order p. Finally, we shall use the well-known Burnside’s pαqβ theorem (see [3]), stating that
every group whose order is divisible by at most two primes is soluble (see [19, Chapter 5]
for basic facts on soluble groups). We shall also need the following folklore result (see also
[4, pages 3–5]):

Lemma 4.1. Let X be a connected cubic graph, let v be a vertex of X and let G be a group
of automorphisms of X acting transitively on the vertex set of X but intransitively on the
arcs of X. Then the vertex-stabiliser Gv is a (possibly trivial) 2-group.

Proof. For a vertex u of X let G
X(u)
u denote the permutation group induced by the action of

Gu on the neighbourhood X(u) of u in X . Observe that since G acts transitively on V (X)

but intransitively on the arcs of X , the permutation group G
X(u)
u is intransitive, and thus, as

an abstract group, either trivial or isomorphic to the group of order 2. Now suppose that Gv

is not a 2-group and let p be an odd prime dividing the order of Gv. In view of Lagrange’s
theorem, there exists g ∈ Gv of order p. Among all the vertices of X that are not fixed by
g, let w be one which is closest to v and let [v = v0, v1, . . . , vm−1, vm = w] be a shortest
path from v to w. By the choice of w, it follows that g fixes vm−1, and thus g ∈ Gvm−1

.
Now let U be the orbit of w under the action of the group 〈g〉. Since w is not fixed by g,
we see that |U | ≥ 2. On the other hand, by the well-known orbit-stabiliser theorem, |U |
divides the order of the group 〈g〉, implying that |U | = p. On the other hand, U is clearly a
subset of X(vm−1), and in fact, a proper subset (since Gu is intransitive on X(u) for every
u ∈ V (X)). Since X is a cubic graph, this implies that |U | ≤ 2, which contradicts the fact
that p is an odd prime. This contradiction shows that Gv is indeed a 2-group. �

We now have all the ingredients for the proof of Theorem 1.2. Suppose that Theorem 1.2
is false and let X be a minimal counter-example; that is, let X be a smallest connected
simple cubic vertex-transitive graph on a power of 2 vertices, not isomorphic to a Möbius
ladder on 8 or more vertices, which does not admit an efficient domination. Let m be the
positive integer such that |V (X)| = 2m, let G = Aut (X) and let v be a vertex of X .

The only connected simple vertex-transitive graphs on 4 or 8 vertices are the complete
graph K4, the cube Q3 and the Möbius ladder M4 (see [20]). Since the first two admit a
perfect domination while the last one is a Möbius ladder, we may assume that m ≥ 4.

Since X is vertex-transitive, it follows that |G| = 2m|Gv|. If G acts transitively on the
darts of X , then the famous theorem of Tutte [23] states that |Gv| = 3 · 2r for some non-
negative integer r not exceeding 4. On the other hand, if G acts intransitively on the darts
of X , then Lemma 4.1 implies that Gv is a 2-group. In both cases the order of G is divisible
by at most two primes, implying that G is soluble.

Let N be a minimal normal subgroup of G. Since G is soluble, N is elementary abelian
(see, for example, [19, Theorem 5.24]). If N were a 3-group, then the length of each of its
orbits would be either 1 or divisible by 3. Since |V (X)| is not divisible by 3, this would imply
that N fixes at least one vertex of X . However, being normal in a transitive permutation
group G, N would then fix every vertex of N , which is clearly a contradiction.

We may thus assume that N is an elementary abelian 2-group. Moreover, if G acts
intransitively on the darts of X , then G is a 2-group and must therefore have a nontrivial
centre. In this case we can thus choose N to be isomorphic to Z2. (We shall use this fact
later in the proof.)

Let XN be the quotient graph of X with respect to N and let ℘ : X → XN be the
corresponding quotient projection. We shall distinguish two cases, depending on whether ℘
is a covering projection or not.
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Case 1. Suppose first that ℘ is a covering projection, or equivalently, that N acts
semiregularly on V (X). Then XN is a cubic connected (not necessarily simple) vertex-
transitive graph, and a vertex-transitive group of automorphisms of XN lifts along ℘.

If XN is simple, then in view of the fact that X is a minimal counter-example to Theo-
rem 1.2, it follows that XN either admits an efficient domination or it is isomorphic to the
Möbius ladder Mr for some r ≥ 3. In the former case, X admits efficient domination by
Lemma 3.7. In the latter case (ie. if XN is isomorphic to the Möbius ladder), the graph XN

is nor dart-transitive and in particular G acts intransitively on the darts of X . Recall that
in this case we may assume that N ∼= Z2, which allows us to use Lemma 3.5 to conclude that
X is a prism, which, in view of Lemma 2.1, also admits efficient domination. In both cases,
we obtain a contradiction with the assumption that X is a counter-example to Theorem 1.2.
This shows that XN is not simple, and is therefore isomorphic to a graph from Lemma 3.1.

Now recall the comment (regarding the Betti numbers) that follows Lemma 3.2. If XN

is isomorphic to D3 (resp. K′′′

1 ), then the Betti number of XN is 2 (resp. 3), and N is a
subgroup of Z2

2 (resp. Z3
2). This shows that the order of XN is at most 8, contradicting our

assumption that m ≥ 4.
We may thus assume that XN is not isomorphic to K′′′

1 or D3. Note however that none of
the other graphs from Lemma 3.1 is dart-transitive, implying that G does not act transitively
on the darts of X . Recall that this implies that N ∼= Z2. Therefore, if XN has at most 2
vertices, then X has at most 4 vertices, contradicting our assumptions.

This leaves us with the possibility that XN is isomorphic either to C̄2k or C′

2k for some
k ≥ 3. In view of Lemma 3.2, we see that X ∼= Cov(XN , ζ) where ζ : D(XN ) → Z2 is a
voltage assignment that can be chosen so as to be trivial on any prescribed spanning tree of
XN .

If XN
∼= C′

2k , then we may assume that ζ(x) = 0 for all the darts along the cycle except

possibly for one pair of mutually inverse darts (call them x0 and x−1
0 ). Moreover, since X

is a simple graph, all the semiedges of XN must receive a non-trivial voltage. It is now
clear that the resulting covering graph Cov(XN , ζ) is isomorphic either to the prism P2k

(if ζ(x0) = 0) or to the Möbius ladder M2k (if ζ(x0) = 1); the latter clearly contradicting
our assumptions on X . Hence X is a prism whose order is divisible by 4, and therefore, by
Lemma 2.1, admits an efficient domination.

On the other hand, if XN
∼= C̄2k , then we may assume that ζ(x) = 0 for all the darts on

a path of length 2k − 1 containing all the edges of C̄2k that have no parallel counterparts.
Further, since X is a simple graph, any two parallel edges must receive distinct voltages.
Since the voltage group N has only two elements, this shows that the voltage assignment
ζ is uniquely determined and gives rise to the simple graph consisting of 2k vertex-fibres,
call them F0 = {u0, w0}, F1 = {u1, w1}, . . . , F2k−1 = {u2k−1, w2k−1}, where between two
consecutive fibres Fi and Fi+1 we have a perfect matching (if i is even) or a complete
bipartite graph K2,2 (if i is odd). Such a graph X satisfies the conditions of Lemma 2.3,
and therefore admits a perfect matching. This contradiction completes Case 1.

Case 2. Suppose now that ℘ : X → XN is not a covering projection. ThenN does not act
semiregularly on V (X) and XN is a vertex-transitive graph of valence 1 or 2. Furthermore,
since N is a 2-group, it cannot act transitively on the set of 3 ·2m−1 edges of X . This shows
that XN has at least two edges, implying that the valence of XN is 2 (rather than 1). If XN

consisted of one vertex only, then N would be vertex-transitive. But since N is abelian, this
would imply that N is regular, which contradicts our assumption that N is not semiregular.
This shows that XN has at least two vertices.

Before proceeding, let us first prove the following: If XN contains a link e between two
vertices u and v such that the preimage F = ℘−1(e) induces a disjoint union of cycles of
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length k for some k ≥ 4, then k = 4. Indeed: since N acts transitively on the edges of F , the
vertex-stabiliser Nṽ of a vertex ṽ ∈ ℘−1(v) acts transitively on the set of its F -neighbours
in ℘−1(v). On the other hand, since N is abelian, Nṽ fixes every vertex in the fibre ℘−1(v),
showing that the two F -neighbours of ṽ have the same neighbourhood, and thus lie on a
4-cycle consisting of edges in F . The graph induced by F is thus a disjoint union of 4-cycles,
as claimed. We shall refer to this conclusion as Implication F.

If XN has only two vertices, say u and w, then it is isomorphic either to the graph with
a single link between u and w and a semiedge attached to each of u and w or to the graph
with two links between u and w.

In the latter case, the ℘-preimage (call it F ) of one of the two links between u and w
is a perfect matching between the fibres ℘−1(u) and ℘−1(w). Since F is also an edge-orbit
of N , this implies that every element g of the stabiliser Nũ of ℘−1(u) is also contained in
the stabiliser Nw̃ of its F -neighbour w̃ ∈ ℘−1(w). However, since N is abelian g ∈ Nũ fixes
every vertex in the N -orbit ũN = ℘−1(u) and by the above, also every vertex in the N -orbit
w̃N = ℘−1(w). Hence Nũ is trivial, contrary to our assumption that N is not semiregular
on the vertex-set of X .

If XN has a single link between u and w and a semiedge attached to each of u and w,
then either the preimage of that link is a perfect matching, or it induces in X a disjoint
union of cycles of equal length. The former possibility leads to contradiction in the same
way as in the previous paragraph. On the other hand, if the preimage of the link induces
a disjoint union of cycles of equal length, then by Implication F above, these cycles have
length 4. Further, the preimages of two semiedges form a perfect matching in each of the
two vertex-fibres, showing that the graph X satisfies the assumptions of Lemma 2.4. The
graph X thus admits an efficient domination, contrary to our assumptions.

This leaves us with the possibility that XN has at least 3 vertices. Since its valence is 2,
this implies that XN

∼= C4k for some integer k = 2r, r ≥ 0. In particular, the vertex-set of
X can be partitioned into 4k N -orbits Bi, i ∈ Z4k such that an edge in Bi is adjacent only
to vertices in Bi−1 and Bi+1. Since the sets Bi are N -orbits, the graphs X [Bi, Bi+1] induced
by two consecutive sets Bi and Bi+1 are regular. Since the valence of X is 3, this shows
that for each i ∈ Z4k one of the graphs X [Bi, Bi−1] and X [Bi, Bi+1] is regular of valence 1
and the other is regular of valence 2. In view of Implication F above, whenever X [Bi, Bi+1]
is of valence 2, then it is in fact a disjoint union of 4-cycles, showing that X satisfies the
assumptions of Lemma 2.3. HenceX admits efficient domination. This contradiction finishes
the proof of Theorem 1.2.
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