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Abstract

Let G be a graph. Denote by Li(G) its i-iterated line graph and denote
by W (G) its Wiener index. Dobrynin, Entringer and Gutman stated the
following problem: Does there exist a non-trivial tree T and i ≥ 3 such that
W (Li(T )) = W (T )? In a series of five papers we solve this problem. In a
previous paper we proved that W (Li(T )) > W (T ) for every tree T that is not
homeomorphic to a path, claw K1,3 and to the graph of “letter H”, where
i ≥ 3. Here we prove that W (Li(T )) > W (T ) for every tree T homeomorphic
to the claw, T 6= K1,3 and i ≥ 4.

1 Introduction

Let G be a graph. For any two of its vertices, say u and v, denote by dG(u, v) (or
by d(u, v) if no confusion is likely) the distance from u to v in G. The Wiener index

of G, W (G), is defined as

W (G) =
∑

u 6=v

d(u, v),

where the sum is taken through all unordered pairs of vertices of G. Wiener index
was introduced by Wiener in [12]. It is related to boiling point, heat of evapora-
tion, heat of formation, chromatographic retention times, surface tension, vapour
pressure, partition coefficients, total electron energy of polymers, ultrasonic sound
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velocity, internal energy, etc., see [8]. For this reason Wiener index is widely studied
by chemists. The interest of mathematicians was attracted in 1970’s. It was rein-
troduced as the distance and transmission, see [5] and [11], respectively. Recently,
there are whole special issues of journals devoted to (mathematical properties) of
Wiener index, see [6] and [7], as well as several surveys, see e.g. [3] and [4].

By definition, if G has a unique vertex, then W (G) = 0. In this case, we say
that the graph G is trivial. We set W (G) = 0 also when the set of vertices (and
hence also the set of edges) of G is empty.

The line graph of G, L(G), has vertex set identical with the set of edges of G.
Two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent
in G. Iterated line graphs are defined inductively as follows:

Li(G) =

{

G if i = 0,
L(Li−1(G)) if i > 0.

In [1] we have the following statement.

Theorem 1.1 Let T be a tree on n vertices. Then W (L(T )) = W (T )−
(

n

2

)

.

Since
(

n

2

)

> 0 if n ≥ 2, there is no nontrivial tree for which W (L(T )) = W (T ).
However, there are trees T satisfying W (L2(T )) = W (T ), see e.g. [2]. In [3], the
following problem was posed:

Problem 1.2 Is there any tree T satisfying the equality W (Li(T )) = W (T ) for

some i ≥ 3?

As observed above, if T is a trivial tree then W (Li(T )) = W (T ) for every i ≥ 1,
although here the graph Li(T ) is empty.

Denote by H the tree on six vertices out of which two have degree 3 and four
have degree 1. Since H can be drawn to resemble the letter H , it is often called the
H-graph. Graphs G1 and G2 are homeomorphic if and only if the graphs obtained
from G1 and G2, respectively, by substituting the vertices of degree two together
with the two incident edges with a single edge, are isomorphic. In [10] we proved
the following:

Theorem 1.3 Let T be a tree, not homeomorphic to a path, claw K1,3 and the graph

H. Then W (Li(T )) > W (T ) for all i ≥ 3.

Since the case when T is a path is trivial, it remains to consider graphs homeo-
morphic to the claw K1,3 and those homeomorphic to H . In this paper we concen-
trate on graphs homeomorphic to the claw K1,3. The remaining two cases, namely
the trees homeomorphic to H for i ≥ 3 and trees homeomorphic to K1,3 for i = 3,
are dealt with in a forthcoming paper.
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First, consider the case of the claw K1,3 itself. Then Li(K1,3) is a cycle of length
3 for every i ≥ 1. Since W (K1,3) = 9 and the Wiener index of the cycle of length 3
is 3, we have W (Li(K1,3)) < W (K1,3) for every i ≥ 1. For other trees homeomorphic
to K1,3, we prove the opposite inequality, provided that i ≥ 4:

Theorem 1.4 Let T be a tree homeomorphic to K1,3, such that T 6= K1,3. Then

W (Li(T )) > W (T ) for every i ≥ 4.

In [9] we proved the following statement:

Theorem 1.5 Let G be a connected graph. Then fG(i) = W (Li(G)) is a convex

function in variable i.

Hence, to prove Theorem 1.4 it suffices to prove:

Theorem 1.6 Let T be a tree homeomorphic to K1,3, such that T 6= K1,3. Then

W (L4(T )) > W (T ).

2 Proofs

Let a, b, c ≥ 1. Denote by Ca,b,c a tree that has three paths of lengths a, b and c,
starting at a common vertex of degree 3. Obviously, Ca,b,c is homeomorphic to K1,3

and C1,1,1 = K1,3. By symmetry, we may assume a ≥ b ≥ c, see Figure 1 for C5,4,3.

Figure 1: The graph C5,4,3.

Denote
∆Ca,b,c = W (L4(Ca,b,c))−W (Ca,b,c).

Our aim is to prove ∆Ca,b,c > 0 if a ≥ 2. We start with the case a ≤ 3. This case
will serve as the base of induction in the proof of Theorem 1.6.

Lemma 2.1 Let 3 ≥ a ≥ b ≥ c ≥ 1 and a 6= 1. Then ∆Ca,b,c > 0.
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Proof. Since 3 ≥ a ≥ b ≥ c ≥ 1 and a 6= 1, there are 9 cases to consider.
In Table 1 we present ∆Ca,b,c for each of these cases. The results were found by a
computer, though it is rather easy to find W (Ca,b,c) by hand, and W (L4(Ca,b,c)) can
be found by applying Proposition 2.3 to L2(Ca,b,c).

(a, b, c) W (Ca,b,c) W (L4(Ca,b,c)) ∆Ca,b,c

(3, 3, 3) 138 642 504
(3, 3, 2) 102 533 431
(3, 3, 1) 75 257 182
(3, 2, 2) 72 435 363
(3, 2, 1) 50 192 142
(3, 1, 1) 32 65 33
(2, 2, 2) 48 348 300
(2, 2, 1) 31 138 107
(2, 1, 1) 18 38 20

Table 1: ∆Ca,b,c for a ≤ 3.

In what follows we assume that a ≥ 4. Denote

δ0(a, b, c) = W (Ca,b,c)−W (Ca−1,b,c)

δ4(a, b, c) = W (L4(Ca,b,c))−W (L4(Ca−1,b,c)).

Then
∆Ca,b,c −∆Ca−1,b,c = δ4(a, b, c)− δ0(a, b, c), (1)

so if we prove δ4(a, b, c)− δ0(a, b, c) ≥ 0, we obtain ∆Ca,b,c ≥ ∆Ca−1,b,c.
We distinguish 4 vertices in Ca,b,c. Denote by y the vertex of degree 3, and

denote by x1, x2 and x3 the pendant vertices so that d(x1, y) = a, d(x2, y) = b and
d(x3, y) = c, see Figure 1. As is the custom, by V (G) we denote the vertex set of G.

Lemma 2.2 Let a, b, c ≥ 1. Then

δ0(a, b, c) =

(

a+ b+ 1

2

)

+

(

a+ c+ 1

2

)

−

(

a + 1

2

)

.

Proof. Since Ca−1,b,c is a subgraph of Ca,b,c with V (Ca,b,c)−V (Ca−1,b,c) = {x1},
we have

δ0(a, b, c) = W (Ca,b,c)−W (Ca−1,b,c) =
∑

u

d(u, x1),

where the sum goes through all u ∈ V (Ca,b,c)\{x1}. For vertices u of the x1−x2 path,
the sum of all d(u, x1) is 1+2+· · ·+(a+b) =

(

a+b+1
2

)

. For vertices of the x1−x3 path
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which do not lay on x1−x2 path, the sum of d(u, x1) is (a+1)+(a+2)+· · ·+(a+c) =
(

a+c+1
2

)

−
(

a+1
2

)

, see Figure 1. Since the paths x1−x2 and x1−x3 contain all vertices

of Ca,b,c, we have δ0(a, b, c) =
(

a+b+1
2

)

+
(

a+c+1
2

)

−
(

a+1
2

)

.

For two subgraphs S1 and S2 of G, by d(S1, S2) we denote the shortest distance
in G between a vertex of S1 and a vertex of S2. If S1 and S2 share an edge then we
set d(S1, S2) = −1.

Analogously as a vertex of L(G) corresponds to an edge of G, a vertex of L2(G)
corresponds to a path of length two in G. For x ∈ V (L2(G)) we denote by B2(x)
the corresponding path in G. Let x and y be two distinct vertices of L2(G). It was
proved in [9] that

dL2(G)(x, y) = dG(B2(x), B2(y)) + 2.

Let u, v ∈ V (G), u 6= v. Denote by βi(u, v) the number of pairs x, y ∈
V (L2(G)), with u being the center of B2(x) and v being the center of B2(y), such
that d(B2(x), B2(y)) = d(u, v)−2+ i. Since d(u, v)−2 ≤ d(B2(x), B2(y)) ≤ d(u, v),
we have βi(u, v) = 0 for all i /∈ {0, 1, 2}. Denote by deg(w) the degree of w in G. In
[9] we have the following statement:

Proposition 2.3 Let G be a connected graph. Then

W (L2(G)) =
∑

u 6=v

[(

deg(u)

2

)(

deg(v)

2

)

d(u, v) + β1(u, v) + 2β2(u, v)

]

+
∑

u

[

3

(

deg(u)

3

)

+ 6

(

deg(u)

4

)]

, (2)

where the first sum goes through unordered pairs u, v ∈ V (G) and the second one

goes through u ∈ V (G).

We apply Proposition 2.3 to L2(Ca,b,c) and L2(Ca−1,b,c). This enables us to cal-
culate δ4(a, b, c) using degrees and distances of the second iterated line graph.

Denote by w1 the pendant vertex of L2(Ca,b,c) corresponding to the path of length
2 terminating at x1. Since a ≥ 4, the unique neighbour of w1 has degree 2. Denote
by w this neighbour, see Figure 2. For every vertex u ∈ V (L2(Ca,b,c)) \ {w,w1},
denote by n(u) the number of neighbours of u, whose distance to w is at least
d(u, w). We have:

Lemma 2.4 Let a ≥ 4 and b, c ≥ 1. Then

δ4(a, b, c) =
∑

u

[(

deg(u)

2

)

d(u, w) +

(

n(u)

2

)]

,

where the sum goes through all vertices of V (L2(Ca,b,c)) \ {w,w1}.
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Figure 2: The graph L2(C5,4,3).

Proof. Observe that L2(Ca−1,b,c) is a subgraph of L2(Ca,b,c) and V (L2(Ca,b,c)) \
V (L2(Ca−1,b,c)) = {w1}. Since deg(w1) = 1, the vertex w1 cannot be the center of a

path of length 2, implying that βi(u, w1) = 0 for every u and i. Since
(

deg(w1)
2

)

= 0,
all summands of (2) containing w1 contribute 0 to W (L4(Ca,b,c)). The vertices of
L2(Ca−1,b,c), except w, have the same degree in L2(Ca,b,c) as in L2(Ca−1,b,c). The

degree of w is 1 in L2(Ca−1,b,c), and it is 2 in L2(Ca,b,c). Therefore
∑

u[3
(

deg(u)
3

)

+

6
(

deg(u)
4

)

] has the same value in L2(Ca,b,c) as in L2(Ca−1,b,c), so these sums will cancel
out. Thus, we have

δ4(a, b, c) = W (L2(L2(Ca,b,c)))−W (L2(L2(Ca−1,b,c)))

=
∑

u

[(

deg(u)

2

)(

2

2

)

d(u, w) + β1(u, w) + 2β2(u, w)

]

,

where the sum goes through u ∈ V (L2(Ca−1,b,c)) \ {w}.
Let u ∈ V (L2(Ca−1,b,c)) \ {w}. Since deg(w1) = 1 and deg(w) = 2 in L2(Ca,b,c),

the unique path of length 2 centered at w contains an endvertex closer to u than w.
Hence, β2(u, w) = 0. Consequently, β1(u, w) equals the number of paths of length 2
centered at u, both endvertices of which have distance to w at least d(u, w). Hence,
β1(u, w) =

(

n(u)
2

)

, which completes the proof.

Using Lemma 2.4 we prove the induction step.

Lemma 2.5 Let a ≥ b ≥ c ≥ 1 and a ≥ 4. Then δ4(a, b, c) ≥ δ0(a, b, c).

Proof. We distinguish 8 more vertices in L2(Ca,b,c). Denote by w2 and w3

pendant vertices corresponding to the paths of length 2 containing x2 and x3, re-
spectively, see Figure 1 and 2. Denote by z1, z2 and z3 the vertices corresponding to
the paths of length 2, whose endvertex is y; and denote by z4, z5 and z6 the vertices
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corresponding to the paths of length 2 centered at y. Of course, if b ≤ 2 or c ≤ 2,
then some of these vertices are not defined.

For u ∈ V (L2(Ca−1,b,c)) \ {w}, denote

h(u) =

(

deg(u)

2

)

d(u, w) +

(

n(u)

2

)

.

By Lemma 2.4, we have δ4(a, b, c) =
∑

u h(u), where the sum goes through all
vertices of V (L2(Ca,b,c)) \ {w,w1}. If u ∈ {w2, w3} then deg(u) = 1 and n(u) = 0,
so h(u) = 0. Thus, vertices of degree 1 contribute 0 to

∑

u h(u). Denote

Si =
∑

u

h(u),

where the sum is taken over all interior vertices u of the wi − zi path, u 6= w and
1 ≤ i ≤ 3. Then δ4(a, b, c) =

∑3
i=1 Si +

∑6
i=1 h(zi).

Regarding the values of a, b and c, we distinguish 4 cases:

Case 1. a ≥ 4 and b, c ≥ 3.
If u is a vertex of degree 2, then n(u) = 1 and

(

deg(u)
2

)

= 1. Hence h(u) = d(u, w).
Thus,

S1 = 1 + 2 + · · ·+ (a−4) =
(

a−3
2

)

S2 = a+ (a+1) + · · ·+ (a+b−4) =
(

a+b−3
2

)

−
(

a

2

)

S3 = a+ (a+1) + · · ·+ (a+c−4) =
(

a+c−3
2

)

−
(

a

2

)

.

If u ∈ {z1, z2, z3}, then deg(u) = 3 and n(u) = 2. Thus h(u) = 3d(u, w) + 1. If
u ∈ {z4, z5}, then deg(u) = 4 and n(u) = 3, so h(u) = 6d(u, w) + 3. Finally, if
u = z6, then deg(u) = 4 and n(u) = 2, so h(u) = 6d(u, w) + 1. This gives

h(z1) = 3(a−3) + 1 h(z4) = h(z5) = 6(a−2) + 3
h(z2) = h(z3) = 3(a−1) + 1 h(z6) = 6(a−1) + 1.

Since δ4(a, b, c) =
∑3

i=1 Si +
∑6

i=1 h(zi), we have

δ4(a, b, c) =
(

a−3
2

)

+
(

a+b−3
2

)

+
(

a+c−3
2

)

− 2
(

a

2

)

+(3a−8) + 2(3a−2) + 2(6a−9) + (6a−5).

Denote P = δ4(a, b, c)− δ0(a, b, c). By Lemma 2.2 we have δ0(a, b, c) =
(

a+b+1
2

)

+
(

a+c+1
2

)

−
(

a+1
2

)

. Expanding the terms we get

P = 17a− 4b− 4c− 17.

Since a ≥ b and a ≥ c, we have P ≥ 9a − 17. Finally, since a ≥ 4, we have
P = δ4(a, b, c)− δ0(a, b, c) ≥ 0.
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Case 2. a ≥ 4, b ≥ 3 and c ≤ 2.
We calculate first δ4(a, b, 1). In L2(Ca,b,1) we have S3 = 0; note that z3 is not

defined here and that deg(z5) = deg(z6) = 3 (see Figure 2). Analogously as in
Case 1 we get:

S1 =
(

a−3
2

)

h(z2) = 3(a−1) + 1

S2 =
(

a+b−3
2

)

−
(

a

2

)

h(z4) = 6(a−2) + 3
S3 = 0 h(z5) = 3(a−2) + 1
h(z1) = 3(a−3) + 1 h(z6) = 3(a−1)

since n(z5) = 2 and n(z6) = 1. Thus,

δ4(a, b, 1) =
(

a−3
2

)

+
(

a+b−3
2

)

−
(

a

2

)

+ (3a−8)

+(3a−2) + (6a−9) + (3a−5) + (3a−3).

Denote P = δ4(a, b, 1) − δ0(a, b, 2). By Lemma 2.2 we have δ0(a, b, 2) =
(

a+b+1
2

)

+
(

a+3
2

)

−
(

a+1
2

)

. Expanding the terms we get

P = 9a− 4b− 18.

Since a ≥ b, we have P ≥ 5a− 18, and as a ≥ 4, we have P ≥ 0. Since δ4(a, b, 2) ≥
δ4(a, b, 1) and δ0(a, b, 2) ≥ δ0(a, b, 1), we conclude δ4(a, b, i)− δ0(a, b, i) ≥ P ≥ 0 for
i ∈ {1, 2}.

Case 3. a ≥ 4, b = 2 and c ≤ 2.
We find δ4(a, 2, 1). In L2(Ca,2,1) we have S2 = S3 = 0. Again, the vertex z3 is not

defined here, deg(z2) = 2 and deg(z5) = deg(z6) = 3 (see Figure 2). Analogously as
in the previous cases we get:

S1 =
(

a−3
2

)

h(z4) = 6(a−2) + 3
h(z1) = 3(a−3) + 1 h(z5) = 3(a−2) + 1
h(z2) = (a−1) h(z6) = 3(a−1)

since n(z2) = 1, n(z5) = 2 and n(z6) = 1. Thus,

δ4(a, 2, 1) =
(

a−3
2

)

+ (3a−8) + (a−1) + (6a−9) + (3a−5) + (3a−3).

Denote P = δ4(a, 2, 1) − δ0(a, 2, 2). By Lemma 2.2 we have δ0(a, 2, 2) = 2
(

a+3
2

)

−
(

a+1
2

)

. Expanding the terms we get

P = 8a− 26.

Since a ≥ 4, we have P ≥ 0. Since δ4(a, 2, 2) ≥ δ4(a, 2, 1) and δ0(a, 2, 2) ≥ δ0(a, 2, 1),
we conclude δ4(a, 2, i)− δ0(a, 2, i) ≥ P ≥ 0 for i ∈ {1, 2}.
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Case 4. a ≥ 4 and b = c = 1.
In L2(Ca,1,1) we have S2 = S3 = 0. Note that the vertices z2 and z3 are not

defined, while deg(z4) = deg(z5) = 3 and deg(z6) = 2 (see Figure 2). Analogously
as in the previous cases we get:

S1 =
(

a−3
2

)

h(z4) = h(z5) = 3(a−2) + 1
h(z1) = 3(a−3) + 1 h(z6) = (a−1)

since n(z4) = n(z5) = 2 and n(z6) = 0. Thus,

δ4(a, 1, 1) =
(

a−3
2

)

+ (3a−8) + 2(3a−5) + (a−1).

Denote P = δ4(a, 1, 1) − δ0(a, 1, 1). By Lemma 2.2 we have δ0(a, 1, 1) = 2
(

a+2
2

)

−
(

a+1
2

)

. Expanding the terms we get

P = 4a− 15.

Since a ≥ 4, we have P ≥ 0, and hence δ4(a, 1, 1)− δ0(a, 1, 1) ≥ P ≥ 0.

Proof of Theorem 1.6. Let T be the tree Ca,b,c with a ≥ b ≥ c ≥ 1, such
that a 6= 1. If a ≤ 3, then ∆Ca,b,c = W (L4(Ca,b,c))−W (Ca,b,c) > 0, by Lemma 2.1.

Now suppose that a ≥ 4. Consider lexicographical ordering of triples (a′, b′, c′)
with a′ ≥ b′ ≥ c′ ≥ 1 and a′ ≥ 2. Further, assume that ∆Ca′,b′,c′ > 0 for every triple
(a′, b′, c′), such that a′ ≥ b′ ≥ c′ ≥ 1 and a′ ≥ 2, which is in the lexicographical
ordering smaller than (a, b, c).

Let (a∗, b∗, c∗) be ordering of triple (a−1, b, c), such that the multisets {a∗, b∗, c∗}
and {a−1, b, c} are the same and a∗ ≥ b∗ ≥ c∗. Then Ca−1,b,c and Ca∗,b∗,c∗ are
isomorphic graphs. Moreover, since a ≥ 4, we have a∗ ≥ 3. By (1) and Lemma 2.5
we see that

∆Ca,b,c −∆Ca∗,b∗,c∗ = ∆Ca,b,c −∆Ca−1,b,c

= δ4(a, b, c)− δ0(a, b, c)

≥ 0.

Since (a∗, b∗, c∗) is in the lexicographical ordering smaller than (a, b, c) and a∗ ≥ 2, by
the induction hypothesis we have ∆Ca∗,b∗,c∗ > 0. Hence, ∆Ca,b,c = W (L4(Ca,b,c))−
W (Ca,b,c) > 0.
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systems, Acta Appl. Math. 72 (2002), 247–294.

[5] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak
Math. J. 26 (1976), 283–296.
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