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Abstract

A certain recursive construction for biembeddings of Latin squares has

played a substantial role in generating large numbers of nonisomorphic tri-

angular embeddings of complete graphs. In this paper we prove that, except

for the groups C2, C
2

2 and C4, each Latin square formed from the Cayley

table of an Abelian group appears in a biembedding in which the second

Latin square has a transversal. Such biembeddings may then be freely used

as ingredients in the recursive construction.
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1 Background

A graph embedding is face 2-colourable if the faces may be coloured by two colours
in such a way that any two faces with a common boundary edge receive differ-
ent colours. A face 2-colourable triangular embedding of Kn,n,n determines two
Latin squares of order n, one for each colour class, by assigning the vertices of
the three partite sets as labels for the rows, columns and entries (in any one of
the six possible orders) of the two Latin squares. Two Latin squares L and L′ of
the same order are said to be paratopic if they lie in the same main class, which
is to say that there are three bijections from the rows, columns and symbols of
L to those of some conjugate of L′. We say that two Latin squares of order n

are biembeddable in a surface if there is a face 2-colourable triangular embedding
of Kn,n,n in which the face sets forming the two colour classes give paratopic
copies of the two squares. In [3] a recursive construction was presented for such
biembeddings. This construction requires that in one of the ingredient biembed-
dings, one of the two squares should possess a transversal. In applications, it
has proved advantageous for the other square to possess a nice structure, such as
being a Cayley table of some group. The construction can be used to produce
large numbers of nonisomorphic triangular embeddings of both Kn,n,n and of Kn

for suitable values of n. By this method, the best lower bounds on these numbers
have been established, each of which is of the form nan2

and apply to infinite sets
of values of n for suitable positive constants a [1].

In [4] we proved that, except for the group C2
2 , every Latin square formed from

a Cayley table of an Abelian group appears in a biembedding. It would be useful
for future applications of the recursive construction if it could be determined
which Cayley tables of Abelian groups appear in a biembedding in which the
second square (the mate) has a transversal. In the current paper we show that
such biembeddings exist except in three cases, namely when the Abelian group is
C2, C

2
2 or C4.

The reasons for the three exceptions are easy to see. The Cayley table of C2
2

appears in no biembedding, while the unique biembeddings in which the Cayley
tables of C2 and C4 appear are with copies of themselves, and both these squares
lack transversals, see [2].

For general background material on topological embeddings, we refer the
reader to [5] and [6]. Our embeddings will always be 2-cell embeddings in closed
connected 2-manifolds without a boundary. It was shown in [2] that a triangular
embedding of Kn,n,n is face 2-colourable if and only if the supporting surface is
orientable, and the surface is therefore a sphere with an appropriate number of
handles.

Given a Latin square L of order n, we may use the notation k = L(i, j) to
denote that entry k appears in row i column j of L; alternatively we may write
(i, j, k) ∈ L. In this latter form, the triples of any Latin square will always
be specified in (row, column, entry) order. A transversal in a Latin square L

is a set of triples of L covering every row, every column and every entry, each
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precisely once. A partial transversal is defined similarly with rows, columns and
entries covered at most once. If L and L′ are Latin squares of the same order,
with common sets of row labels, of column labels, and of entries, then a shared

transversal is a set of triples of L∪L′ covering every row, every column and every
entry, each precisely once. We will write L ⊲⊳ L′ (to be read as L biembeds with L′

without relabelling), if the particular realizations of L and L′ form an embedding
in a surface; that is to say that the triangles formed by the (row, column, entry)
triples of L and L′ may be sewn together along their common edges to form the
surface. With a slight abuse of notation we also use L ⊲⊳ L′ to denote the actual
embedding itself. We will also identify a group G with its Cayley table, so that
we may write G ⊲⊳ H , meaning that the Latin square formed by a Cayley table
of G biembeds with the Latin square H .

2 The theorem

Our aim is to prove the following result.

Theorem 2.1 Suppose that G is an Abelian group and that G 6= C2, C
2
2 or C4.

Then G ⊲⊳ H for some Latin square H that has a transversal.

Some of the steps in the proof are simplified by aiming instead for a stronger
result.

Theorem 2.2 Suppose that G is an Abelian group and that G 6= C2, C
2
2 or C4.

Then G ⊲⊳ H for some Latin square H that has at least two disjoint transversals.

As indicated above, a major role is played by the following recursive construc-
tion given first in [3].

Theorem 2.3 [3] Suppose that L ⊲⊳ L′, where L and L′ are of order n and have

row, column and entry labels {0, 1, . . . , n − 1}. Suppose also that Q ⊲⊳ Q′, where

Q and Q′ are of order m and have row, column and entry labels {0, 1, . . . , m−1},
and that the square Q′ has a transversal T . Define squares Q(L) and Q′(L, T , L′)
by

Q(L)(nu + i, nv + j) = nQ(u, v) + L(i, j),

Q′(L, T , L′)(nu + i, nv + j) = nQ′(u, v) + k,

for 0 ≤ u, v ≤ m − 1 and 0 ≤ i, j ≤ n − 1, where

k =

{

L(i, j) if (u, v, w) 6∈ T for any w,

L′(i, j) if there exists w such that (u, v, w) ∈ T ,

Then Q(L) and Q′(L, T , L′) are Latin squares of order mn with row, column and

entry labels {0, 1, . . . , mn − 1}, and Q(L) ⊲⊳ Q′(L, T , L′).
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The square Q(L) is partitioned into n×n subsquares which are just relabelled
copies of L. Note also that if Q and L are groups then Q(L) is a Cayley table
for the group Q × L. The square Q′(L, T , L′) has a similar structure to Q(L)
but the subsquares corresponding to the transversal T are relabelled copies of
L′. Note that if L′ has a transversal, then among the relabelled copies of L′ one
can find a transversal in Q′(L, T , L′). This feature facilitates re-application of the
construction. The following Lemma guarantees the existence of such a transversal
under different conditions.

Lemma 2.1 Suppose that, in addition to the conditions of Theorem 2.3, L and

L′ have a shared transversal and Q′ has a second transversal disjoint from T .

Then Q′(L, T , L′) has a transversal.

Proof. Suppose that L and L′ have a shared transversal P ∪P ′, where P ⊆ L and
P ′ ⊆ L′, and that Q′ has a second transversal S disjoint from T .

If P = ∅, so that P ′ is a (full) transversal of L′, then by the argument fol-
lowing the statement of Theorem 2.3, Q′(L, T , L′) has a transversal. Similarly if
P ′ = ∅, so that P is a (full) transversal of L, then the subsquares of Q′(L, T , L′)
corresponding to the transversal S are relabelled copies of L, and the resulting re-
labelled copies of P form a transversal in Q′(L, T , L′). We may therefore assume
that neither P nor P ′ is empty, and if p = |P|, then 1 ≤ p ≤ n − 1.

Permuting the rows or columns of a Latin square does not affect the existence
of transversals. We may therefore considerably simplify notation and argument,
without loss of generality, by making the following assumptions.
(i) The partial transversals P and P ′ are located respectively on the leading
diagonals of L and L′, with P corresponding to the cells (t, t) for 0 ≤ t ≤ p − 1,
and P ′ corresponding to the cells (t, t) for p ≤ t ≤ n − 1.
(ii) The transversal T is located on the leading diagonal of Q′.

With these assumptions Q′(L, T , L′) has the form











nQ′(0, 0) + L′ nQ′(0, 1) + L nQ′(0, 2) + L · · ·
nQ′(1, 0) + L nQ′(1, 1) + L′ nQ′(1, 2) + L · · ·
nQ′(2, 0) + L nQ′(2, 1) + L nQ′(2, 2) + L′ · · ·

...
...

...
. . .











where the (i, j) entry is an n×n subsquare formed from a copy of L or L′ shifted
by a constant amount nQ′(i, j). Clearly this nm× nm Latin square has a partial
transversal R′ formed from copies of P ′ ⊆ L′ in the cells (ni + t, ni + t) for
p ≤ t ≤ n − 1 and 0 ≤ i ≤ m − 1. In fact,

R′ = {(ni + t, ni + t, nQ′(i, i) + L′(t, t)) : p ≤ t ≤ n − 1, 0 ≤ i ≤ m − 1}.

Now suppose that the transversal S of Q′ is given by

S = {(i, ji, Q
′(i, ji)) : 0 ≤ i ≤ m − 1}.
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Then ji 6= i for 0 ≤ i ≤ m − 1 since S is disjoint from T . Once again examining
the form of Q′(L, T , L′) it will be seen that it contains a partial transversal R
formed from copies of P ⊆ L in the cells (ni + t, nji + t) for 0 ≤ t ≤ p − 1 and
0 ≤ i ≤ m − 1. In fact,

R = {(ni + t, nji + t, nQ′(i, ji) + L(t, t)) : 0 ≤ t ≤ p − 1, 0 ≤ i ≤ m − 1}.

It is now routine to check that R∪R′ forms a (full) transversal in Q′(L, T , L′).

Observe that if L and L′ have a second shared transversal P̄ ∪P̄ ′ disjoint from
P ∪P ′, then the resulting transversal of Q′(L, T , L′) (say, R̄∪R̄′) will be disjoint
from R∪R′. We state this result in the form of a corollary. This is the main tool
we will use to prove Theorem 2.2.

Corollary 2.1 Suppose that, in addition to the conditions of Theorem 2.3, L

and L′ have two disjoint shared transversals and that Q′ has a second transversal

disjoint from T . Then Q′(L, T , L′) has two disjoint transversals.

We next recall the existence of the regular biembedding of each cyclic square
Cn. For the meaning of this term, see the discussion in [4].

Theorem 2.4 [2] If the Latin squares Cn and C′

n are defined by Cn(i, j) = i + j

mod n and C′

n(i, j) = i + j + 1 mod n, then Cn ⊲⊳ C′

n.

In applications of Theorem 2.4 we will use the facts that

(i) if n > 1 is odd then C′

n has at least two disjoint transversals T = {(i, i, 2i+
1) : i ∈ Zn} and S = {(i, i + 1, 2i + 2) : i ∈ Zn}, and

(ii) if n is even then Cn and C′

n have at least two disjoint shared transversals
P ∪P ′ and P̄ ∪ P̄ ′ where P = {(i, i, 2i) : 0 ≤ i ≤ n

2 − 1}, P ′ = {(i, i, 2i+1) :
n
2 ≤ i ≤ n − 1}, P̄ = {(i, i, 2i) : n

2 ≤ i ≤ n − 1} and P̄ ′ = {(i, i, 2i + 1) : 0 ≤
i ≤ n

2 − 1}.

We will make particular use of the disjoint shared transversals in the cases n = 2
and n = 4.

As an example, take the regular biembeddings C4 ⊲⊳ C′

4 and Ck ⊲⊳ C′

k when
k ≥ 3 is odd, and apply the recursive construction of Theorem 2.3 to obtain a
biembedding of C4 × Ck = C4k, say C4k ⊲⊳ H . By Corollary 2.1, the mate H has
at least two disjoint transversals. These are shown in Figure 1, one highlighted
and the other boxed.
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H =

0 1 2 3 4 5 6 7 8 9 10 11 · · ·

0 5 6 7 4 8 9 10 11 12 13 14 15 · · ·

1 6 7 4 5 9 10 11 8 13 14 15 12 · · ·

2 7 4 5 6 10 11 8 9 14 15 12 13 · · ·

3 4 5 6 7 11 8 9 10 15 12 13 14 · · ·

4 8 9 10 11 13 14 15 12 16 17 18 19 · · ·

5 9 10 11 8 14 15 12 13 17 18 19 16 · · ·

6 10 11 8 9 15 12 13 14 18 19 16 17 · · ·

7 11 8 9 10 12 13 14 15 19 16 17 18 · · ·

8 12 13 14 15 16 17 18 19 21 22 23 20 · · ·

9 13 14 15 12 17 18 19 16 22 23 20 21 · · ·

10 14 15 12 13 18 19 16 17 23 20 21 22 · · ·

11 15 12 13 14 19 16 17 18 20 21 22 23 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

Figure 1. A mate for C4k.

Lemma 2.2 If i ≥ 3 then C2i ⊲⊳ H for some H having at least two disjoint

transversals.

Proof. In [4, Lemma 2.1] it was shown that for each i ≥ 3 there is a mate H such
that C2i ⊲⊳ H . In the case when i = 3 the mate H is given by

H =

0 1 2 3 4 5 6 7

0 7 2 3 0 1 4 5 6

1 3 4 5 1 6 7 0 2

2 1 5 6 4 7 0 2 3

3 6 3 7 5 0 2 4 1

4 5 7 0 6 2 3 1 4

5 2 0 4 7 3 1 6 5

6 0 6 1 2 4 5 3 7

7 4 1 2 3 5 6 7 0

As one can see, H has two disjoint transversals, one highlighted and one boxed.
In the case when i ≥ 4, the square H was obtained from the square C′

2i

mentioned in Theorem 2.4 by replacing the 16 triples ( rn
4 , sn

4 ,
n(r+s)

4 + 1) for
0 ≤ r, s ≤ 3 by the following triples.

(0, 0, n
2 + 1), (0, n

4 , 3n
4 + 1), (0, n

2 , 1), (0, 3n
4 , n

4 + 1),
(n

4 , 0, 3n
4 + 1), (n

4 , n
4 , 1), (n

4 , n
2 , n

4 + 1), (n
4 , 3n

4 , n
2 + 1),

(n
2 , 0, 1), (n

2 , n
4 , n

4 + 1), (n
2 , n

2 , n
2 + 1), (n

2 , 3n
4 , 3n

4 + 1),
(3n

4 , 0, n
4 + 1), (3n

4 , n
4 , n

2 + 1), (3n
4 , n

2 , 3n
4 + 1), (3n

4 , 3n
4 , 1).

7



As noted in [4], the resulting mate H contains the transversal T formed by triples

(x, x + 2, 2x + 3) for x = 0, 1, . . . , n
2 − 3, except for x = n

4 − 1,

(x, x − 1, 2x) for x = n
2 + 2, n

2 + 3, . . . , n − 1, except for x = 3n
4 ,

(n
4 − 1, 3n

4 − 1, n − 1), (n
2 − 2, 1, n

2 ), (n
2 − 1, n

2 , 0),

(n
2 , 0, 1), (n

2 + 1, n − 1, n
2 + 1), (3n

4 , n
4 + 1, 2).

Now consider the following 2i triples of H

(x, x + 2 + n
2 , 2x + 3 + n

2 ) for x = 0, 1, . . . , n
2 − 3, except for x = n

4 − 1,

(x, x − 1 + n
2 , 2x + n

2 ) for x = n
2 + 2, n

2 + 3, . . . , n − 1, except for x = 3n
4 ,

(n
4 − 1, n

4 − 1, n
2 − 1), (n

2 − 2, n
2 + 1, 0), (n

2 − 1, 0, n
2 ),

(n
2 , n

2 , n
2 + 1), (n

2 + 1, n
2 − 1, 1), (3n

4 , 3n
4 + 1, n

2 + 2)

Since these triples cover every row, every column and every entry, they form a
transversal S in H which is clearly disjoint from T .

In the proof of Lemma 2.2 of [4], it was shown that C2
4 ⊲⊳ K for some K having

two disjoint transversals. Take the regular biembedding C4 ⊲⊳ C′

4 (Theorem 2.4)
with C2

4 ⊲⊳ K and apply the recursive construction of Theorem 2.3 to obtain a
biembedding of C4 × C2

4 = C3
4 , say C3

4 ⊲⊳ L. By Corollary 2.1, the mate L has at
least two disjoint transversals. Repeating this process gives the following result.

Lemma 2.3 If i ≥ 2 then Ci
4 ⊲⊳ H for some H having at least two disjoint

transversals.

In the proof of Lemma 2.3 of [4], we have (C2 × C4) ⊲⊳ H , where H is a copy
of the Cayley table of the dihedral group D4 of order 8. It is very easy to see that
H has two disjoint transversals. Consequently, we have the following result.

Lemma 2.4 (C2×C4) ⊲⊳ H for some H having at least two disjoint transversals.

In [3] it was shown that C3
2 ⊲⊳ K, where

K =

0 1 2 3 4 5 6 7

0 2 4 6 7 0 1 3 5

1 4 2 7 6 1 0 5 3

2 7 1 4 5 2 3 6 0

3 1 7 5 4 3 2 0 6

4 6 3 0 2 5 7 4 1

5 3 6 2 0 7 5 1 4

6 0 5 1 3 4 6 2 7

7 5 0 3 1 6 4 7 2
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The square K has two disjoint transversals, one highlighted and one boxed. Take
the regular biembedding C2 ⊲⊳ C′

2 (Theorem 2.4) with C3
2 ⊲⊳ K and apply the

recursive construction of Theorem 2.3 to obtain a biembedding of C2 ×C3
2 = C4

2 ,
say C4

2 ⊲⊳ L. By Corollary 2.1, the mate L has at least two disjoint transversals.
Repeating this process gives the following result.

Lemma 2.5 If i ≥ 3 then Ci
2 ⊲⊳ H for some H having at least two disjoint

transversals.

Proof of Theorem 2.2. Suppose that G is an Abelian group. In general, we may
write G as a direct product of cyclic groups in the form

G = C
j1
2i1

× C
j2
2i2

× · · · × C
jm

2im
× Cl1

k1
× Cl2

k2
× · · · × Cln

kn
,

where each is, js and ls is a positive integer, and each ks is an odd positive
integer. Without loss of generality we may assume that i1 < i2 < . . . < im and
k1 < k2 < . . . < kn. If G has no factor C2i , that is if m = 0, then starting with
the regular biembedding of each Cks

and applying Corollary 2.1 repeatedly, we
have G ⊲⊳ H for some H having at least two disjoint transversals. In view of
Lemma 2.2, the same is true if G has factors C2i for i ≥ 3 but no factors C2 or
C4. It remains to deal with the cases when G has factors C2 and/or C4.

Consider first the case when G has no factors apart from C2 and C4, that is
G = C

j1
2 ×C

j2
4 . If (j1, j2) = (0, 0) there is nothing to prove. Other cases are dealt

with in Table 1, where R denotes use of regular biembeddings (Theorem 2.4), L
a lemma, C the Corollary 2.1, and t(H) denotes the number of transversals in H .

j1 j2 G G ⊲⊳ H (?) t(H)
0 1 C4 R 0

≥ 2 C
j2
4 L2.3 ≥ 2

1 0 C2 R 0
1 C2 × C4 L2.4 ≥ 2

≥ 2 C
j2−1
4 × (C2 × C4) C, R, L2.4 ≥ 2

2 0 C2
2 No biembedding –

1 C2 × (C2 × C4) C, R, L2.4 ≥ 2
2 (C2 × C4) × (C2 × C4) C, L2.4 ≥ 2

≥ 3 C
j2−2
4 × (C2 × C4) × (C2 × C4) C, R, L2.4 ≥ 2

≥ 3 0 C
j1
2 L2.5 ≥ 2

≥ 1 C
j2
4 × C

j1
2 C, R, L2.5 ≥ 2

Table 1. G = C
j1
2 × C

j2
4 .

Next consider the case when G = C
j1
2 × C

j2
4 × G∗ where G∗ is non-trivial

but has no factors C2 or C4. We already have G∗ ⊲⊳ H∗ for some H∗ having at
least two disjoint transversals. For (j1, j2) = (1, 0) or (0, 1), recall the existence
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of disjoint shared transversals in the regular biembeddings of C2 and C4. Then
if (j1, j2) 6= (2, 0), by using Corollary 2.1 and the appropriate case from Table 1,
we obtain G ⊲⊳ H for some H having at least two disjoint transversals.

All that remains to consider is the case C2
2 × G∗. But this may be written

as C2 × (C2 × G∗), and dealt with using the regular biembedding of C2 and two
applications of Corollary 2.1. We have therefore proved that if G is an Abelian
group, G 6= C2, C

2
2 or C4, then G ⊲⊳ H for some Latin square H that has two

disjoint transversals. This completes the proof of Theorem 2.2.
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