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RELATIONSHIP BETWEEN EDGE-WIENER INDEX AND
GUTMAN INDEX OF A GRAPH

MARTIN KNOR, PRIMOŽ POTOČNIK, AND RISTE ŠKREKOVSKI

Abstract. The Wiener indexW (G) of a connected graphG is defined to be the
sum

∑

u,v d(u, v) of the distances between the pairs of vertices in G. Similarly,

the edge-Wiener index We(G) of G is defined to be the sum
∑

e,f d(e, f) of the
distances between the pairs of edges in G, or equivalently, the Wiener index of
the line graph L(G). Finally, the Gutman index Gut(G) is defined to be the
sum

∑

u,v deg(u)deg(v)d(u, v), where deg(u) denotes the degree of a vertex u

in G. In this paper we prove an inequality involving the edge-Wiener index
and the Gutman index of a connected graph. In particular, we prove that
We(G) ≥ 1

4
Gut(G) − 1

4
|E(G)| + 3

4
κ3(G) + 3κ4(G) where κm(G) denotes the

number of all m-cliques in G. Moreover, equality holds if and only if G is a tree

or a complete graph. Using this result we show that We(G) ≥ δ2−1

4
W (G) where

δ denotes the minimum degree in G.

1. Introduction

For a graph G with vertex set V = V (G) and edge set E = E(G), let deg(u)
and d(u, v) denote the degree of a vertex u ∈ V and the distance between vertices
u, v ∈ V , respectively. Let L(G) denote the line graph of G, that is, the graph with
vertex set E and two distinct edges e, f ∈ E adjacent in L(G) whenever they share
an endpoint in G. Furthermore, for e, f ∈ E, we let d(e, f) denote the distance
between e and f in the line graph L(G). For adjacent vertcies x and y, we write
x ∼ y.

In this paper we consider three important graph invariants, called Wiener index
(denoted by W (G) and introduced in [10]), edge-Wiener index (denoted by We(G))
and Gutman index (denoted by Gut(G)), which are defined as follows:

W (G) =
∑

{u,v}⊆V

d(u, v) =
1

2

∑

(u,v)∈V 2

d(u, v),

We(G) =
∑

{e,f}⊆E

d(e, f) =
1

2

∑

(e,f)∈E2

d(e, f),

Gut(G) =
∑

{u,v}⊆V

deg(u) deg(v) d(u, v) =
1

2

∑

(u,v)∈V 2

deg(u) deg(v) d(u, v).
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Note that edge-Wiener index of G is nothing but the Wiener index of the line
graph L(G) of G. Note also that in the literature a slightly different definition of
the edge-Wiener index is sometimes used; for example, in [8] edge-Wiener index is
defined to be We(G) +

(

n

2

)

where We(G) is as defined above and n is the order of
G.

Besides applications in chemistry (see for example [7]), Wiener index of a graph
was studied also from a purely graph-theoretical point of view (for early results, see
for example [6, 9], and [3] for a nice survey). Generalizations of Wiener index and
relationship between these were studied in a number of papers (see for example
[2, 4, 5, 8]).

The main result of this paper is the following inequality, involving the edge-
Wiener index and the Gutman index of a connected graph:

We(G) ≥
1

4
Gut(G)−

1

4
|E(G)|+

3

4
κ3(G) + 3κ4(G), (∗)

where by κm(G) we denote the number of m-cliques in G. In addition, we show
that equality holds in (∗) if and only if G is a tree or a complete graph.

As a consequence of (∗), we prove the following inequality involving the Wiener
index and the edge-Wiener index of a connected graph G:

We(G) ≥
δ2 − 1

4
W (G),

where δ = δ(G) denotes the minimum degree in G. Notice that Wu [11] proved
that for any graph G of minumum degree at least 2, We(G) ≥ W (G) with equality
holding for cycles; see also [1] for the case when the minimum degree equals 2.

2. The proof

Throughout this section, let G be a connected graph with vertex set V and edge
set E. Further, we let A = {(u, v) : uv ∈ E} stand for the arc set of G. Recall
that for any two edges e = u1u2 and f = v1v2 in E, the distance between e and f

is defined as the distance dL(G)(e, f) between e and f in the line graph L(G), and
observe that if e 6= f , then

(1) d(u1u2, v1v2) = min{d(ui, vj) : i, j ∈ {1, 2}}+ 1.

In addition to the distance between two edges, we will also consider the average
distance between the endpoints of two edges, defined by

s(u1u2, v1v2) =
1

4

(

d(u1, v1) + d(u1, v2) + d(u2, v1) + d(u2, v2)
)

.

The average distance of endpoints has an interesting relationship with the Gut-
man index of a graph. Namely, if one wants to consider the version of edge-Wiener
index where the distances of edges in the sum are substituted by average distances
of endpoints, then what one gets is essentially the Gutman index. More precisely,
the following holds (which was also observed by Wu [11]):
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Lemma 2.1. Let G be a connected graph with vertex set V and edge set E. Then

1

2

∑

(e,f)∈E2

s(e, f) =
1

4
Gut(G).

Proof. Let A be the arc set of G. Then:

1

2

∑

(e,f)∈E2

s(e, f) =
1

8

∑

(u1,u2)∈A

∑

(v1,v2)∈A

1

4

(

d(u1, v1)+ d(u2, v1)+ d(u1, v2)+ d(u2, v2)
)

.

(+)
Now for each pair i, j ∈ {1, 2}, we see that

∑

(u1,u2)∈A

∑

(v1,v2)∈A

d(ui, vj) =
∑

u∈V

∑

u′∈N(u)

∑

v∈V

∑

v′∈N(v)

d(u, v) =

=
∑

u∈V

∑

v∈V

deg(u)deg(v)d(u, v) = 2Gut(G).

By plugging this into (+), we get

1

2

∑

(e,f)∈E2

s(e, f) =
1

8
·
1

4
· 4 · 2 ·Gut(G) =

1

4
Gut(G),

as required. �

Lemma 2.3 below will be needed in the proof of the main theorem. Since it
might be of independent graph-theoretical interest, we state it separately. But
first we define the following notions.

Definition 2.2. Let G be a graph with vertex set V and edge set E. For a pair of
distinct edges e = u1u2, f = v1v2 of G we say that they form a triangle whenever
the graph induced on the set {u1, u2, v1, v2} of the endvertices is K3. Similarly,
we say that e and f form a K4 provided that the graph induced on {u1, u2, v1, v2}
is the complete graph K4. Finally, we will say that edges u1u2 and v1v2 are on
a straight line provided that the difference between the maximum and minimum
value of d(ui, vj), i, j ∈ {1, 2}, is 2.

Lemma 2.3. Let G be a connected graph such that every pair of distinct edges of
G either lies on a straight line or forms a triangle or a K4. Then G is a tree or a
complete graph.

Proof. Suppose that G is not a tree. We will first show that for every cycle C in G

the subgraph G[V (C)], induced by the vertices of C, is a complete graph. Suppose
that this is not the case and let C = v0v1 . . . vm−1v0 be a shortest cycle in G for
which G[V (C)] is not a complete graph. Clearly m ≥ 4. Let k be the integer part
of m

2
. If C is isometrically embedded into G (that is, if dG(vi, vj) = dC(vi, vj) for all

i, j ∈ {0, 1, . . . , m−1}), then the pair of “opposite” edges v0v1 and vkvk+1 does not
lie on a straight line and thus forms aK4. But this contradicts the assumption that
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C is isometrically embedded into G. Therefore there exists a path P = u0u1 . . . ut

in G between some vertices u0 = vα and ut = vβ on C of length t < dC(vα, vβ).
We may assume without loss of generality that no interior vertex of P intersects
C, for otherwise we can substitute P with the part of P between two consecutive
intersections of P with C. The path P , together with the two parts of C between
vα and vβ, then forms two cycles, say C1 and C2, which are shorter than C. It
follows from the minimality of C that both G[V (C1)] and G[V (C2)] are complete
graphs. In particular, any two vertices of C which both lie in C1 or both in C2

are adjacent. Now take two vertices x, y ∈ V (C) such that x ∈ V (C1) \ V (P ) and
y ∈ V (C2) \ V (P ). Since both x and y are adjacent to vα and vβ and since also
vα ∼ vβ, the edges xvα and yvβ do not lie on a straight line. But then they form a
K4, implying that also x is adjacent to y. This finally shows that any two vertices
of C are adjacent in G, which contradicts our assumptions on C. We have thus
proved that any cycle in G induces a complete graph.

Now let C be the longest cycle in G. If C contains all the vertices of G, then
G = G[V (C)] is a complete graph, as required. We may thus assume that there
exists a vertex v ∈ V (G) \ V (C) which is adjacent to a vertex u ∈ V (C). By
considering any edge e of C not incident with u we see that e and uv do not lie on
a straight line, implying that they form a K4. But then we can find a cycle with
vertex set V (C) ∪ {v} of length larger than that of C. This contradiction finally
shows that G is a complete graph. �

The following lemma describes the relationship between the distance d(e, f) and
the average distance of endpoints s(e, f) in more detail.

Lemma 2.4. Let u1u2, v1v2 be a pair of edges of a connected graph G. Then

(2) d(u1u2, v1v2) ≥ s(u1u2, v1v2) +D(u1u2, v1v2),

where

(3) D(u1u2, v1v2) =



















−1
2

if u1u2 = v1v2;
1
4

if the pair u1u2, v1v2 forms a triangle;

1 if the pair u1u2, v1v2 forms a K4;

0 otherwise.

Moreover, equality holds in (2) if and only if

(i) u1u2 = v1v2, or
(ii) the pair u1u2, v1v2 forms a triangle or K4, or
(iii) if u1u2 and v1v2 lie on a straight line.

In particular, equality in (2) holds for every pair of distinct edges of G if and only
if G is a tree or a complete graph.

Proof. If u1u2 = v1v2, then d(u1u2, v1v2) = 0 and s(u1u2, v1v2) = 1
2
. Hence

d(u1u2, v1v2) = s(u1u2, v1v2) + D(u1u2, v1v2) in this case. We may thus assume
that u1u2 6= v1v2.
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Suppose that the minimum value of d(ui, vj) is attained for i = s and j = t, i.e.

min{d(ui, vj) : i, j ∈ {1, 2}} = d(us, vt).

If u1u2 and v1v2 form a triangle, then d(us, vt) = 0 while d(us, v3−t) = d(u3−s, vt) =
d(u3−s, v3−t) = 1. Therefore

s(u1u2, v1v2) =
1

4
(d(us, ut)+d(us, v3−t)+d(u3−s, vt)+d(u3−s, v3−t)) =

3

4
= 1−D(u1u2, v1v2).

On the other hand d(u1u2, v1v2) = 1, and thus (3) holds with equality, as claimed.
If u1u2 and v1v2 form aK4, then d(us, vt) = d(us, v3−t) = d(u3−s, vt) = d(u3−s, v3−t) =

1, and so s(u1u2, v1v2) = 1 = 2−D(u1u2, v1v2). On the other hand d(u1u2, v1v2) =
2, and again equality in (3) holds.

Finally, suppose that u1u2 and v1v2 do not form a triangle or a K4. Then

d(u3−s, v3−t)− d(us, vt) ≤ 2,(4)

d(us, v3−t)− d(us, vt) ≤ 1,(5)

d(u3−s, vt)− d(us, vt) ≤ 1.(6)

By summing up these inequalities (together with the equality d(vs, vt)−d(vs, vt) =
0) and dividing by 4 one obtains

s(u1v1, u2v2)− d(us, vt) ≤ 1.

Using formula (1) we may thus conclude that

d(u1v1, u2v2) = d(us, vt) + 1 ≥ s(u1u2, v1v2).

Since D(u1u2, v1v2) = 0 in this case, this proves that the inequality in (2) holds.
Observe also that, in this case, equality holds in (2) if and only if we have equality
in (4), which happens if and only if u1u2 and v1v2 lie on a straight line.

We have thus proved that (2) holds in all cases, and that we have equality in
(2) if and only if u1u2 and v1v2 lie on a straight line or form a triangle or a K4.
The second part of the claim now follows directly from Lemma 2.3. �

Recall that κm(G) denotes the number of all m-cliques in G. Similarly, for an
edge uv of G, we let κm(uv) denote the number of m-cliques of G that contain uv.
Note that

(7)
∑

uv∈E(G)

κm(uv) =

(

m

2

)

κm(G).

In particular, for m = 2 we obtain κ2(G) = |E(G)|. We are now ready to prove
the main result of the paper.

Theorem 2.5. Let G be a connected graph. Then

(8) We(G) ≥
1

4
Gut(G)−

1

4
|E(G)|+

3

4
κ3(G) + 3κ4(G)

with equality in (8) if and only if G is a tree or a complete graph.
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Proof. Let V and E denote the vertex set and the edge set of G respectively, and
let A be the arc set of G, that is, the set of all ordered pairs of adjacent vertices
in G. Then it follows directly from the definition of the edge-Wiener index that

(9) We(G) =
1

2

∑

(e,f)∈E2

d(u1u2, v1v2) =
1

8

∑

(u1,u2)∈A

∑

(v1,v2)∈A

d(u1u2, v1v2).

By Lemma 2.4, for a fixed (u1, u2) ∈ A, we have that d(u1u2, v1v2) ≥ s(u1u2, v1v2)+
D(u1u2, v1v2). Hence, by (9), we see that

(10) We(G) ≥
1

8

∑

(u1,u2)

∑

(v1,v2)

s(u1u2, v1v2) +
1

8

∑

(u1,u2)

∑

(v1,v2)

D(u1u2, v1v2),

Let us now compute the two sums in (10). Observe first that in view of
Lemma 2.1, for the first sum we have

1

8

∑

(u1,u2)

∑

(v1,v2)

s(u1u2, v1v2) =
1

2

∑

(e,f)∈E2

s(e, f) =
1

4
Gut(G).

To determine the second sum in (10), note that D(u1u2, v1v2) equals 0 unless
one of the following holds:

(i) v1v2 = u1u2 (note that there are precisely 2 arcs (v1, v2) for which this
holds);

(ii) v1v2 shares an endpoint with u1u2 and forms a triangle with it (note that
there are precisely 4κ3(u1u2) such arcs (v1, v2));

(iii) v1v2 forms a K4 with u1u2 (note that there are precisely 2κ4(u1u2) such
arcs (v1, v2)).

Hence
∑

(u1,u2)

∑

(v1,v2)

D(u1u2, v1v2) = −
1

2

∑

(u1,u2)

2 +
1

4

∑

(u1,u2)

4κ3(u1u2) +
∑

(u1,u2)

2κ4(u1u2).

In view of (7), we see that the above sum equals:

−2|E(G)|+ 6κ3(G) + 24κ4(u1u2).

Therefore, by (10), it follows that

We(G) ≥
1

8
(2Gut(G)− 2|E(G)|+ 6κ3(G) + 24κ4(u1u2)),

as required. Moreover, in view of Lemma 2.4, equality holds if and only if G is a
tree or a complete graph. �

Corollary 2.6. Let G be a connected graph of minimal degree δ ≥ 2. Then

W (L(G)) >
δ2

4
W (G)−

1

4
|E(G)| ≥

δ2 − 1

4
W (G).
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Proof. Note that

Gut(G) =
∑

{u,v}⊆V (G)

deg(u)deg(v)d(u, v) ≥
∑

{u,v}⊆V (G)

δ2d(u, v) = δ2W (G).

Now, since δ ≥ 2, the graph G is not a tree, and so Theorem 2.5 implies the first
inequality in the corollary. The second inequality then follows, if one observes
that, since every pair of adjacent vertices contributes exactly 1 to the Wiener
index of the graph (while the non-adjacent ones contribute even more), we have
that |E(G)| ≤ W (G). �

We expect that Corollary 2.6 can be improved to W (L(G)) ≥ δ2

4
W (G), with

equality holding for cycles, which would correspond to the result of Wu [11].
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