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Abstract

We prove that for every prime number p and odd m > 1, as s → ∞,

there are at least w
w

2

(

1
p4m2 −o(1)

)

face 2-colourable triangular embeddings

of Kw,w,w , where w = m · ps. For both orientable and nonorientable

embeddings, this result implies that for infinitely many infinite families of

z, there is a constant c > 0 for which there are at least zcz
2

nonisomorphic

face 2-colourable triangular embeddings of Kz.

1 Introduction

In proving Heawood’s conjecture Ringel and Youngs ([17], [18]) constructed one
triangular embedding of a complete graph Kz in a nonorientable surface for
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every z ≡ 0, 1 (mod 3), z ≥ 9, and one triangular embedding of Kz in an
orientable surface for every z ≡ 0, 3, 4, 7 (mod 12), z ≥ 3. Their constructions
were based on current graphs. By varying the rotations at vertices of current
graphs, Korzhik and Voss obtained a ·2bz nonisomorphic triangular embeddings
of these complete graphs (a and b being positive constants) in both the orientable
and nonorientable cases, providing that z is sufficiently large, see [11], [12], [13],
[14] and [15]. If a triangular embedding of Kz is face 2-colourable, then the two
colour classes form two Steiner triple systems on z points. Face 2-colourability
requires z ≡ 1, 3, 7, 9 (mod 12) in the nonorientable case, and z ≡ 3, 7 (mod 12)
in the orientable case. In the papers [1], [6] (see also [2] for a survey) the authors

constructed a · 2bz2

nonisomorphic triangular embeddings of Kz (a and b being
positive constants) in both the orientable and nonorientable cases, provided
that z is sufficiently large and lies in certain congruence classes. For example,
if z ≡ 7, 19 (mod 36), then it is shown in [1] that, as z → ∞, there are at

least 2z2( 1
54−o(1)) face 2-colourable triangular embeddings of Kz in an orientable

surface.
As mentioned in [8], an upper bound for the number of nonisomorphic trian-

gular face 2-colourable embeddings of Kz is zz2/3. The following result is given
in [3] (where the conditions m > 1 and m ·2s ≡ 0, 4 (mod 6) were unfortunately
omitted).

Theorem 1.1 Suppose that z = m ·2s(t−1)+1 where t ≡ 3, 7 (mod 12), t ≥ 7,
m is odd, m > 1, and m · 2s ≡ 0, 4 (mod 6). Then as s→ ∞, there are at least

z
z2

(

t−3

192m2(t−1)
−o(1)

)

nonisomorphic face 2-colourable triangular embeddings of Kz in a nonorientable
surface.

In [5] it was explained how the constant 1
192 may be improved by a factor of

2 to 1
96 .

As regards orientable embeddings, the following result is given in [8].

Theorem 1.2 Suppose that z = 3m(22s+1−1)(t−1)+1 where t ≡ 3, 7 (mod 12),
t ≥ 7, m is odd and m > 1. Then as s→ ∞, there are at least

z
z2

(

t−3

96m2(t−1)
−o(1)

)

nonisomorphic face 2-colourable triangular embeddings of Kz in an orientable
surface.
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Hence, in both the orientable and nonorientable cases, the lower and upper
bounds for the number of nonisomorphic face 2-colourable triangular embed-
dings of Kz are both of the form zbz2

for a suitable constant b > 0, although the
lower bound is only established for restricted infinite families of z. The primary
purpose of this paper is to extend these results on the lower bound to a much
wider range of values of z. We also obtain the improved version of Theorem 1.1
described in [5] and mentioned above.

As in [3], [6] and [8], a key ingredient is the construction of many differently
labelled triangular embeddings of the complete regular tripartite graph Kw,w,w.
Therefore, the next section is devoted to such graphs. Complete graphs are dealt
with in the subsequent section. The reader is referred to [10] for terminology
undefined in the paper.

2 Complete tripartite graphs

Suppose that ρ is a face 2-colourable triangular embedding of Kn,n,n. As shown
in [4], such an embedding is necessarily in an orientable surface. If the triparti-
tion of Kn,n,n is taken to define the row, column and entry labels of an n × n

array, then in each of the two colours, every prescribed pair of row and column
labels is in a triangle with a unique entry label; every pair of row and entry
labels is in a triangle with a unique column label; and every pair of column and
entry labels is in a triangle with a unique row label. Hence, the triangles of
each colour class determine a Latin square. Denote by R and R′ the two Latin
squares obtained from ρ in this way. Then we say that R biembeds with R′ and
we write R ⊲⊳ R′. With a slight abuse of notation we also write ρ = R ⊲⊳ R′.
The triangles corresponding to R will be taken to be coloured white, while those
corresponding to R′ will be taken to be black.

Let R be a Latin square of order r. A transversal in R is a set of r distinct
entry labels occurring in r distinct rows and r distinct columns. In an embedding
ρ = R ⊲⊳ R′, a transversal in R (R′) corresponds to a parallel class of faces, i.e.
to a set of r vertex disjoint triangles, coloured white (black).

In [6], see also [5], there is a product construction which creates a face 2-
colourable triangular embedding ofKmn,mn,mn from face 2-colourable triangular
embeddings of Kn,n,n and Km,m,m. We now recall this construction.

Take m face 2-colourable triangular embeddings of Kn,n,n, ϕt = L ⊲⊳ L′

t,
0 ≤ t ≤ m − 1, m > 1. Observe that these embeddings have identical sets
of white triangles. To be able to distinguish the vertices of these triangular
embeddings, suppose that the vertex set of ϕt is Rt ∪ Ct ∪ Et, where Rt =
{rt

0, r
t
1, . . . , r

t
n−1}, Ct = {ct0, c

t
1, . . . , c

t
n−1} and Et = {et

0, e
t
1, . . . , e

t
n−1} are the

three sets forming the tripartition of Kn,n,n. We assume that the vertices of Rt,
Ct and Et correspond to rows, columns and entries, respectively, of both L and
L′

t. The triple (r0i , c
0
j , e

0
k) is a white triangle of ϕ0 if and only if (rt

i , c
t
j , e

t
k) is a

white triangle of ϕt for any t, 0 ≤ t ≤ m− 1.
Now take n2 face 2-colourable triangular embeddings of Km,m,m, ψi,j =

Qi,j ⊲⊳ Q
′

i,j , 0 ≤ i, j ≤ n − 1, in which all the squares Q′

i,j have a common
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transversal T , corresponding to a parallel class of black triangles in ψi,j . We
suppose that the vertex set of ψi,j is R′∪C′∪V ′, where R′ = {r′0, r

′

1, . . . , r
′

m−1},
C′ = {c′0, c

′

1, . . . , c
′

m−1} and V ′ = {e′0, e
′

1, . . . , e
′

m−1} are the three sets form-
ing the tripartition of Km,m,m. We assume that the vertices of R′, C′ and
V ′ correspond to rows, columns and entries, respectively, of both Qi,j and
Q′

i,j . Suppose that the parallel class of black triangles, common to all ψi,j ,
is T = {(r′αt

, c′βt
, e′γt

) : 0 ≤ t ≤ m − 1}, where α, β and γ are permutations
of {0, 1, . . . ,m − 1}, and we can assume that α is the identity, i.e. αt = t for
0 ≤ t ≤ m− 1. We do not need to distinguish the vertices of ψi1,j1 from those
of ψi2,j2 , as in the final embedding of Kmn,mn,mn we will use only the names of
vertices appearing in ϕt, 0 ≤ t ≤ m− 1.

Consider one white triangle of ϕ0, say (r0i , c
0
j , e

0
k), and cut out this triangle

from ϕ0 and its copies (rt
i , c

t
j , e

t
k) from ϕt, 1 ≤ t ≤ m − 1. This results in m

surfaces with m disjoint boundaries. Analogously, cut out the m black triangles
(r′αt

, c′βt
, e′γt

) of the parallel class T from the map ψi,j . Observe that the indices

i and j of ψi,j are the same as the indices of the vertices r0i and c0j . Now glue
the boundaries of (rt

i , c
t
j , e

t
k) and (r′αt

, c′βt
, e′γt

), 0 ≤ t ≤ m−1, so that rt
i , c

t
j and

et
k are identified with r′αt

, c′βt
and e′γt

, respectively.
Repeat the procedure with each of the white triangles of ϕ0 in turn. At each

subsequent step after the first, cutting out the white triangles leaves a single
surface but still with m disjoint boundaries. Denote the resulting embedding
by ρ. The names of vertices of ρ are inherited from ϕt, 0 ≤ t ≤ m− 1, so that
the resulting embedded graph is tripartite with tripartition ∪m−1

t=0 Rt, ∪
m−1
t=0 Ct

and ∪m−1
t=0 Et. Every edge r0i c

0
j , r

0
i e

0
k or c0je

0
k is in a unique white triangle in ϕ0,

say (r0i , c
0
j , e

0
k). Hence, for every s and t, 0 ≤ s, t ≤ m − 1 and s 6= t, the edge

rs
i c

t
j (rs

i e
t
k, csje

t
k) is added just once in the construction, namely when gluing

ψi,j . Thus the underlying graph of the triangular embedding is the complete
tripartite graph Kmn,mn,mn. Observe that the triangular embedding ρ is face 2-
colourable because the holes in ϕ’s come from white triangles while those in ψ’s
come from black triangles. Consequently, ρ triangulates an orientable surface.

In the simplest form, when all ϕ’s are identical maps and also all ψ’s are
identical maps, the following result from [5] gives an easy description of the two
Latin squares involved in ρ.

Theorem 2.1 Suppose that L ⊲⊳ L′, where L and L′ are Latin squares of order
n and have row, column and entry labels {0, 1, . . . , n − 1}. Suppose also that
Q ⊲⊳ Q′, where Q and Q′ are Latin squares of order m and have row, column
and entry labels {0, 1, . . . ,m − 1}, and that the square Q′ has a transversal T .
Define Q(L) and Q′(L, T, L′), Latin squares of order mn, with row, column and
entry labels {0, 1, . . . ,mn− 1}, so that for every u, v, i and j, 0 ≤ u, v ≤ m− 1
and 0 ≤ i, j,≤ n− 1, we have

Q(L)(nu+ i, nv + j) = nQ(u, v) + L(i, j),

Q′(L, T, L′)(nu+ i, nv + j) = nQ′(u, v) + k,

where k =

{

L(i, j) if (ru, cv, ew) 6∈ T for any w,
L′(i, j) if there exists w such that (ru, cv, ew) ∈ T .
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Then Q(L) ⊲⊳ Q′(L, T, L′).

In fact, ρ = Q(L) ⊲⊳ Q′(L, T, L′), where ρ is the map described above.
The square Q(L) is partitioned into n× n subsquares which are just relabelled
copies of L. The square Q′(L, T, L′) has a similar structure but the subsquares
corresponding to the transversal T are relabelled copies of L′. Note that if L′ has
a transversal, then among the relabelled copies of L′ one can find a transversal
in Q′(L, T, L′). This feature facilitates re-application of the construction.

Observe that if Q and L are Cayley tables of groups Q and L, represented
respectively on {0, 1, . . . ,m− 1} and {0, 1, . . . , n− 1}, then Q(L) is the Cayley
table of the direct product Q×L represented on {0, 1, . . . ,mn− 1}. Denote by
Cr the Cayley table of a cyclic group Cr. Then Cr(Cr) = C2

r is a Cayley table
of Cr × Cr. Repeating this process we define Cs

r , the Cayley table of Cs
r . We

then have the following result.

Theorem 2.2 Suppose that p is prime and s ≥ 1, where (p, s) 6= (2, 1) or (2, 2).
Then there is a square As

p having a transversal and such that Cs
p ⊲⊳ A

s
p.

Proof. The case p = 2 is covered by Theorem 3.1 of [5]. So consider the case
when p is odd. Observe that Cp(i, j) = i+ j (mod p). Denote by C∗

p the Latin
square of order p, such that C∗

p (i, j) = i + j − 1 (mod p). As shown in [4],
Cp ⊲⊳ C

∗

p , the embedding being the unique regular triangular embedding of a
complete tripartite graph, see [16]. Hence, if we takeA1

p = C∗

p , we haveC1
p ⊲⊳ A

1
p.

Moreover, as p is an odd number, the square C∗

p = A1
p has a transversal T1 on

the main diagonal, T1 = {(i, i, 2i − 1) : 0 ≤ i ≤ p − 1}, the arithmetic being
modulo p. Consequently, Cp(Cp) ⊲⊳ A

1
p(Cp, T1, A

1
p).

Define A2
p = C∗

p (Cp, T, C
∗

p ) so that C2
p ⊲⊳ A2

p. Then A2
p has a transversal

T2, which appears in the relabelled copies of A1
p in A2

p, as remarked above. In
this case the transversal T2 is again on the main diagonal. By continuing this
process, we obtain the desired result. �

We remark that in [7], Theorem 2.2 was generalized to give biembeddings of
the Cayley tables of all Abelian groups except C2

2 . However, in some cases the
second square A lacks a transversal.

Let A be a Latin square or a subsquare of a Latin square. We say that
(i, j, k) is a triangle of A if k = A(i, j). If there are bijections from the row,
column and entry labels of A to the row, column and entry labels (respectively)
of Cp which map A to Cp, then A is said to be isotopic to Cp, and we describe
A as a Cp-square or a Cp-subsquare.

Theorem 2.3 Let p be prime and m ≥ p. Then a Latin square of order m

has at most m2(m−1)
p2(p−1) Cp-subsquares. Further, let n = ps. Then Cs

p has exactly
n2(n−1)
p2(p−1) Cp-subsquares.

Proof. Suppose that L is a Latin square of order m with row, column and
entry labels {0, 1, . . . ,m− 1}. Let i0, j0, j1 be such that 0 ≤ i0, j0, j1 ≤ m− 1
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and j0 6= j1. We show that there is at most one Cp-subsquare of L containing
row i0 and columns j0 and j1. Define k0 = L(i0, j0). Then having it−1 and
kt−1 defined, it and kt may be defined recursively for 1 ≤ t ≤ p − 1 by taking
kt = L(it−1, j1) and it to be the unique row such that L(it, j0) = kt. Of course,
it can happen that either {i0, i1, . . . , ip−1} or {k0, k1, . . . , kp−1} is not a set of
p different values. But as p is prime, if row i0 and columns j0 and j1 are in a
Cp-subsquare, then this subsquare must contain rows i0, i1, . . . , ip−1 and entries
k0, k1, . . . , kp−1 and these rows (entries) are distinct.

Now define jt to be the unique column such that L(i0, jt) = kt, 2 ≤ t ≤ p−1.
If row i0 and columns j0 and j1 are in a Cp-subsquare, then this subsquare
must contain columns j0, j1, . . . , jp−1 and these columns have to be distinct.
Moreover, we must have L(ia, jb) = ka+b, the subscript arithmetic being modulo
p with 0 ≤ a, b, a+ b ≤ p− 1.

Hence, the row i0 and columns j0 and j1 determine at most one Cp-subsquare.
As a consequence, there are at most m2(m − 1) Cp-subsquares in L with pre-
scribed first row number and first and second column numbers. Since we do not
distinguish the order of rows or columns in Cp-subsquares, the total number of

Cp-subsquares in L is at most m2(m−1)
p2(p−1) .

To prove the second part of the theorem, it suffices to show that for each row
i0 and for each pair of distinct columns j0 and j1 there is a Cp-subsquare of Cs

p

containing row i0 and columns j0 and j1. We take the row, column and entry
labels of Cs

p to be the elements of the commutative group Cs
p written additively

so that the entry in row i column j is i + j. Define z = j1 − j0 and then
define it = i0 + tz, jt = j0 + tz and kt = i0 + j0 + tz for 0 ≤ t ≤ p − 1. As
p is prime, every element of Cs

p, except the unit element 0, has order p. Since
j0 6= j1, we have z 6= 0. Consequently, {i0, i1, . . . , ip−1}, {j0, j1, . . . , jp−1} and
{k0, k1, . . . , kp−1} are sets having exactly p elements. Let a and b be numbers
such that 0 ≤ a, b ≤ p− 1. Then

Cs
p(ia, jb) = ia + jb = (i0 + az) + (j0 + bz) = i0 + j0 + (a+ b)z = ka+b,

where a + b is considered modulo p. In other words, the identified rows and
columns determine a Cp-subsquare of Cs

p . �

Now we change the gluing process in the product construction described ear-
lier. Suppose that the Latin square L contains a Cp-subsquare. For notational
convenience, assume that this cyclic subsquare contains the rows 0, 1, . . . , p− 1,
columns 0, 1, . . . , p − 1 and entries 0, 1, . . . , p − 1, so that L(a, b) = a + b, the
arithmetic being modulo p with 0 ≤ a, b, a+b ≤ p−1. Denote by P the set of p2

white triangles corresponding to this subsquare of L in ϕ0 = L ⊲⊳ L′

0. We change
the gluing process on the triangles of P . As previously, cut out all the white
triangles of ϕt, 0 ≤ t ≤ m−1, and cut out all the black triangles of the transver-
sals T in all ψi,j , 0 ≤ i, j ≤ m− 1. If (r0i , c

0
j , e

0
k) is a white triangle of ϕ0 which

does not belong to P , then do the gluing as above. However, if (r0a, c
0
b , e

0
a+b) is

any one of the p2 triangles of P , then take ψa,b and for 0 ≤ t < m − 1 identify
(rt

a, c
t
b, e

t
a+b) with (r′αt

, c′βt
, e′γt

), as earlier, while (r′α(m−1)
, c′β(m−1)

, e′γ(m−1)
) will
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be identified with (rm−1
a , cm−1

b+1 , e
m−1
a+b+1), the subscript arithmetic being modulo

p. Clearly, such an identification leads to face 2-colourable triangular embed-
ding in a surface. The question is, what is the underlying graph? We show that
it is Kmn,mn,mn.

Obviously, if (r0i , c
0
j , e

0
k) is a triangle which is not in P , then in the resulting

embedding, exactly as previously, we have edges rs
i c

t
j , r

s
i e

t
k, csjr

t
i , c

s
je

t
k, es

kr
t
i and

es
kc

t
j for all s and t, 0 ≤ s, t ≤ m− 1. Even if (r0i , c

0
j , e

0
k) is a triangle of P , then

in the resulting embedding we have edges rs
i c

t
j , r

s
i e

t
k, csjr

t
i , c

s
je

t
k, es

kr
t
i and es

kc
t
j

for all s and t, 0 ≤ s, t < m− 1. Hence, we have only to check these edges when
s < t = m−1 and then only if (r0i , c

0
j , e

0
k) is a triangle of P . The following table

describes how these edges are formed, where 0 ≤ x, y ≤ p− 1 and arithmetic is
modulo p.

rs
xc

m−1
y : ψx,y−1 connects (rs

x, c
s
y−1, e

s
x+y−1) with (rm−1

x , cm−1
y , em−1

x+y );

rs
xe

m−1
y : ψx,y−x−1 connects (rs

x, c
s
y−x−1, e

s
y−1) with (rm−1

x , cm−1
y−x , e

m−1
y );

csxr
m−1
y : ψy,x connects (rs

y , c
s
x, e

s
x+y) with (rm−1

y , cm−1
x+1 , e

m−1
x+y+1);

csxe
m−1
y : ψy−x−1,x connects (rs

y−x−1, c
s
x, e

s
y−1) with (rm−1

y−x−1, c
m−1
x+1 , e

m−1
y );

es
xr

m−1
y : ψy,x−y connects (rs

y , c
s
x−y, e

s
x) with (rm−1

y , cm−1
x−y+1, e

m−1
x+1 );

es
xc

m−1
y : ψx−y+1,y−1 connects (rs

x−y+1, c
s
y−1, e

s
x) with (rm−1

x−y+1, c
m−1
y , em−1

x+1 ).

Hence, every edge of Kmn,mn,mn appears at least once. It is obvious that no
edge can appear more than once due to the fact that the original gluing proce-
dure led to an embedding of Kmn,mn,mn and the number of edges created by the
new gluing process is the same as that for the original. Let us call this gluing
on triangles of P nonstandard, while the gluing mentioned before Theorem 2.1
we will call standard.

Next we show that nonstandard gluings lead to differently labelled final
maps. Using the notation established earlier, we take m > 1 face 2-colourable
triangular embeddings ϕ0, ϕ1, . . . , ϕm−1 of Kn,n,n, such that all ϕt, 0 ≤ t ≤
m − 1, have identically labelled white triangles (up to the upper index), and
we suppose that we have n2 face 2-colourable triangular embeddings ψi,j , 0 ≤
i, j ≤ n − 1, all of which have an identically labelled parallel class T of black
triangles. Then the following result may be obtained.
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Theorem 2.4 Suppose that there is a cyclic subsquare P of prime order p in
the white square of ϕ0 and that (r0i , c

0
j , e

0
k) is a triangle of P . Take ρ1 to be the

map obtained from the construction by applying nonstandard gluing to P . Take
ρ2 to be the map obtained either by

(a) applying standard gluing to P , or

(b) taking a different cyclic subsquare P ∗ ( 6= P ) of order p in the white square
of ϕ0 with (r0i , c

0
j , e

0
k) a triangle of P ∗, and applying nonstandard gluing

to P ∗.

Then ρ1 and ρ2 are differently labelled face 2-colourable triangular embeddings
of Kmn,mn,mn. Moreover, if each ϕt has a parallel class of black triangles,
0 ≤ t ≤ m− 1, then both ρ1 and ρ2 have an identically labelled parallel class of
black triangles.

Proof. We use the labelling of vertices of ϕt and ψi,j described above, taking
T = {(r′αt

, c′βt
, e′γt

) : 0 ≤ t ≤ m−1}. For notational convenience, assume that P

contains the triangles (r0i , c
0
j , e

0
k), where k = i+j (mod p) and 0 ≤ i, j, k ≤ p−1.

Consider the map ψi,j where 0 ≤ i, j ≤ p − 1. In ψi,j there is a black tri-
angle (r′α(m−1)

, c′β(m−1)
, e′γ(m−1)

), and this triangle is adjacent to a white triangle

(r′α(m−1)
, c′β(m−1)

, e′γq
) for some q, 0 ≤ q < m− 1. Note that q 6= m− 1.

If we glue P in a standard way, then in the gluing of ψi,j we identify the bor-
ders of (rm−1

i , cm−1
j , em−1

k ) and (r′α(m−1)
, c′β(m−1)

, e′γ(m−1)
), and we also identify

the borders of (rq
i , c

q
j , e

q
k) and (r′αq

, c′βq
, e′γq

). Hence if ρ2 is obtained by standard

gluing, then this process yields a white triangle (rm−1
i , cm−1

j , e
q
k) in the resulting

map (in which vertices inherit the names of vertices of ϕt, 0 ≤ t ≤ m− 1).
Now consider the nonstandard method of gluing on P . In the gluing of ψi,j

we identify the borders of (rq
i , c

q
j , e

q
k) and (r′αq

, c′βq
, e′γq

), and we also identify the

borders of (rm−1
i , cm−1

j+1 , e
m−1
k+1 ) and (r′α(m−1)

, c′β(m−1)
, e′γ(m−1)

), where j+1 and k+

1 are considered modulo p. This process yields a white triangle (rm−1
i , cm−1

j+1 , e
q
k)

in the resulting map ρ1. Hence in case (a) ρ1 has a different white triangle from
ρ2.

Next suppose that case (b) applies, that is to say that ρ2 is obtained by
applying nonstandard gluing to P ∗ (6= P ) when both P and P ∗ contain the
triangle (r0i , c

0
j , e

0
k). By the proof of Theorem 2.3, there cannot be a second

c-vertex c0ℓ (ℓ 6= j) common to both P and P ∗, since in such a case we would
have P = P ∗. Therefore, the unique c-vertex common to both P and P ∗ is c0j .
Thus in the nonstandard gluing of ψi,j we identify the borders of (rq

i , c
q
j , e

q
k) and

(r′αq
, c′βq

, e′γq
) as earlier, and we also identify the borders of (rm−1

i , cm−1
j∗ , em−1

k∗ )

and (r′α(m−1)
, c′β(m−1)

, e′γ(m−1)
) for some j∗ and k∗, where c0j∗ is a vertex which

does not appear in P . This process yields a white triangle (rm−1
i , cm−1

j∗ , e
q
k) in

the resulting map ρ2. As a consequence in case (b), the maps ρ1 and ρ2 have
differently labelled white triangles containing the edge rm−1

i e
q
k.

9



In both cases (a) and (b), note that ρ1 and ρ2 are not equivalent under
exchange of colours, since any black triangle containing the edge rm−1

i cm−1
ℓ ,

0 ≤ ℓ ≤ n− 1, has the form (rm−1
i , cm−1

ℓ , em−1
h ) for some h.

As described above, both ρ1 and ρ2 are face 2-colourable triangular embed-
dings of Kmn,mn,mn. Suppose that Tt is a parallel class of black triangles in ϕt,
0 ≤ t ≤ m − 1. Since we neither cut out nor relabelled the black triangles of
ϕt, the system ∪m−1

t=0 Tt is a parallel class of identically labelled black triangles
in both ρ1 and ρ2. �

The previous theorem explains how to construct differently labelled face 2-
colourable triangular embeddings of Kmn,mn,mn. We will show that a large
number of such embeddings may be produced by this technique. We say that
a set S of Cp-subsquares of a Latin square L is an independent set of Cp-
subsquares if no two elements of S share a common triangle. (Observe that this
independence relates to triangles and not to row, column or entry labels.)

Theorem 2.5 Suppose that in a Latin square L of order n there are r different
Cp-subsquares. Then the number of distinct independent sets of Cp-subsquares
in L is at least

(

p2n− 1

p− 1
+ 1

)

(

r(p−1)

p2(n−1)
−1

)

.

Proof. Consider a triangle (ri, cj, ek) of L. As shown in the proof of Theorem
2.3, for every j′ 6= j there is at most one Cp-subsquare of L containing (ri, cj , ek)
and a triple (ri, cj′ , ek′). Moreover, in such a case p− 1 values of j′ determine
the same Cp-subsquare of L. Hence, the triangle (ri, cj , ek) occurs in at most
n−1
p−1 Cp-subsquares of L.

Let P be the set of triangles of a Cp-subsquare of L. Since P has p2 triangles,
a triangle of P occurs in at most p2 n−1

p−1 Cp-subsquares of L.
Denote by Iq the number of independent sets of Cp-subsquares containing

exactly q Cp-subsquares. Then we have

Iq ≥
r
(

r − p2 n−1
p−1

)(

r − 2p2 n−1
p−1

)

. . .
(

r − (q − 1)p2 n−1
p−1

)

q!
.

Put Q =
⌊ r(p−1)

p2(n−1)

⌋

. Then from the above we deduce

Iq ≥
(

p2n− 1

p− 1

)q

·
Q

(

Q− 1
)(

Q− 2
)

. . .
(

Q− (q − 1)
)

q!
=

(

p2n− 1

p− 1

)q
(

Q

q

)

.

Of course, if q > Q then we have just the trivial bound Iq ≥ 0. Now summing
Iq for all q ≤ Q gives the bound on the number of independent sets of Cp-
subsquares

Q
∑

q=0

Iq ≥

Q
∑

q=0

(

p2n− 1

p− 1

)q(
Q

q

)

=

(

1+p2n− 1

p− 1

)Q

≥

(

p2n− 1

p− 1
+1

)

(

r(p−1)

p2(n−1)
−1

)

.

�
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Now we combine our theorems.

Theorem 2.6 Suppose that n = ps where p is prime, and if p = 2 assume that
s ≥ 3. Suppose also that m > 1 and that there is a face 2-colourable triangular
embedding of Km,m,m having a parallel class of black triangles. Then there are
at least

(

p2n− 1

p− 1
+ 1

)

(

n2

p4 −1
)

differently labelled face 2-colourable triangular embeddings of Kmn,mn,mn, all of
which have a common parallel class of black triangles. Furthermore, there are
at least

(

p2 n−1
p−1 + 1

)

(

n2

p4 −1
)

6
(

(mn)!
)3

nonisomorphic face 2-colourable triangular embeddings of Kmn,mn,mn.

Proof. We use the product construction, taking all ϕt, 0 ≤ t ≤ m − 1, to be
isomorphic to the embedding Cs

p ⊲⊳ A
s
p guaranteed by Theorem 2.2, and all ψi,j ,

0 ≤ i, j ≤ n−1, to be isomorphic to the embedding of Km,m,m mentioned in the
statement. Glue all the triangles in a standard way, except the triangles of one
independent set of Cp-subsquares of Cs

p , which are glued in a nonstandard way.
As proved in Theorem 2.4, for different independent sets of Cp-squares we obtain
differently labelled face 2-colourable triangular embeddings of Kmn,mn,mn. By

Theorem 2.3, there are r = n2(n−1)
p2(p−1) different Cp-subsquares in Cs

p , and by

Theorem 2.5, there are at least

(

p2n− 1

p− 1
+ 1

)

(

n2

p4 −1
)

different independent sets of Cp-subsquares in Cs
p , so that by Theorem 2.4, there

are at least
(

p2n− 1

p− 1
+ 1

)

(

n2

p4 −1
)

differently labelled face 2-colourable triangular embeddings of Kmn,mn,mn. By
Theorem 2.2, As

p has a transversal. As a consequence, all these differently
labelled triangular embeddings of Kmn,mn,mn have a common parallel class of
black triangles.

The second part follows from the fact that the maximum possible size of an
isomorphism class is 6((mn)!)3 in any embedding of Kmn,mn,mn. �
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We remark that the lower bound in the above theorem may easily be in-
creased. First, observe that in the nonstandard gluing of triangles of P it is not
necessary to identify (r′α(m−1)

, c′β(m−1)
, e′γ(m−1)

) with (rm−1
a , cm−1

b+1 , e
m−1
a+b+1). Since

p is prime, (r′α(m−1)
, c′β(m−1)

, e′γ(m−1)
) may be identified with (rm−1

a , cm−1
b+ℓ , e

m−1
a+b+ℓ)

for any ℓ, 1 ≤ ℓ ≤ p − 1. Also, the nonstandard gluing may be done not only
at the (m− 1)-th level; it can be done on any subset of levels {1, 2, . . . ,m− 1}.
The difficulty comes in showing that all the resulting embeddings are differently
labelled. Although the bound might be increased, it appears that the exponent
remains unaltered and consequently we will only consider the bound as stated
in Theorem 2.6.

Corollary 2.6.1 Suppose that w = m · ps, where p is prime, m > 1, and there
exists a face 2-colourable triangular embedding of Km,m,m having a parallel class
of black triangles. Then for s→ ∞ there are at least

w
w2

(

1
p4m2 −o(1)

)

nonisomorphic face 2-colourable triangular embeddings of Kw,w,w, all of which
have identically labelled parallel class of black triangles.

Proof. Let n = ps. By Theorem 2.6, there are at least

(

p2 n−1
p−1 + 1

)

(

n2

p4 −1
)

6
(

(mn)!
)3

nonisomorphic triangular embeddings satisfying the assumptions. Since p2 n−1
p−1 +

1 ≥ n = w
m , the number of these triangular embeddings is at least

(

w
m

)

(

w2

p4m2 −1
)

6
(

w!
)3 = w

w2
(

1
p4m2 −o(1)

)

. �

Observe that Cm ⊲⊳ C∗

m contains a parallel class T1 of black triangles if m is
odd (see the proof of Theorem 2.2 for the definition of C∗

m and T1). Therefore,
for w = m·ps, m > 1 being odd and p being prime, the assumptions of Corollary
2.6.1 are satisfied. The best bound in this corollary is obtained when m = 3.

3 Complete graphs

We now turn our attention to face 2-colourable triangular embeddings of com-
plete graphs. The following result is an easy extension of Construction 5 of [6]
and Theorem 3.1 of [3]. There are just two additional aspects to the proof. The
first is that the capping operation described in the earlier papers may always
be completed if at least one of w and t−1

2 is odd, and the second is that if any
of the ingredients are nonorientable embeddings then so is the final resulting
embedding.

12



Theorem 3.1 Suppose that t ≡ 1, 3, 7, 9 (mod 12) and w ≡ 0, 1, 3, 4 (mod 6),
where at least one of w and t−1

2 is odd. Moreover, suppose that there is a face 2-
colourable triangular embedding of Kt, a face 2-colourable triangular embedding
of K2w+1, and that there are r differently labelled face 2-colourable triangular
embeddings of Kw,w,w, all having an identically labelled parallel class of black
triangles. Then there are at least

r
(t−1)(t−3)

6

differently labelled face 2-colourable triangular embeddings of Kw(t−1)+1. If ei-
ther the embedding of Kt or that of K2w+1 is nonorientable, then the embeddings
of Kw(t−1)+1 are nonorientable. If the embeddings of both Kt and K2w+1 are
orientable, then the embeddings of Kw(t−1)+1 are orientable.

It was shown in [17] (see also [2]) that for n ≡ 3, 9 (mod 12) (n > 3), and in
[9] that for n ≡ 1, 7 (mod 12) (n > 7), there exists a face 2-colourable triangular
embedding of Kn in a nonorientable surface. Moreover, the statement 2w+1 ≡
1, 3, 7, 9 (mod 12) is equivalent to w ≡ 0, 1, 3, 4 (mod 6). Thus, for nonorientable
triangular embeddings we have the following corollary of Theorems 2.6 and 3.1.

Corollary 3.1.1 Suppose that z = m·ps(t−1)+1 where t ≡ 1, 3, 7, 9 (mod 12),
p is prime, m > 1 is odd, m · ps ≡ 0, 1, 3, 4 (mod 6), and at least one of m · ps

and t−1
2 is odd. Then as s→ ∞, there are at least

z
z2

(

t−3

6p4m2(t−1)
−o(1)

)

nonisomorphic face 2-colourable triangular embeddings of Kz in a nonorientable
surface.

We remark that weaker versions of this corollary corresponding to the special
case p =2 were given in [3] and [5]. The best bound in the corollary is obtained
for p = 2,m = 3. These values give the following result.

Corollary 3.1.2 Suppose that z = 3 · 2s(t − 1) + 1 where t ≡ 3, 7 (mod 12).
Then as s→ ∞, there are at least

z
z2

(

t−3
864(t−1)

−o(1)
)

nonisomorphic face 2-colourable triangular embeddings of Kz in a nonorientable
surface.

As a consequence of this, if t ≡ 3, 7 (mod 12) is sufficiently large and

z = 3 · 2s(t − 1) + 1, then as s → ∞ there are at least zz2/865 nonisomor-
phic face 2-colourable triangular embeddings of Kz in a nonorientable surface.

Next we consider orientable embeddings. It was shown by Ringel [17] that
for n ≡ 3 (mod 12), and by Youngs [18] that for n ≡ 7 (mod 12), there exists
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a face 2-colourable triangular embedding of Kn in an orientable surface. The
statement 2w + 1 ≡ 3, 7 (mod 12) is equivalent to w ≡ 1, 3 (mod 6). Hence, we
have the following corollary of Theorems 2.6 and 3.1.

Corollary 3.1.3 Suppose that z = m · ps(t− 1) + 1 where t ≡ 3, 7 (mod 12), p
is prime, m > 1 is odd, and m · ps ≡ 1, 3 (mod 6). Then as s → ∞, there are
at least

z
z2

(

t−3

6p4m2(t−1)
−o(1)

)

nonisomorphic face 2-colourable triangular embeddings of Kz in an orientable
surface.

Since the conditions of the corollary require that p ≥ 3, this bound is not as
good as that of Theorem 1.2. However, it is also of the form zz2(a−o(1)) and it
also covers many more infinite families of z.

The best bound in the preceding corollary is obtained for p = m = 3. These
values give the following result.

Corollary 3.1.4 Suppose that z = 3s+1(t − 1) + 1 where t ≡ 3, 7 (mod 12).
Then as s→ ∞, there are at least

z
z2

(

t−3
4374(t−1)

−o(1)
)

nonisomorphic face 2-colourable triangular embeddings of Kz in an orientable
surface.

As a consequence of this, if t ≡ 3, 7 (mod 12) is sufficiently large and z =

3s+1(t − 1) + 1, then as s → ∞, there are at least zz2/4375 nonisomorphic face
2-colourable triangular embeddings of Kz in an orientable surface.
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