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Abstract. In many papers, the relation between the domination number

of a product of graphs and the product of domination numbers of factors

is studied. Here we investigate this problem for domination and total dom-
ination numbers in the cross product of digraphs. We give analogues of

known results for graphs, and we also present new results for digraphs with
sources. Using these results we find domination (total domination) numbers

for some classes of digraphs.
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1. Introduction

Domination of the products of graphs attracted attention of graph the-
orists for more than forty years starting with the well known Vizing’s con-
jecture [13]. This conjecture claims that for any two graphs, the product
of domination numbers of these graphs is not greater than the domination
number of cartesian product of these graphs. Many generalizations of the
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original problem and related problems were introduced [4], [5], [11]. In re-
cent years the domination and total domination of cross (or direct) product
of graphs have been studied for example in [2], [3], [12]. It was shown that
for cross product the analogue of Vizing’s conjecture is not valid [9]. Upper
and lower bounds for domination number of the cross product of graphs in
terms of domination numbers and packing numbers of factors can be found
in [1]. Upper and lower bounds for total domination number of the cross
product of graphs were found independently in [2], [3], [14]. In this note
we turn our attention to the problem of domination of the cross product
of digraphs. Domination and total domination numbers are generalized to
digraphs in a natural way [4], [5], [6]. It was proved that Vizing’s con-
jecture is not valid for the cartesian product of directed graphs [10]. In
this paper we present lower and upper bounds for domination numbers of
cross product of digraphs. These bounds are similar to those for graphs,
mentioned in the above papers. We show that these bounds are attained
by infinite classes of digraphs, and in all cases we choose our classes so that
the digraphs are not symmetric.

2. Preliminaries

We consider only simple digraphs, i.e., having neither loops nor multiple
arcs. Let G = (V,E) be a digraph. By V (G) and E(G) we denote its vertex
set and its arc set, respectively. We say that vertex u dominates vertex v
if uv ∈ E(G). The open in-neighborhood of a vertex v is the set N+

o (v) of
all vertices that are dominating vertex v. (In other words, N+

o (v) is the set
of all u’s such that uv ∈ E(G).) Similarly, the open out-neighborhood of
a vertex v is the set N−

o (v) of all vertices that are dominated by vertex v.
The size of N+

o (v) (N−

o (v)) is denoted by deg+(v) (deg−(v)) and it is called
the in-degree (out-degree) of v. The minimum deg+(v), taken through all
v ∈ V (G), is the minimum in-degree, δ+(G), of G.

Closed neighborhoods of vertex v ∈ V (G) are N+(v) = N+
o (v) ∪ {v}

and N−(v) = N−

o (v) ∪ {v}. A set D ⊆ V (G) is a dominating set of G
if
⋃

v∈D N−(v) = V (G), and T ⊆ V (G) is a total dominating set of G if
⋃

v∈T N−

o (v) = V (G). The domination number of G, γ(G), is the minimum
cardinality of a dominating set of G, while its total domination number,
γt(G), is the minimum cardinality of a total dominating set of G. Note
that total dominating sets exist in digraphs without sources (vertices of
in-degree 0) only.

A set P ⊆ V (G) is called in-packing if N+(v) ∩N+(u) = ∅ for any two
distinct vertices u, v ∈ P . A set P ′ ⊆ V (G) is called open in-packing if
N+

o (v)∩N+
o (u) = ∅ for any two distinct vertices u, v ∈ P ′. The in-packing

number ρ+(G) is the maximum cardinality of an in-packing set of G, while
the open in-packing number ρ+o (G) is the maximum cardinality of an open
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in-packing set of G.

For digraphs G and H, their cross product G × H is a digraph with
vertex set V (G ×H) = V (G) × V (H) and with (u, v)(u′, v′) ∈ E(G×H)
if and only if uu′ ∈ E(G) and vv′ ∈ E(H). For each vertex v ∈ V (H)
we denote Gv = {(u, v); u ∈ V (G)}. We call Gv the column of G × H
corresponding to vertex v. Similarly the rows of G × H are defined by
Hu = {(u, v) : v ∈ V (H)}, where u ∈ V (G).

For the notions and notation not mentioned here, see [4].

3. Lower and upper bounds for γt(G ×H) and γ(G×H).

Theorem 1. For any two digraphs G and H with δ+(G) ≥ 1 and δ+(H) ≥
1, we have γt(G×H) ≤ γt(G)γt(H).

Proof. Since δ+(G) ≥ 1 and δ+(H) ≥ 1, there exist total dominating sets
in both G and H. Let D1 and D2 be minimum total dominating sets in G
and H, respectively, and let D = D1×D2. Then D ⊆ V (G×H). Let (u, v)
be an arbitrary vertex from V (G × H). Then there are vertices u′ ∈ D1

and v′ ∈ D2 such that u′ dominates u and v′ dominates v. Therefore
(u′, v′)(u, v) ∈ E(G × H), so that D is a total dominating set in G × H.
Consequently, γt(G×H) ≤ |D| = γt(G)γt(H). �

Let G be a digraph with δ+(G) ≥ 1. Suppose that D is a total domi-
nating set in G, and S is an open in-packing in G. Let vi ∈ S. Then vi is
dominated by at least one vertex ui ∈ D, where ui 6= vi and ui ∈ N+

o (vi).
For any two vertices ui, uj ∈ S, we have N+

o (ui) ∩ N+
o (uj) = ∅, so that

ui and uj are dominated by different vertices from D. This means that
ρ+o (G) ≤ γt(G) if δ+(G) ≥ 1.

Theorem 2. For any two digraphs G and H with δ+(G) ≥ 1 and δ+(H) ≥
1, we have γt(G×H) ≥ ρ+o (G)γt(H).

Proof. Since δ+(G) ≥ 1 and δ+(H) ≥ 1, we have δ+(G ×H) ≥ 1. Let D
be a total dominating set in G × H. Suppose that S = {s1, s2, . . . sk} is
an open in-packing in G. Denote Di = D ∩ (N+

o (si) × V (H)), 1 ≤ i ≤ k.
Each vertex in the row Hsi is dominated by a vertex of Di. Let pi be a
projection of the set Di to V (H) defined by pi(u, v) = v for all (u, v) ∈ Di.
The set pi(Di) is a total dominating set in H, so that |Di| ≥ γt(H). As
sets Di are disjoint, |D| ≥

∑

i |Di| ≥ ρ+o (G)γt(H). �

Observe that Theorems 1 and 2 are best possible for digraphs G with
δ+(G) ≥ 1 and γt(G) = ρ+o (G). Simplest examples of such digraphs are
directed cycles.

Let ∆−(G) be the maximum out-degree in G. Modifying the proof of
Theorem 2 slightly we are able to prove the following statement.
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Theorem 3. For any two digraphs G and H with δ+(G) ≥ 1 and δ+(H) ≥
1, we have γt(G×H) ≥ |V (G)|γt(H)/(∆−(G)).

Proof. Suppose that V (G) = {v1, v2, . . . , vn}, and denote Di = D∩
(N+

o (vi)× V (H)), 1 ≤ i ≤ n, where D is a total dominating set of G×H.
Define pi analogously as in the proof of Theorem 2. Then pi(Di) is a total
dominating set in H, so that |Di| ≥ γt(H). Now summing for all vertices
of V (G) we get

∑

vi∈V (G)

|Di| ≥ |V (G)|γt(G).

Since every vertex of D is counted in the sum exactly deg−(v) times, we
get D ≥ |V (G)|γt(H)/(∆−(G)). �

Analogously as Theorems 1 and 2, Theorem 3 is best possible for directed
cycles.

A digraph is d-regular if the in-degree and out-degree of every vertex is d.
Obviously, a d-regular digraph has ρ+o (G) ≤ |V (G)|/d. Hence, Theorem 3
is better than Theorem 2 for d-regular digraphs G such that d ∤ |V (G)|.
On the other hand, denote by Wn a digraph obtained from a wheel on
n + 1 vertices in which we direct all the spokes into the center and in
which the “non-spoke” arcs form a directed cycle. Then ρ+o (Wn) = n while
∆−(Wn) = 2, so that |V (Wn)|/∆

−(Wn) =
n+1
2 . Thus, if we choose Wn for

G, then Theorem 2 is better than Theorem 3.
Now we find upper and lower bounds for γ(G×H). Since ∪v∈V (G)N

−(v)
⊇ ∪v∈V (G){v} = V (G), each digraph has a dominating set. Thus, γ(G×H)
is defined for all pairs of digraphs G and H. Let G be a digraph and let
V0(G) be the set of all sources in G. Obviously, every dominating set D
of G contains V0(G), since each vertex v ∈ V0(G) is not dominated by any
vertex of G. In what follows, we shall consider two cases, namely V0(G) = ∅
and V0(G) 6= ∅.

Theorem 4. For any two digraphs G and H with δ+(G) ≥ 1 and δ+(H) ≥
1, we have γ(G×H) ≤ 3γ(G)γ(H).

Proof. Let D1 and D2 be minimum dominating sets in G and H, respec-
tively. We construct sets D+

1 and D+
2 , such that D+

1 ⊆ V (G) and D+
2 ⊆

V (H). For each vertex v ∈ D1 we add to D+
1 one vertex from N+

o (v). Then
|D+

1 | ≤ |D1| and all vertices from D1 are dominated by D+
1 . Let D+

2 be
defined analogously. We show that D = (D1×D2)∪(D+

1 ×D2)∪(D1×D+
2 )

is a dominating set in G×H. Let (u, v) ∈ V (G×H). There are 4 cases to
consider:

1. u ∈ D1 and v ∈ D2. Then (u, v) ∈ D.
2. u ∈ D1 and v ∈ V (H)−D2. Then (u, v) is dominated by a vertex

of D+
1 ×D2.
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3. u ∈ V (G) −D1 and v ∈ D2. Then (u, v) is dominated by a vertex
of D1 ×D+

2 .
4. u ∈ V (G) −D1 and v ∈ V (H) −D2. Then (u, v) is dominated by

a vertex of D1 ×D2.

Since |D| ≤ |D1×D2|+ |D+
1 ×D2|+ |D1×D+

2 | ≤ 3γ(G)γ(H), the result
follows. �

Let Sk be a digraph consisting of a directed cycle (v0, v1, . . . v2k−1) in
which at every vertex of even index v2i there are attached at least 2 pending
arcs v2iu2i,1 and v2iu2i,2, 0 ≤ i ≤ k. I.e., the in-degree of u2i,j is 1 and
its out-degree is 0 for j = 1, 2. The unique minimum dominating set in
Sk is {v0, v2, . . . , v2k−2}, so that γ(Sk) = k. Now denote by S′

l a copy
of Sl with vertices v′i and u′

i,j , and consider a minimum dominating set

D in Sk × S′

l . Since both (u2i,1, v
′

j) and (u2i,2, v
′

j) have in-degree 1 and
out-degree 0 and both of them are dominated by (v2i, v

′

j−1), the vertex
(v2i, v

′

j−1) must be in D. Hence, D1 = {(v2i, v
′

j−1); 0 ≤ i < k, 0 ≤ j < 2l}
is a subset of D. (The arithmetics at indices of v is considered in Z2k,
while the arithmetics at indices of v′ is considered in Z2l.) Analogously,
D2 = {(vi−1, v

′

2j); 0 ≤ i < 2k, 0 ≤ j < l} is a subset of D. As D1 ∪D2 =
{(v2i, v

′

2j), (v2i, v
′

2j−1), (v2i−1, v
′

2j); 0 ≤ i < k, 0 ≤ j < l}, the set D1∪D2 is
a dominating set in Sk×S′

l , by the proof of Theorem 4. Hence, D = D1∪D2.
Since |D| = 3kl, we have γ(Sk × S′

l) = 3γ(Sk)γ(S
′

l). Hence, Theorem 4 is
tight in this case.

Now consider digraphs with sources. If u ∈ V0(G), then for every v ∈
V (H) the vertex (u, v) is included in any dominating set of G×H. Similarly
if v ∈ V0(H), then for every u ∈ V (G) the vertex (u, v) is included in
any dominating set of G × H. Denote by g0 and h0 the cardinality of
V0(G) and V0(H), respectively. Then the number of sources in G × H is
h0|V (G)|+ g0|V (H)| − g0h0.

Theorem 5. Let G and H be digraphs, g0 = |V0(G)| and h0 = |V0(H)|.
Then γ(G×H) ≤ h0|V (G)|+ g0|V (H)| − g0h0 +3(γ(G)− g0)(γ(H)− h0).

Proof. Let D1 and D2 be minimum dominating sets in G and H, respec-
tively. We construct a dominating set D in G × H in the following way.
Let D = Ds ∪Do, where

Ds =
(

V (G)× V0(H)
)

∪
(

V0(G)× V (H)
)

Do =
(

(D1 − V0(G))× (D2 − V0(H))
)

∪
(

(D1 − V0(G))+ × (D2 − V0(H))
)

∪
(

(D1 − V0(G))× (D2 − V0(H))+
)

.

The sets (D1−V0(G))+ and (D2−V0(H))+ are defined in the same way as
in the proof of Theorem 4. The sources of G ×H are exactly the vertices
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of Ds. Now analogously as in the proof of Theorem 4 one can show that
all other vertices of G × H are included in or dominated by Do, and the
result follows. �

Denote by Kn a complete digraph on n vertices. Then uv ∈ E(Kn)
for every u, v ∈ V (Kn), u 6= v. Although this digraph is symmetric, we
determine the domination number of Km×n = Km ×Kn, where m,n ≥ 3.
Suppose that there is a dominating set D = {(u1, v1), (u2, v2)} in Km×n.
Since n ≥ 3, there is a vertex v in Kn such that v /∈ {v1, v2}. Therefore,
if u1 = u2 then D does not dominate (u1, v). Consequently u1 6= u2, and
analogously one can show that v1 6= v2. But then D does not dominate
(u1, v2), a contradiction. This means that γ(Km×n) ≥ 3. Since γ(Km) =
γ(Kn) = 1, we have γ(Km×n) ≤ 3 by Theorem 4, so that γ(Km×n) = 3.

Denote by Yn a digraph consisting of complete digraph on n vertices and
two extra vertices a and b. The arc set of Yn contains all the arcs of complete
digraph Kn, together with arc ab and all arcs ub, where u ∈ V (Kn). Let
Ym×n = Ym × Yn, where m,n ≥ 3. Then Ym×n contains Km×n, and no
vertex of Km×n in Ym×n is dominated by a vertex of V0(Ym×n). Thus,
γ(Ym×n) ≥ |V0(Ym×n)| + γ(Km×n) as shown before Theorem 5. Since
γ(Km×n) = 3 and γ(Ym) = |V0(Ym)| + 1 = 2 = γ(Yn), Theorem 5 is tight
in this case.

Now we make an observation, similar to that stated before Theorem 2.
Let G be a digraph. Suppose that D is a dominating set in G and S is
an in-packing in G. Then distinct vertices of S are dominated by distinct
vertices of D, so that ρ+(G) ≤ γ(G).

Theorem 6. For any two digraphs G and H, with δ+(H) ≥ 1, we have

γ(G×H) ≥ ρ+(G)γt(H).

Proof. Let S = {s1, s2, . . . , sk} be an in-packing with cardinality ρ+(G),
and let D be a minimum dominating set in G × H. Denote by Hi the
subgraph of G ×H generated by vertices N+(si) × V (H), and denote by
Di the intersection D ∩ V (Hi). We distinguish two cases:

(i) deg+(si) = 0. Then there is no vertex u ∈ V (G) such that usi ∈
E(G). Thus, all vertices (si, v) of the row Hsi = Hi are in D, so
that Di = V (Hi). Since δ+(H) ≥ 1, there is a total dominating set
in H. As |V (H)| ≥ γt(H), we have |Di| ≥ γt(H).

(ii) deg+(si) ≥ 1. Each vertex (si, v) of the row Hsi is either dominated
by a vertex of Di or it is included in Di. In the later case we
replace the vertex (si, v) in Di by a vertex (s′i, v

′) that dominates
(si, v). Resulting set D′

i dominates all vertices in the row Hsi , so
that the projection of D′

i on H is a total dominating set. Thus,
|Di| ≥ |D′

i| ≥ γt(H).
6



Since the subgraphs Hi are pairwise disjoint and in every case |Di| ≥ γt(H),
the result follows. �

Denote by C2n a directed cycle of even length 2n. Let C2m×2n = C2m×
C2n. Assume that C2m = (u0, u1, . . . , u2m−1) and C2n=(v0, v1, . . . , v2n−1).
As deg−(ui) = deg−(vj) = 1, we have deg−((ui, vj)) = 1, where 0 ≤
i ≤ 2m−1 and 0 ≤ j ≤ 2n−1. Analogously deg+((ui, vj)) = 1, so
that C2m×2n is a collection of vertex-disjoint cycles. Denote by t the
least common multiple of 2m and 2n. The cycle starting at (u0, v0) is
((u0, v0), (u1, v1), . . . , (u2m−1, v2n−1)) and its length is t. Since both C2m

and C2n are vertex-transitive, so is C2m×2n. Hence, C2m×2n is a collection
of (2m · 2n)/t cycles, all of even length t. Thus, γ(C2m×2n) = 2mn. As
ρ+(C2m) = m and γt(C2n) = 2n, we have γ(C2m×2n) = ρ+(C2m)γt(C2n),
so that Theorem 6 is tight in this case.

For digraphs containing sources we have a straightforward consequence
of Theorem 6.

Theorem 7. For any two digraphs G and H, we have γ(G × H) ≥
ρ+(G)γ(H).

Proof. The proof is similar to the case (ii) of previous one, just the dom-
inating sets Di are not replaced by D′

i, and consequently, the projected
dominating sets need not to be total. So we have |Di| ≥ γ(H) and the
inequality follows. �

At the moment we are not familiar with digraphs G and H (other than
trivial ones) for which Theorem 7 is tight. We remark that Theorems 5
and 7 have no analogues for graphs.

4. Domination in (Cn × H).

We now consider a special case of cross products, when one of the factors
is a directed cycle.

Theorem 8. If G is a digraph without sources then γ(G × H) ≤
|V (G)|γ(H).

Proof. Let D be a minimum dominating set of H. Denote by D× the set
of all vertices (u, v) of G ×H, such that u ∈ V (G) and v ∈ D. We show
that D× is a dominating set of G×H.

Let (x, y) ∈ V (G ×H). If y ∈ D then (x, y) ∈ D×. Therefore suppose
that y /∈ D. Then there is v ∈ D such that v dominates y in H. Further,
since G contains no sources there is u ∈ V (G) such that u ∈ N+

o (x). But
then (u, v) ∈ D× and (u, v) dominates (x, y). �

Since for directed cycles Cn it holds γt(Cn) = |V (Cn)|, by Theorem 8
we have
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Corollary 9. Let Cn be a directed cycle with n vertices and let H be an

arbitrary digraph. Then γ(Cn ×H) ≤ γt(Cn)γ(H) = nγ(H).

From Theorem 6 and Corollary 9 it follows that if ρ+(H) = γ(H)
then γ(Cn × H) = nγ(H). Examples of digraphs with this property are
for instance digraphs with efficient dominating sets. These digraphs can
be found for example in [7],[8] and [10]. Another class of digraphs with
ρ+(H) = γ(H) is formed by directed rooted trees.

Lemma 10. For a directed rooted tree R we have ρ+(R) = γ(R).

Proof. As ρ+(H) ≤ γ(H) for any digraph, it is enough to construct an
in-packing of R with γ(R) vertices. Let D be a minimum dominating set
of R. It is clear that for the root r we have r ∈ D, since r is a source. Now
we modify D as follows. Take a vertex v ∈ D, v 6= r, such that v has no
children in V −D. Denote by v′ the parent of v. Then (D− {v}) ∪ {v′} is
again a dominating set, so replace D by (D − {v}) ∪ {v′}. Proceed in this
procedure until every vertex v ∈ D, v 6= r, has a child in V −D. (Observe
that this procedure is finite as in every step we decrease

∑

v∈D dist(r, v).)
Denote by D′ the resulting minimum dominating set in R. Now for every
vertex v ∈ D′, v 6= r, denote by uv one child of v, such that uv /∈ D′.
Define P = {r} ∪ {uv; v ∈ D′ − {r}}. Then N+(r) = {r} and for every
other vertex uv ∈ P , the set N+(uv) consists of uv and its parent v, where
uv /∈ D′ and v ∈ D′. Hence, P is an in-packing and |P | = |D′| = |D|. �

As a direct consequence we have

Theorem 11. Let R be a directed rooted tree and let Cn be a directed cycle

of length n. Then γ(R× Cn) = nγ(R).
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[10] L’. Niepel, A. Černý, B. AlBdaiwi, Efficient domination in directed tori and the
Vizing’s conjecture for directed graphs, Ars Combinatoria 91 (2009).

[11] R. Nowakowski, D.F. Rall, Associative graph products and their independence,

domination and coloring numbers, Discussiones Mathematicae, Graph Theory 16
(1996), 103-112.

[12] D. F. Rall, Total domination in categorical products of graphs, Discussiones Math-
ematicae, Graph Theory 25 (2005), 35-44.

[13] V. G. Vizing, Some unsolved problems in graph theory (in Russian), Uspechi Mat.

Nauk 23 (1968), 117-134.
[14] M. Zwierzchowski, Total domination number of the conjunction of graphs, Discrete

Mathematics 307 (2007), 1016-1020.

9


