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Abstract

For a graph G, denote by Li(G) its i-iterated line graph and denote by
W (G) its Wiener index. We prove that the function W (Li(G)) is convex in
variable i. Moreover, this function is strictly convex if G is different from a
path, a claw K1,3 and a cycle. As an application we prove that W (Li(T )) 6=
W (T ) for every i ≥ 3 if T is a tree in which no leaf is adjacent to a vertex of
degree 2, T 6= K1 and T 6= K2.

This is a preprint of an article accepted for publication in Dis-
crete Applied Mathematics c©2012 (copyright owner as specified in
the journal).

1 Introduction

Let G = (V (G), E(G)) be a connected graph. For any two of its vertices, say u
and v, we let d(u, v) denote the distance from u to v in G. The Wiener index of G,
W (G), is defined as

W (G) =
∑

u 6=v

d(u, v),

where the sum is taken over all unordered pairs of vertices of G, see [22]. Wiener
index has many applications in chemistry, see e.g. [9], therefore it is widely studied
by chemists. It attracted the attention of mathematicians in 1970’s and it was
introduced under the name of transmission or the distance of a graph, see [6] and
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[21]. Recently, several special issues of journals were devoted to (mathematical
properties of) Wiener index, see [7] and [8]; for surveys see [4] and [5].

The line graph of G, L(G), has vertex set identical with the set of edges of G, i.e.
V (L(G)) = E(G). Two vertices of L(G) are adjacent if and only if the corresponding
edges are adjacent in G. Iterated line graphs are defined inductively as follows:

Li(G) =

{

G if i = 0,
L(Li−1(G)) if i > 0.

A connected graph is trivial if it contains no edges, i.e., if it has at most one
vertex. As shown in [1], for any nontrivial tree T on n vertices we have W (L(T )) =
W (T )−

(

n

2

)

. Hence, there is no nontrivial tree for which W (L(T )) = W (T ). How-
ever, there are trees T satisfying W (L2(T )) = W (T ), see e.g. [2, 3]. In [4], the
following problem was posed:

Problem 1.1 Is there any tree T satisfying equality W (Li(T )) = W (T ) for some

i ≥ 3?

If G is a trivial graph, then clearly W (Li(G)) = W (G) = 0 for all i ≥ 0. There-
fore it is reasonable to consider only nontrivial graphs. However, there are also other
graphs, which behave “trivially”. If G is a cycle, then L(G) = G and consequently
W (Li(G)) = W (G) for every i ≥ 0. For a claw K1,3 the graph L(K1,3) is a triangle,
so that L(K1,3) = Li(K1,3) and consequently W (L(K1,3)) = W (Li(K1,3)) for every
i ≥ 1. Finally, for a path on n vertices, Pn, we have L(Pn) = Pn−1 if n > 1, while
L(P1) is the empty graph. Hence, W (Li(Pn)) = 0 if i ≥ n. These three classes of
graphs are exceptional. If G is distinct from a path, a cycle and the claw K1,3, then
limi→∞ |V (Li(G))| = ∞, see [16]. Therefore graphs, different from a path, a cycle
and the claw K1,3, are called prolific.

Define a function fG(i) = W (Li(G)). What is the behaviour of fG? If G is a
connected non-prolific graph then fG is a constant function for i ≥ iG, where iG is
a constant depending on G. But, we do not know, for instance, if it can happen for
some i that fG(i) > fG(0) and fG(i+1) < fG(0). Therefore it is important to study
the general behaviour of fG. Recall that a function h(i) convex if h(i) + h(i+ 2) ≥
2h(i + 1) for every i ≥ 0, and h(i) is strictly convex if h(i) + h(i + 2) > 2h(i + 1).
We prove here the following basic statement:

Theorem 1.2 Let G be a connected graph. Then fG(i) is a convex function. More-

over, fG(i) is strictly convex if G is a prolific graph.

By the analysis above, the first part of Theorem 1.2 is a straightforward conse-
quence of the second.

Analogous functions fG(i) = p(Li(G)) were already studied for p being the max-
imum degree, the minimum degree, the diameter and the radius, see [10, 11, 16].
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For connectivity, Hamiltonicity and related notions in iterated line graphs see [14,
23, 12, 13, 15].

Theorem 1.2 has following consequences for Problem 1.1.

Corollary 1.3 Let T be a tree such that W (Lk(T )) > W (T ) for some k. Then

W (Li(T )) > W (T ) for every i ≥ k.

Computer experiments showed us that there is a big proportion of trees for which
already W (L3(T )) > W (T ). Although we have no formula for counting W (L3(G))
using distances in G, we can use the following corollary of Theorem 1.2.

Corollary 1.4 Let T be a nontrivial tree such that 2W (L2(T )) ≥ W (T )+W (L(T )).
Then W (L3(T )) > W (T ).

By a 2+-tree we mean a tree which is different from K1 and K2, and in which no
leaf is adjacent to a vertex of degree 2. Using Corollary 1.4 we prove the following
statement:

Theorem 1.5 Let T be a 2+-tree different from K1,3. Then W (L3(T )) > W (T ).

Hence, if T is a 2+-tree different from K1,3, then W (Li(T )) > W (T ) for every
i ≥ 3, by Corollary 1.3. As W (K1,3) = 9 and W (Lj(K1,3)) = 3 for every j ≥ 1, we
infer that W (Li(T )) 6= W (T ) for every 2+-tree T and every i ≥ 3.

We remark that in [17] we use Theorems 1.2 and 1.5 to prove that W (Li(T )) >
W (T ) for all i ≥ 3 and all trees T which are not homeomorphic to a path, claw K1,3

and H , where H is a tree on 6 vertices, two of which have degree 3 and four of which
have degree 1. Further, in [18] and [19] we consider trees homeomorphic to K1,3 and
H , respectively, and i ≥ 4. Finally, in [20] we consider trees homeomorphic to K1,3

and H and i = 3. Hence, in series of five papers we solve Problem 1.1 completely.
The outline of this paper is as follows. In the next section we give formulae for

W (G) and W (L2(G)) involving the degrees and distances in G. In the third section
we prove:

Theorem 1.6 Let G be a connected graph distinct from an isolated vertex and a

cycle. Then W (L2(G))− 2W (L(G)) +W (G) > 0.

which implies Theorem 1.2. Finally, in the last section we prove Theorem 1.5.
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2 Preliminaries

In our proofs, we do not find W (L(G)) and W (L2(G)) by first constructing L(G)
and L2(G) and afterwards counting the distances in L(G) and L2(G). Instead, we
compute distances included in W (L(G)) and W (L2(G)) already in G. For this, we
use the representation of vertices of L(G) and L2(G) in G.

By the definition of the line graph, every vertex w ∈ V (L(G)) corresponds to
an edge of G. Let us denote by B1(w) this edge of G. Analogously, every vertex
x ∈ V (L2(G)) corresponds to a path of length two in G, denote this path by B2(x).
In fact, vertices of L(G) are in one-to-one correspondence with edges of G, and
vertices of L2(G) are in one-to-one correspondence with paths of length two in G.

Let S1 and S2 be two edge-disjoint subgraphs of G. We define the distance
d(S1, S2) to be the length of a shortest path in G joining a vertex of S1 to a vertex
of S2. Further, if S1 and S2 share s ≥ 1 edges, then we set d(S1, S2) = −s. With
the thus defined function d, the following holds for any w, z ∈ V (L(G)) and any
x, y ∈ V (L2(G)):

dL(G)(w, z) = d(B1(w), B1(z)) + 1, (1)

dL2(G)(x, y) = d(B2(x), B2(y)) + 2. (2)

We remark that although there is no one-to-one correspondence between the
vertices of Li(G), i ≥ 3, and subgraphs of G, there are tools for counting distances
between vertices of Li(G) already in G, see [16].

Lemma 2.1 Let u, v ∈ V (G) and let w, z ∈ V (L(G)) such that u ∈ V (B1(w)) and
v ∈ V (B1(z)). Then for some i ∈ {−1, 0, 1} the following holds:

dL(G)(w, z) = d(B1(w), B1(z)) + 1 = d(u, v) + i.

Proof. The first equality follows from (1). Since B1(w) contains u and one
neighbour of u, while B1(z) contains v and one neighbour of v, we have

d(u, v)− 2 ≤ d(B1(w), B1(z)) ≤ d(u, v).

Therefore, d(B1(w), B1(z)) + 1 = d(u, v) + i, where −1 ≤ i ≤ 1.

Let u and v be two distinct vertices of G. For i ∈ {−1, 0, 1}, let αi(u, v)
denote the number of pairs w, z for which u ∈ V (B1(w)), v ∈ V (B1(z)) and
d(B1(w), B1(z)) = d(u, v)− 1 + i.

In the sequel, denote by du and dv the degrees of u and v, respectively.
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Proposition 2.2 Let G be a connected graph. Then

W (L(G)) =
1

4

∑

u 6=v

[

du dv d(u, v)− α−1(u, v) + α1(u, v)
]

+
1

4

∑

u∈V (G)

(

du
2

)

,

where the first sum runs through all unordered pairs u, v ∈ V (G).

Proof. By definition we have

W (L(G)) =
∑

{uu′,vv′}

dL(G)(uu
′, vv′),

where the sum runs through all pairs of edges uu′, vv′ of G. By considering the
ordered choices for the vertices u, v, u′, v′, one gets

W (L(G)) =
1

8

∑

u∈V (G)

∑

v∈V (G)

∑

u′∈N(u)

∑

v′∈N(v)

dL(G)(uu
′, vv′).

Let us first consider the contribution of ordered pairs u, v ∈ V (G) with u 6= v. Then
in view of Lemma 2.1, we see that dL(G)(uu

′, vv′) = d(u, v)+i for some i ∈ {−1, 0, 1}.
By summing over all ordered pairs (u, v), u 6= v, one thus gets the contribution of
dudvd(u, v) minus the number of choices for u′ ∈ N(u) and v′ ∈ N(v) such that
dL(G)(uu

′, vv′) = d(u, v) − 1 plus the number of choices for u′ and v′ such that
dL(G)(uu

′, vv′) = d(u, v) + 1. This contribution is thus

1

8

∑

u∈V (G)

∑

v∈V (G)\{u}

[

du dv d(u, v)− α−1(u, v) + α1(u, v)
]

,

which clearly equals the first sum in the statement of the proposition.
On the other hand, if u = v, then dL(G)(uu

′, vv′) = 1 if u′ 6= v′ (and 0 otherwise).
The contribution of such a pair {u, v} to W (L(G)) thus equals to

1

8

∑

u′∈N(u)

∑

v′∈N(u)

1 =
1

8
du(du − 1) =

1

4

∑

u∈V (G)

(

du
2

)

.

The result now follows by adding up the two contributions.

In a tree, every pair of vertices is joined by a unique path, so that α−1(u, v) = 1
and α1(u, v) = (du − 1)(dv − 1). Hence, we obtain the following consequence of
Proposition 2.2.
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Corollary 2.3 Let T be a tree. Then

W (L(T )) =
1

4

∑

u 6=v

[

du dv d(u, v)− 1 + (du − 1)(dv − 1)

]

+
1

4

∑

u

(

du
2

)

,

where the first sum runs through all unordered pairs u, v ∈ V (G) and the second one

runs through all u ∈ V (G).

Now we turn our attention to L2(G).

Lemma 2.4 Let u, v ∈ V (G) and let x, y ∈ V (L2(G)) such that u is the center

of the path B2(x) and v is the center of B2(y). Then for some i ∈ {0, 1, 2}, the
following holds:

dL2(G)(x, y) = d(B2(x), B2(y)) + 2 = d(u, v) + i.

Proof. The first equality is simply a restatement of formula (2). Since B2(x)
contains u and two neighbours of u, while B2(y) contains v and two neighbours of v,
analogously as in the proof of Lemma 2.1 we have d(u, v)− 2 ≤ d(B2(x), B2(y)) ≤
d(u, v). Therefore, d(B2(x), B2(y)) + 2 = d(u, v) + i, where 0 ≤ i ≤ 2.

Let u and v be two distinct vertices of G. For i ∈ {0, 1, 2}, denote by βi(u, v)
the number of pairs x, y ∈ V (L2(G)), for which u is the center of B2(x), the vertex
v is the center of B2(y), and d(B2(x), B2(y)) = d(u, v)− 2 + i.

Proposition 2.5 Let G be a connected graph. Then

W (L2(G)) =
∑

u 6=v

[(

du
2

)(

dv
2

)

d(u, v) + β1(u, v) + 2β2(u, v)

]

+
∑

u∈V (G)

[

3

(

du
3

)

+ 6

(

du
4

)]

,

where the first sum runs through all unordered pairs u, v ∈ V (G).

Proof. For a pair {u, v} of vertices of G, let C(u, v) be the set of all pairs
{x, y} of distinct vertices of L2(G) with the centre of one of {B2(x), B2(y)} being u
and the centre of the other being v. Then

W (L2(G)) =
∑

x 6=y

dL2(G)(x, y) =
∑

{u,v}

∑

{x,y}∈C(u,v)

dL2(G)(x, y),

where {u, v} runs through the set of all unordered pairs of vertices of G. Let us now
determine the contribution of a fixed such pair {u, v} to the above sum.
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If u 6= v, then by Lemma 2.4, for every i ∈ {0, 1, 2}we have precisely βi(u, v) pairs
x, y such that dL2(G)(x, y) = d(u, v) + i. Moreover, note that |C(u, v)| =

(

du
2

)(

dv
2

)

.

Therefore, the contribution of the pair {u, v} is
(

du
2

)(

dv
2

)

d(u, v)+β1(u, v)+2β2(u, v).
If u = v, then for a pair {x, y} ∈ C(u, v) we see that dL2(G)(x, y) equals 0

(when B2(x) = B2(y)) or 1 (when B2(x) and B2(y) share exactly one edge) or 2
(when B2(x) and B2(y) are edge-disjoint). The number of pairs {x, y} ∈ C(u, v)
for which B2(x) and B2(y) share exactly one edge is 3

(

du
3

)

and the number of pairs

{x, y} ∈ C(u, v) for which B2(x) and B2(y) are edge-disjoint is 3
(

du
4

)

. Hence, all

these pairs contribute 3
(

du
3

)

+ 6
(

du
4

)

to W (L2(G)).

As already mentioned above, in a tree every pair of vertices is joined by a unique
path. Therefore β0(u, v) = (du−1)(dv−1), β1(u, v) = (du−1)

(

dv−1
2

)

+
(

du−1
2

)

(dv−1)

and β2(u, v) =
(

du−1
2

)(

dv−1
2

)

. Observe that β0(u, v) + β1(u, v) + β2(u, v) =
(

du
2

)(

dv
2

)

.
Hence, we have the following consequence of Proposition 2.5.

Corollary 2.6 Let T be a tree. Then

W (L2(T )) =
∑

u 6=v

[(

du
2

)(

dv
2

)

d(u, v) + (du − 1)

(

dv − 1

2

)

+

(

du − 1

2

)

(dv − 1) + 2

(

du − 1

2

)(

dv − 1

2

)]

+
∑

u∈V (T )

[

3

(

du
3

)

+ 6

(

du
4

)]

,

where the first sum runs through all unordered pairs u, v ∈ V (G).

3 Convexity of Wiener index

Define

A(G) =
∑

u 6=v

((

du
2

)(

dv
2

)

−
du dv
2

+ 1

)

d(u, v),

B(G) =
∑

u 6=v

[

β1(u, v) + 2β2(u, v) +
α−1(u, v)

2
−

α1(u, v)

2

]

,

C(G) =
∑

u

[

3

(

du
3

)

+ 6

(

du
4

)

−
1

2

(

du
2

)]

,

where the first two sums run through all unordered pairs u, v ∈ V (G) and the third
one runs through all u ∈ V (G). By Propositions 2.2 and 2.5 we have
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Proposition 3.1 Let G be a connected graph. Then

W (L2(G))− 2W (L(G)) +W (G) = A(G) +B(G) + C(G).

We will now prove the inequality A(G) + B(G) + C(G) > 0 in two steps. First
we prove the following:

Lemma 3.2 Let G be a connected graph other than an isolated vertex or a cycle.

Then A(G) + C(G) > 0.

Proof. Denote by aG(u, v) the summand of A(G) corresponding to u and v.
Since

(

du
2

)(

dv
2

)

−
du dv
2

+ 1 =
(d2u − du)(d

2
v − dv)− 2du dv + 4

4

=
du dv(du dv − du − dv − 1) + 4

4
,

we have

A(G) =
∑

u 6=v

aG(u, v) =
∑

u 6=v

du dv(du dv − du − dv − 1) + 4

4
d(u, v). (3)

Further, denote by cG(u) the summand of C(G) corresponding to u. Then

C(G) =
∑

u

cG(u) =
∑

u

[

3

(

du
3

)

+ 6

(

du
4

)

−
1

2

(

du
2

)]

=
∑

u

[

du(du−1)(2du−4)

4
+

du(du−1)(d2u − 5du + 6)

4
+

du(du−1)(−1)

4

]

=
∑

u

[

du(du − 1)(d2u − 3du + 1)

4

]

. (4)

Let us first focus on C(G). Since x2−3x+1 is a quadratic function with minimum
at x = 3

2
, and since its values at x = 2 and x = 3 are −1 and 1, respectively, we

have cG(u) = 0 for du = 1; cG(u) = −1
2
for du = 2 and cG(u) > 0 for du ≥ 3. Hence,

C(G) ≥ −n2/2, where n2 is the number of vertices of degree 2 in G.
Suppose now that the statement of the lemma is wrong, and let G be a minimal

(with respect to |V (G)|) counterexample. We will now split the proof into two cases,
depending on whether G has a vertex of degree 1 or not.

Let us first consider the case where G is a graph with minimum degree δ(G) ≥ 2,
not isomorphic to a cycle. Let {u, v} be an unordered pair of vertices of G and
assume that u is the one with smaller degree, that is, du ≤ dv. If du ≥ 3, then

aG(u, v) ≥
du dv(du dv − du − dv − 1) + 4

4
≥

3dv(3dv − dv − dv − 1) + 4

4
> 1.
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On the other hand, if du = 2, then

aG(u, v) ≥
du dv(du dv − du − dv − 1) + 4

4
=

2dv(2dv − 2− dv − 1) + 4

4

=
d2v − 3dv + 2

2
=

(dv − 1)(dv − 2)

2
≥ 0.

Denote by n the number of vertices of G and let v be a vertex of maximum degree
in G. If dv ≥ 4, then by the above we have that aG(u, v) > 1 for every u ∈ V (G),
u 6= v, and therefore A(G) > n − 1 ≥ n2. If dv = 3, then aG(u, v) ≥ 1 for every
u ∈ V (G), u 6= v. In this case there is at least one more vertex of degree 3 in G, so
we have A(G) ≥ n − 1 > n2. Therefore in both cases we see that A(G) > n2, and
thus A(G) + C(G) > n2 −

n2

2
≥ 0, as claimed.

Suppose now that G has a vertex of degree 1. Then remove from G this vertex
and the incident edge, and denote the resulting graph by G′. Then one of the
following occurs:

(i) G′ ∼= K1 is an isolated vertex;

(ii) G′ ∼= Cn is a cycle;

(iii) G′ is neither an isolated vertex nor a cycle.

If (i) occurs, then G ∼= K2, and so A(G) = 1
2
by (3) and C(G) = 0 by (4). Hence,

A(G) + C(G) > 0 in this case, as claimed.
If (ii) occurs, then G is isomorphic to a cycle Cn with a pending edge attached

to it. Let x and y be the vertices in G of degree 3 and 1, respectively (note that
du = 2 for any u 6∈ {x, y}). Then we have

aG(u, v) =















0 if {u, v} ∩ {x, y} = ∅,
−1

2
if {u, v} = {x, y},

0 if {u, v} = {y, z} for z 6= x,
d(u, v) if {u, v} = {z, x} for z 6= y.

Since G has n − 1 vertices of degree 2, one vertex of degree 1 and one vertex of
degree 3, the last two vertices being adjacent, we infer A(G) ≥ −1

2
+ n − 1. As

C(G) ≥ −n2

2
= −n−1

2
and n ≥ 3, we conclude A(G) + C(G) ≥ n−2

2
> 0. Hence the

statement of the lemma holds in this case.
If (iii) occurs, then by minimality of G we know that A(G′) + C(G′) > 0. To

conclude the proof of the lemma it remains to show that introducing a pendant edge
to G′ cannot decrease the value of A(G′) + C(G′).

Let u be a vertex of degree du in G′ and let G be obtained from G′ by adding a
single edge ua, where a is a new vertex. We show that A(G)−A(G′) ≥ 1

2
.

Observe that C(G) = C(G′) − cG′(u) + cG(u) + cG(a). We have cG(a) = 0.
Moreover, cG(u) − cG′(u) > 0 if du ≥ 2, while cG(u) − cG′(u) = −1

2
if du = 1, see
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(4). Thus, C(G) − C(G′) ≥ −1
2
, so that if we prove A(G) − A(G′) ≥ 1

2
, we obtain

A(G) + C(G) ≥ A(G′) + C(G′), as desired.
To avoid fractions, we investigate the difference 4A(G) − 4A(G′) and we prove

that 4A(G)−4A(G′) ≥ 2. In 4A(G)−4A(G′) the terms which do not contain neither
u nor a cancel out. Hence, we need to consider only the terms corresponding to u
in both A(G′) and A(G) and we have to add the terms corresponding to a, together
with the term corresponding to the pair (a, u), see (3). We obtain:

4A(G)− 4A(G′) =
∑

v∈V (G′)\{u}

[(

(du+1)dv((du+1)dv − du − dv − 2) + 4
)

d(u, v)

−
(

du dv(du dv − du − dv − 1) + 4
)

d(u, v)

+
(

1dv(1dv − dv − 2) + 4
)(

d(u, v) + 1
)]

+
(

1(du+1)(1(du+1)− du − 3) + 4
)

1

=
∑

v∈V (G′)\{u}

[

2(du dv − 2)(dv − 1)d(u, v)− 2dv + 4
]

− 2du + 2.

Let g(u, v) = (du dv − 2)(dv − 1)d(u, v)− dv + 2. Then

4A(G)− 4A(G′) = 2
(

∑

v∈V (G′)\{u}

g(u, v)− du + 1
)

.

Now, if always g(u, v) ≥ 1, then 4A(G) − 4A(G′) ≥ 2(
∑

v 1 − du + 1) ≥ 2. If
dv = 1, then g(u, v) = 1. On the other hand, if dv ≥ 2, then g(u, v) = (du dv −
2)(dv−1)d(u, v)−dv+2 ≥ (dv−2)−dv+2 = 0, with equality holding only if du = 1
(and also dv = 2 and d(u, v) = 1). Hence, if du > 1 then g(u, v) ≥ 1 for every v
and 4A(G)− 4A(G′) ≥ 2. Suppose therefore that du = 1. Then 4A(G)− 4A(G′) =
2
∑

v g(u, v). We already know that g(u, v) ≥ 0 for every v and that g(u, v) = 0
only if dv = 2 (and d(u, v) = 1). Hence, 2

∑

v g(u, v) = 0 only if all the vertices
v ∈ V (G′), v 6= u, have degrees 2. Since du = 1, we cannot have dv = 2 for every
v ∈ V (G′)\{u}, so that 4A(G)−4A(G′) = 2

∑

v g(u, v) > 0. Since g(u, v) is integer,
we have 4A(G)− 4A(G′) ≥ 2 also in this case.

Thus, in any case A(G) − A(G′) ≥ 1
2
, so that A(G) + C(G) ≥ A(G′) + C(G′),

and the lemma is proved.

Lemma 3.3 Let G be a connected graph distinct from an isolated vertex and a cycle.

Then B(G) ≥ 0.

Proof. Consider distinct vertices u, v ∈ V (G). Partition the neighbours of u
into three sets S1, S2 and S3:

S1 = {a; d(a, v) = d(u, v)− 1},

10



S2 = {a; d(a, v) = d(u, v)},

S3 = {a; d(a, v) = d(u, v) + 1}.

Analogously partition the neighbours of v into three sets T1, T2 and T3:

T1 = {b; d(b, u) = d(u, v)− 1},

T2 = {b; d(b, u) = d(u, v)},

T3 = {b; d(b, u) = d(u, v) + 1}.

Denote by b(u, v) the summand of B(G) corresponding to u and v. Further,
denote by b2(u, v) the part of b(u, v) corresponding to W (L2(G)) (i.e., b2(u, v) =
β1(u, v) + 2β2(u, v)) and denote by b1(u, v) the part of b(u, v) corresponding to
2W (L(G)) (i.e., b1(u, v) = (−α−1(u, v) + α1(u, v))/2). Then b(u, v) = b2(u, v) −
b1(u, v). We find a lower bound for b2(u, v) and an upper bound for b1(u, v), and we
show that b2(u, v)− b1(u, v) ≥ 0, which establishes the lemma.

Consider vertices x and y of L2(G) such that u is the center of B2(x) and v
is the center of B2(y). Moreover, denote by u1 and u2 the other vertices of B2(x)
and denote by v1 and v2 the other vertices of B2(v). Then B2(x) = (u1, u, u2) and
B2(y) = (v1, v, v2). There are several possibilities.

• {u1, u2}∩S1 6= ∅ and {v1, v2}∩T1 6= ∅: Then dL2(G)(x, y) = d(B2(x), B2(y))+
2 ≥ d(u, v) + 0. Hence, the pair x, y contributes at least 0 to b2(u, v) in this
case.

• {u1, u2}∩S1 6= ∅ and {v1, v2}∩T1 = ∅: Then dL2(G)(x, y) ≥ d(u, v)+1. Hence,
the pair x, y contributes at least 1 to b2(u, v) in this case.

• {u1, u2} ∩ S1 = ∅, {u1, u2} ∩ S2 6= ∅ and {v1, v2} ∩ (T1 ∪ T2) 6= ∅: Then
dL2(G)(x, y) ≥ d(u, v)+1. Hence, the pair x, y contributes at least 1 to b2(u, v)
in this case.

• {u1, u2} ∩ S1 = ∅, {u1, u2} ∩ S2 6= ∅ and {v1, v2} ∩ (T1 ∪ T2) = ∅: Then
dL2(G)(x, y) ≥ d(u, v)+2. Hence, the pair x, y contributes at least 2 to b2(u, v)
in this case.

• {u1, u2} ∩ (S1 ∪S2) = ∅ and {v1, v2} ∩ T1 6= ∅: Then dL2(G)(x, y) ≥ d(u, v) + 1.
Hence, the pair x, y contributes at least 1 to b2(u, v) in this case.

• {u1, u2} ∩ (S1 ∪S2) = ∅ and {v1, v2} ∩ T1 = ∅: Then dL2(G)(x, y) ≥ d(u, v) + 2.
Hence, the pair x, y contributes at least 2 to b2(u, v) in this case.

For i = 1, 2, 3, denote by si and ti the size of Si and Ti, respectively. Then the
above bounds force that

b2(u, v) ≥ 0 +

[(

s1 + s2 + s3
2

)

−

(

s2 + s3
2

)](

t2 + t3
2

)
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+

[(

s2 + s3
2

)

−

(

s3
2

)][(

t1 + t2 + t3
2

)

−

(

t3
2

)]

+2

[(

s2 + s3
2

)

−

(

s3
2

)](

t3
2

)

+

(

s3
2

)[(

t1 + t2 + t3
2

)

−

(

t2 + t3
2

)]

+ 2

(

s3
2

)(

t2 + t3
2

)

=

[(

s1 + s2 + s3
2

)

−

(

s2 + s3
2

)](

t2 + t3
2

)

+

[(

s2 + s3
2

)

−

(

s3
2

)][(

t1 + t2 + t3
2

)

+

(

t3
2

)]

+

(

s3
2

)[(

t1 + t2 + t3
2

)

+

(

t2 + t3
2

)]

. (5)

Now consider vertices w and z of L(G) such that u ∈ B1(w) and v ∈ B1(z).
Denote by u1 the other vertex of B1(w) and denote by v1 the other vertex of B1(z).
Then B1(w) = (u, u1) and B1(z) = (v, v1). There are two possibilities.

• u1 ∈ S1: Then there is at least one v1 ∈ T1 such that d(B1(w), B1(z)) =
d(u, v)− 2. In this case dL(G)(w, z) = d(B1(w), B1(z)) + 1 = d(u, v)− 1. For
other v1 ∈ N(v) we have dL(G)(w, z) ≤ d(u, v).

• u1 ∈ S2 ∪ S3: Then for every v1 ∈ T1 we have dL(G)(w, z) ≤ d(u, v). For
v1 ∈ T2 ∪ T3 we have dL(G)(w, z) ≤ d(u, v) + 1.

This means that (recall that b1(u, v) = (−α−1(u, v) + α1(u, v))/2)

b1(u, v) ≤ −
s1
2
+

(s2 + s3)(t2 + t3)

2
.

Analogously one can derive

b1(u, v) ≤ −
t1
2
+

(s2 + s3)(t2 + t3)

2
,

so that

b1(u, v) ≤
(s2 + s3)(t2 + t3)

2
−

s1
4
−

t1
4
.

In the following we prove that b(u, v) = b2(u, v)− b1(u, v) ≥ 0. Observe that the
unique negative term in b2(u, v)− b1(u, v) is (s2+ s3)(t2+ t3)/2. If we show that one
of the three terms of (5) is not smaller than (s2 + s3)(t2 + t3)/2, then we are done.

Observe that s1 ≥ 1. This means that
(

s1 + s2 + s3
2

)

−

(

s2 + s3
2

)

≥

(

s2 + s3 + 1

2

)

−

(

s2 + s3
2

)

= s2 + s3.
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If t2 + t3 ≥ 2 then
(

t2+t3
2

)

≥ t2+t3
2

. This means that if t2 + t3 ≥ 2 then for the first
term of (5) we have

[(

s1 + s2 + s3
2

)

−

(

s2 + s3
2

)](

t2 + t3
2

)

≥
(s2 + s3)(t2 + t3)

2
,

so that b(u, v) = b2(u, v)− b1(u, v) ≥ 0 in this case.
Obviously, if t2 + t3 = 0, then (s2 + s3)(t2 + t3)/2 = 0 and we have b(u, v) =

b2(u, v)− b1(u, v) ≥ 0 again.
Thus, consider the remaining case t2 + t3 = 1. In this case (5) reduces to

b2(u, v) ≥

[(

s2 + s3
2

)

−

(

s3
2

)](

t1 + 1

2

)

+

(

s3
2

)(

t1 + 1

2

)

=

(

s2 + s3
2

)(

t1 + 1

2

)

≥

(

s2 + s3
2

)

as t1 ≥ 1. Now if s2 + s3 ≥ 2 then
(

s2+s3
2

)

≥ s2+s3
2

and consequently b2(u, v) ≥
(s2 + s3)(t2 + t3)/2. Thus, suppose that s2 + s3 = 1, as in the case s2 + s3 = 0 we
have b(u, v) ≥ 0 trivially. Then

−b1(u, v) ≥
s1
4

+
t1
4
−

(s2 + s3)(t2 + t3)

2
≥

1

4
+

1

4
−

1

2
= 0,

as both s1 and t1 are at least 1. Therefore b(u, v) = b2(u, v) − b1(u, v) ≥ 0 also in
this case.

Since we proved b(u, v) ≥ 0 in all cases, we have B(G) ≥ 0 and the lemma is
proved.

Proof of Theorem 1.6. By Proposition 3.1 we have W (L2(G))−2W (L(G))+
W (G) = A(G) + B(G) + C(G). By Lemma 3.2 we have A(G) + C(G) > 0 and by
Lemma 3.3 we have B(G) ≥ 0 for every graph G distinct from an isolated vertex
and a cycle. Hence A(G) +B(G) + C(G) > 0 for such a graph.

4 Wiener index of 2+-trees

Here we prove Theorem 1.5 using Corollary 1.4. For any tree T , different from an
isolated vertex, define

D(T ) = 8W (L2(T ))− 4W (L(T ))− 4W (T ).

If D(T ) ≥ 0 then also 1
4
D(T ) ≥ 0 and by Corollary 1.4 we obtain W (L3(T )) >

W (T ).
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Proposition 4.1 Let T be a tree different from an isolated vertex. Then

D(T ) =
∑

u 6=v

(

du dv

[

2(du − 1)(dv − 1)− 1
]

− 4

)

d(u, v)

+
∑

u 6=v

(

(du − 1)(dv − 1)
[

4(du − 1)(dv − 1)− 5
]

+ 1

)

+
∑

u

1

2
du(du − 1)

[

4(du − 1)(du − 2)− 1
]

,

where the first two sums run through all unordered pairs u, v ∈ V (G) and the third

one goes through all u ∈ V (G).

Proof. By Corolaries 2.3 and 2.6 we have

D(T ) = 8

(

∑

u 6=v

[(

du
2

)(

dv
2

)

d(u, v) + (du − 1)

(

dv − 1

2

)

+

(

du − 1

2

)

(dv − 1)

+ 2

(

du − 1

2

)(

dv − 1

2

)]

+
∑

[

3

(

du

3

)

+ 6

(

du
4

)])

−
4

4

(

∑

u 6=v

[

du dv d(u, v)− 1 + (du − 1)(dv − 1)

]

+
∑

u

(

du
2

))

− 4
∑

u 6=v

d(u, v)

and by reordering the terms we obtain the statement of the proposition.

We start with stars.

Lemma 4.2 If G = K1,k is a star with k ≥ 4, then D(G) ≥ 0.

Proof. In K1,k there are k vertices of degree 1 and one vertex of degree k.
Moreover, there are

(

k

2

)

pairs of vertices at distance 2 where both vertices are of
degree 1, and there are k pairs of vertices at distance 1 where one of these vertices
has degree 1 and the other one has degree k. Substituting these pairs and singletons
into Proposition 4.1, we obtain

D(K1,k) =

(

k

2

)

[

(−1 − 4)2 + 1
]

+ k
[

(−k − 4)1 + 1
]

+ k · 0 +
1

2
k(k − 1)

[

4(k − 1)(k − 2)− 1
]

=
k2 − k

2
(−9) + (−k2 − 3k) +

(

2k4 − 8k3 +
19

2
k2 −

7

2
k
)

= 2
[

(k − 4)k3 + (2k − 1)k
]

.
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Since k ≥ 4, we have D(K1,k) ≥ 0.

Lemma 4.2 will serve as the induction anchor for the proof of Theorem 1.5.
However, since the statement of Lemma 4.2 is not true for k = 3, we need to extend
the result slightly; denote by H the tree having six vertices, out of which two have
degree 3 and the remaining four have degree 1. (Then H is a graph which “looks”
like the letter H.)

Lemma 4.3 D(H) = −4 and W (L3(H)) > W (H).

Proof. Observe that L(H) consists of two triangles sharing a common vertex,
while L2(H) consists of a clique K4, two vertices of which are adjacent to one extra
vertex of degree 2, while the other two vertices of this clique are adjacent to another
extra vertex of degree 2. It is easy to calculate that W (H) = 29, W (L(H)) = 14,
W (L2(H)) = 21 and W (L3(H)) = 64, where W (L3(H)) can be evaluated using
distances between edges of L2(H). Hence W (L3(H)) > W (H) and D(H) = 8 · 21−
4 · 14− 4 · 29 = −4.

Observe that every vertex of degree 1 in a 2+-tree is adjacent to a vertex whose
degree is at least 3.

Lemma 4.4 Let T be a 2+-tree and let a be a leaf of T . Let T ′ be the tree obtained

from T by attaching k leaves at a, k ≥ 2. Then D(T ′) ≥ D(T ) + 20.

Proof. Many pairs of vertices have in T the same degrees and distance as in
T ′. These pairs we do not need to consider, as the corresponding terms will cancel
out. We need to consider only the pairs involving a in both D(T ′) and D(T ), and
the pairs involving pendant vertices adjacent to a. Of course, we have to keep in
mind that the degree of a is 1 in T and k + 1 in T ′. Hence, using Proposition 4.1
we obtain (the sum is over all u ∈ V (T ) \ {a})

D(T ′)−D(T ) =
∑

u

(

du(k + 1)
[

2(du − 1)k − 1
]

− 4

)

d(u, a)

+
∑

u

(

(du − 1)k
[

4(du − 1)k − 5
]

+ 1

)

−
∑

u

(

du[−1]− 4
)

d(u, a)−
∑

u

1

+ k
∑

u

(

du[−1]− 4
)(

d(u, a) + 1
)

+ k
∑

u

1
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+ k
(

(k + 1)[−1]− 4
)

· 1 + k · 1 +

(

k

2

)

(

1[−1]− 4
)

· 2

+

(

k

2

)

· 1 +
1

2
(k + 1)k

[

4k(k − 1)− 1
]

− 0

=
∑

u

(

2k2du (du − 1) + 2k du (du − 1)

− du k − du − 4 + du + 4− k du − 4k

)

d(u, a)

+
∑

u

(

4k2(du − 1)2 − 5k(du − 1) + 1− 1− k du − 4k + k

)

− k2 − 5k + k − 5k2 + 5k +
k2

2
−

k

2
+ 2k4 − 2k2 −

k2

2
−

k

2

= k
∑

u

(

(

2k du (du − 1) + 2(du − 1)2 − 6
)

d(u, a)

+ 4k(du − 1)2 − 6(du − 1)− 4

)

+2k2(k2 − 4).

Let g(u) = [2k du (du−1)+2(du−1)2−6]d(u, a)+4k(du−1)2−6(du−1)−4. Then

D(T ′)−D(T ) = k
∑

u∈V (T )\{a}

g(u) + 2k2(k2 − 4).

If du ≥ 2, then 2kdu(du−1)+2(du−1)2−6 ≥ 4 and (du−1)(4k(du−1)−6)−4 ≥
−2, so that g(u) ≥ 4−2 > 0. On the other hand, g(u) = −6d(u, a)−4 < 0 if du = 1.
Nevertheless, we show that

∑

u g(u) ≥ 10.
Let S be the set of vertices of degree at least 3 in T . For every u ∈ S denote

by S(u) the set consisting of u and all pendant vertices of T adjacent to u. Then
S(u) ∩ S(u′) = ∅ for every u, u′ ∈ S, u 6= u′. Since ∪u∈SS(u) contains all vertices of
V (T ) \ {a}, whose degree is different from 2, and since g(v) > 0 if dv = 2, we have

∑

v

g(v) ≥
∑

u∈S

∑

v∈S(u)

g(v).

Let u ∈ S. We find a lower bound for
∑

v∈S(u) g(v). Suppose that u is adjacent
to l leaves in T , where l ≤ du − 1. Then

∑

v∈S(u)

g(v) =
(

2k du (du − 1) + 2(du − 1)2 − 6
)

d(u, a) + 4k(du − 1)2

− 6(du − 1)− 4− 6l
(

d(u, a) + 1
)

− 4l.
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Note that for every vertex v of degree 1 we have g(v) < 0. Since l ≤ du − 1, we
obtain

∑

v∈S(u)

g(v) ≥
(

2k du (du − 1) + 2(du − 1)2 − 6
)

d(u, a) + 4k(du − 1)2

− 6(du − 1)− 4− 6(du − 1)
(

d(u, a) + 1
)

− 4(du − 1)

=
(

(2k du − 6)(du − 1) + 2(du − 1)2 − 6
)

d(u, a)

+
(

4k(du − 1)− 16
)

(du − 1)− 4.

Since k ≥ 2, du ≥ 3 and d(u, a) ≥ 1, we have

∑

v∈S(u)

g(v) ≥ 14d(u, a)− 4 ≥ 10.

Notice that 2k2(k2 − 4) ≥ 0. As T is not a path, we have |S| ≥ 1, so that

k
∑

v

g(v) + 2k2(k2 − 4) ≥ k
∑

u∈S

∑

v∈S(u)

g(v) ≥
∑

u∈S

10k ≥ 10k ≥ 20.

Observe that W (K1,3) = 9 while W (Li(K1,3)) = 3 for i ≥ 1, so that D(K1,3) =
8 · 3− 4 · 3− 4 · 9 = −24. Therefore D(H)−D(K1,3) = 20, so that the statement of
Lemma 4.4 is sharp.

Lemma 4.5 Let T be a 2+-tree, and let a be a vertex of degree k + 1 in T , k ≥ 2,
such that a is adjacent to exactly k pendant vertices in T . Denote by a′ the unique

vertex adjacent to a, whose degree is greater than 1. Subdivide once the edge a′a and

denote the resulting graph by T ′. Then D(T ′) ≥ D(T ) + 8.

Proof. Analogously as in the proof of Lemma 4.4, it is enough to consider
only those pairs of vertices, whose distance or degrees in T and T ′, are different.
Denote by b the vertex subdividing the edge a′a in T ′. In D(T ′) we need to add
pairs containing b, as these pairs do not occure in terms of D(T ). Moreover, for all
pairs which are connected by a path containing b, we need to increase their distance
by 1. Finally, we need to include a single term depending on the degree of b. Hence,
using Proposition 4.1 we obtain (the sum is over all u ∈ V (T ) such that u− b path
in T ′ does not contain a, and d(u, a) is considered in T )

D(T ′)−D(T ) =
∑

u

(

2du

[

2(du − 1)− 1
]

− 4

)

d(u, a)

17



+
∑

u

(

(du − 1)
[

4(du − 1)− 5
]

+ 1

)

+
(

2(k + 1)
[

2k − 1
]

− 4
)

· 1 + k
[

4k − 5
]

+ 1

+ k
(

2[−1]− 4
)

· 2 + k

+
∑

u

(

du (k + 1)
[

2(du − 1)k − 1
]

− 4

)

+ k
∑

u

(

du [−1]− 4
)

+
1

2
2[−1]

=
∑

u

(

2du [2du − 3]− 4
)

d(u, a)

+
∑

u

[

(du − 1)(4du − 6)− 3du + 3 + 1 + 2du k
2(du − 1)

+ d2u k + d2u k − 2du k − du k − du − 4− k du − 4k
]

+4k2 + 2k − 6 + 4k2 − 5k + 1− 12k + k − 1

=
∑

u

(

(

2du [2du − 3]− 4
)

d(u, a) + 2du k
(

k(du − 1)− 2
)

+ du (du k − 4) + k(d2u − 4) + (du − 1)2(2du − 3)

)

+2k(4k − 7)− 6

=
∑

u

h(u) + 2k(4k − 7)− 6.

Recall that k ≥ 2. If du ≥ 2 then 2du[2du − 3] − 4 ≥ 0, k(du − 1) − 2 ≥ 0,
duk − 4 ≥ 0, d2u − 4 ≥ 0 and also (du − 1)2(2du − 3) ≥ 0. Hence, h(u) ≥ 0 in this
case. On the other hand, h(u) = −6d(u, a)− 6k− 4 < 0 if du = 1. Nevertheless, we
show that

∑

u h(u) ≥ 10.
Analogously as in the proof of Lemma 4.4, let S be the set of vertices of degree

at least 3 of V (T ) \ {a}. For every u ∈ S denote by S(u) the set consisting of u and
all pendant vertices of T adjacent to u. Then S(u) ∩ S(u′) = ∅ for every u, u′ ∈ S,
u 6= u′. Observe that ∪u∈SS(u) contains all vertices v of V (T ), for which v− b path
in T ′ does not contain a and which degree is different from 2. Since h(v) ≥ 0 if
dv = 2, we have

∑

v

h(v) ≥
∑

u∈S

∑

v∈S(u)

h(v).
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Let u ∈ S. We find a lower bound for
∑

v∈S(u) h(v). Suppose that u is adjacent
to l leaves in T , where l ≤ du − 1. Then

∑

v∈S(u)

h(v) =
(

2du (2du − 3)− 4
)

d(u, a) + 2du k
(

k(du − 1)− 2
)

+ du (du k − 4) + k(d2u − 4) + (du − 1)2(2du − 3)

− 6l
(

d(u, a) + 1
)

− 6kl − 4l.

Since for every vertex v of degree 1 we have h(v) < 0 and since l ≤ du − 1, we have

∑

v∈S(u)

h(v) ≥
(

2du (2du − 3)− 4
)

d(u, a) + 2du k
(

k(du − 1)− 2
)

+ du (du k − 4) + k(d2u − 4) + (du − 1)2(2du − 3)

− 6(du − 1)
(

d(u, a) + 1
)

− 6k(du − 1)− 4(du − 1)

=
(

2du (2du − 6) + 2
)

d(u, a) + 2du k
(

k(du − 1)− 4
)

+ du (2du k − 2k − 4)− 4k + (4d2u − 10du + 6)

− 6du + 6 + 6k − 4du + 4.

Since du ≥ 3, we have 2du − 6 ≥ 0 and consequently 2du(2du − 6) + 2 > 0. Thus,

∑

v∈S(u)

h(v) ≥ (4d2u − 12du + 2) + 2du k
(

k(du − 1)− 4
)

+ du (2du k − 2k − 8) + (4d2u − 16du + 10) + 2k + 6

= 2du k
(

k(du − 1)− 4
)

+ 2du

(

k(du − 1)− 4
)

+ (8d2u − 28du + 12) + 2(k + 3)

= 2du (k + 1)
(

k(du − 1)− 4
)

+ 4(2du − 1)(du − 3) + 2(k + 3).

Since du ≥ 3 and k ≥ 2, we have k(du − 1)− 4 ≥ 0 and du − 3 ≥ 0, so that

∑

v∈S(u)

h(v) ≥ 2(k + 3) ≥ 10.

Since k ≥ 2, we have 2k(4k− 7)− 6 ≥ −2. As T is not a path, we have |S| ≥ 1,
so that

∑

v

h(v) + 2k(k − 7)− 6 ≥
∑

u∈S

∑

v∈S(u)

h(v)− 2 ≥
∑

u∈S

10− 2 ≥ 10− 2 ≥ 8.
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Denote by Hs the tree obtained by subdividing the central edge of H . Since
W (Hs) = 48, W (L(Hs)) = 27 and W (L2(Hs)) = 38, we have D(Hs) = 4. By
Lemma 4.3 D(H) = −4, so that Lemma 4.5 is sharp for T = H .

Proof of Theorem 1.5. By induction we prove that D(T ) ≥ 0 if T is 2+-tree
different from K1,3 and H . If T is a star K1,k, k ≥ 4, then D(T ) ≥ 0 by Lemma 4.2,
while D(H) = −4 by Lemma 4.3. Thus, suppose that T has at least two vertices of
degree at least 3 and T is different from H .

Denote by T ∗ the subgraph of T formed by vertices of degree at least 2. Then
T ∗ is a nontrivial tree, so that it has at least two pendant vertices. Denote by a a
pendant vertex of T ∗, whose degree in T is the smallest possible. Moreover, denote
by v the vertex of T ∗ which is adjacent to a. Consider the degree of v in T . We
distinguish two cases.

• dv ≥ 3: Remove from T all pendant vertices adjacent to a, together with the
corresponding edges, and denote the resulting graph by T ′. In T ′ the vertex a
has degree 1 and is adjacent to v, where dv ≥ 3. Thus, T ′ is a 2+-tree. Since
T 6= H , by the choice of a if T ′ has only one vertex of degree at least 3, then T ′

is K1,k, where k ≥ 4, so that D(T ′) ≥ 0, by Lemma 4.2. If T ′ has at least two
vertices of degree at least 3, then D(T ′) = −4 if T ′ is H by Lemma 4.3, while
otherwise D(T ′) ≥ 0 by induction. Since D(T ) ≥ D(T ′) + 20 by Lemma 4.4,
we have D(T ) ≥ 0.

• dv = 2: Denote by a′ the vertex of T adjacent to v, a′ 6= a. Remove from T the
vertex v and the edges va and va′, insert the edge aa′, and denote the resulting
graph by T ′. Then T ′ is a 2+-tree having at least two vertices of degree at least
3. Hence D(T ′) = −4 if T ′ = H by Lemma 4.3, while otherwise D(T ′) ≥ 0 by
induction. Since D(T ) ≥ D(T ′) + 8 by Lemma 4.5, we have D(T ) ≥ 0.

Hence, in both cases we haveD(T ) ≥ 0. SinceD(T ) = 4[2W (L2(T ))−W (L(T ))−
W (T )], by Corollary 1.4, we have W (L3(T )) > W (T ) for every 2+-tree different from
K1,3 and H .

By Lemma 4.3 we have also W (L3(H)) > W (H), so that W (L3(T )) > W (T ) for
every 2+-tree different from K1,3.
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[20] M. Knor, P. Potočnik, R. Škrekovski, Complete solution of equation
W (L3(T )) = W (T ) for Wiener index of iterated line graphs of trees, (in prepa-
ration).
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