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Abstract

An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices such
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defined to have vertices the arcs of G such that two arcs uv, xy are adjacent if and only
if (v, u, x, y) is a 3-arc of G. In this paper we study the independence, domination and
chromatic numbers of 3-arc graphs and obtain sharp lower and upper bounds for them. We
introduce a new notion of arc-coloring of a graph in studying vertex-colorings of 3-arc graphs.
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1 Introduction

The 3-arc graph construction [11] has recently been proved to be useful in the classification or

characterization of several families of arc-transitive graphs [7, 9, 11, 13, 18, 19]. (A graph is

arc-transitive if its automorphism group acts transitively on the set of oriented edges.) Although

introduced initially in the context of graph symmetry, this construction is of interest for general

graphs. It seems useful to investigate graph-theoretic properties of the 3-arc graph of any (not

necessarily arc-transitive) connected graph. In [10] the diameter and connectivity of 3-arc graphs

were studied and connections between 3-arc graphs and line and path graphs were explained.

In the present paper we study the independence, domination and chromatic numbers of 3-arc

graphs.

An arc of a graph G is an ordered pair of adjacent vertices. For adjacent vertices u, v of G,

we use uv to denote the arc from u to v, vu (6= uv) the arc from v to u, and {u, v} the edge

between u and v. A 3-arc of G is a 4-tuple (v, u, x, y) of vertices such that both (v, u, x) and

(u, x, y) are paths of G. It is allowed to have v = y in a 3-arc (v, u, x, y).
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Definition 1 Let G be a graph. The 3-arc graph of G, denoted by X(G), is defined to have for

vertex set the set of arcs of G. Two vertices corresponding to two arcs uv and xy are adjacent

in X(G) if and only if (v, u, x, y) is a 3-arc of G.

It follows thatX(G) is an undirected graph with 2 |E(G)| vertices and
∑

{u,v}∈E(G)(degG(u)−

1)(degG(v)− 1) edges, where degG(w) denotes the degree of w in G.

Let us illustrate the definition above by three simple examples. For the complete graph K3

on 3 vertices, say, u, v and w, X(K3) consists of six vertices and three isolated edges joining uw

to vw, uv to wv and vu to wu, respectively. For the complete bipartite graph K2,3 with bipar-

tition {{u1, u2}, {v1, v2, v3}}, u1v1 is adjacent only to v2u2 and v3u2 in X(K2,3), while v1u1 is

adjacent only to u2v2 and u2v3 in X(K2,3). By symmetry X(G) consists of two 6-cycles, namely

(u1v1, v2u2, u1v3, v1u2, u1v2, v3u2, u1v1) and (u2v1, v2u1, u2v3, v1u1, u2v2, v3u1, u2v1). A neces-

sary and sufficient condition for X(G) to be connected was given in [10, Theorem 2]. From this

condition the smallest graph G such that X(G) is connected is the complete graph on four ver-

tices with one edge removed. Denote by v1, v2, v3 and v4 the vertices of this graph and assume the

edge {v3, v4} is removed. ThenX(G) consists of a 10-cycle (v1v3, v4v2, v1v2, v3v2, v1v4, v2v4, v3v1,

v2v1, v4v1, v2v3, v1v3) together with two chords {v1v3, v2v4} and {v1v4, v2v3}.

From [10, Theorem 2], X(G) is always connected if G is connected with minimum degree

δ(G) ≥ 3. In [10, Theorem 3] it was proved further that, if the connectivity κ(G) ≥ 3, then

κ(X(G)) ≥ (κ(G) − 1)2

and this bound is best possible. Regarding the diameter, it was proved in [10, Theorem 4] that,

if G is connected with δ(G) ≥ 3, then

diam(G) ≤ diam(X(G)) ≤ diam(G) + 2

and both bounds are attainable.

In this paper we focus on independence, domination and vertex-coloring in 3-arc graphs. In

the next section we give a structural result (Theorem 2) on maximum independent sets of X(G)

when δ(G) ≥ 3. We also prove that the ratio of the independence number of X(G) to that of

G is between d and d + 1 for any connected d-regular graph G with d ≥ 2 (Theorem 5), and

that the independence number of X(G) for any bipartite graph G with δ(G) ≥ 2 is equal to

|E(G)| (Theorem 6). In Section 3, for any graph G with δ(G) ≥ 2, we establish sharp lower

and upper bounds for the domination number of X(G) and we characterize the extremal graphs

(Theorem 7). Further, we give an upper bound for the domination number of X(G) in terms of

the 2-domination number of G (Theorem 8). We also give a lower bound (Theorem 10) for the

domination number of X(G) in terms of the order and maximum degree of G and compare it

with a well-known upper bound for domination number when G is regular (Corollary 11).

In Section 4 we study the chromatic number of 3-arc graphs. In doing so we introduce a

new notion of arc-coloring of a graph which is different from the existing arc-coloring models

[3, 8, 14, 16]. In this new notion we color the arcs of a graph G in such a way that two arcs uv

and xy with v 6= x and y 6= u, whose tails are joined by an edge in G, use distinct colors. The

minimum number of colors required by such a coloring, χ′
3(G), is exactly the chromatic number

of X(G). We give sharp lower and upper bounds on χ′
3(G) in terms of χ(G) (Theorem 15), and

prove that the problem of deciding whether χ′
3(G) ≤ 3 is NP-complete (Theorem 16). We finish

the paper by a few remarks and open problems.

The reader is referred to [17] for notation and terminology undefined in the paper.
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2 Independence in 3-arc graphs

An independent set of a graph G is a subset of V (G) in which no two vertices are adjacent. The

independence number of G, α(G), is the cardinality of a largest independent set of G.

If δ(G) = 1, then the set of all arcs of Gmay form an independent set of X(G), as exemplified

by the star K1,n. We thus consider graphs G with δ(G) ≥ 2. To facilitate presentation we

introduce the following definition.

Definition 2 A set S of vertices of X(G) is said to be good if there exists a partition of V (G)

into (not necessarily non-empty) subsets V1, V2, V3 such that

(a) V1 is an independent set of G, and vu ∈ S for any v ∈ V1 and u ∈ N(v);

(b) V2 is an independent set of G, any v ∈ V2 has a unique neighbour u in V1, and moreover

u is the unique neighbour of v such that vu ∈ S; and

(c) vu /∈ S for any v ∈ V3 and u ∈ N(v).

In case of possible confusion we use {V S
1 , V S

2 , V S
3 } in place of {V1, V2, V3} to emphasize depen-

dence of these subsets on S. Observe that a good set S ⊆ V (X(G)) is always an independent

set of X(G). A good maximum independent set is a maximum independent set which is good.

Lemma 1 Let G be a graph with δ(G) ≥ 2. Then X(G) has at least one good maximum

independent set.

Proof Choose S to be a maximum independent set of X(G) (i.e. |S| = α(X(G))) such that

{v ∈ V (G) : vu ∈ S for all u ∈ N(v)} has maximum cardinality.

We first prove that, for any v ∈ V (G), if there are distinct u1, u2 ∈ N(v) such that vu1, vu2 ∈

S, then vu3 ∈ S for any u3 ∈ N(v). Suppose otherwise. Then there exists xy ∈ S such that

{vu3, xy} ∈ E(X(G)), so that x ∈ N(v) and y ∈ N(x) − {v}. One of u1 and u2 is not identical

to x. Assume without loss of generality that x 6= u1. Then {vu1, xy} ∈ E(X(G)) (regardless

of whether x = u2 or not), which is a contradiction. Hence we have proved that, for any

v ∈ V (G), either vu ∈ S for any u ∈ N(v), or vu ∈ S for a unique u ∈ N(v), or vu /∈ S for any

u ∈ N(v). We denote the subsets of such vertices v by V1, V2, V3 respectively. Then {V1, V2, V3}

is a partition of V (G).

Suppose that V1 is not an independent set of G. Then there are v1, v2 ∈ V1 such that

{v1, v2} ∈ E(G). Since δ(G) ≥ 2, there exist x ∈ N(v1) − {v2} and y ∈ N(v2) − {v1} such

that {v1, x}, {v2, y} ∈ E(G) and hence v1x, v2y ∈ S by the definition of V1. Hence {v1x, v2y} ∈

E(X(G)), which is a contradiction. Thus V1 must be an independent set of G.

It remains to verify the first two statements in (b). Suppose v ∈ V2 and let u be the unique

neighbour of v such that vu ∈ S. Since vu ∈ S, for each x ∈ N(v)−{u} and any y ∈ N(x)−{v},

we have xy 6∈ S. Thus, there exists z ∈ N(u) − {v} such that uz ∈ S, for otherwise vx can

be added to S to form a larger independent set, which violates the maximality of S. We now

show that u ∈ V1. Suppose that uz is the unique arc starting at u and belonging to S. Set

S′ = (S − {uz}) ∪ {vx : x ∈ N(v)}. Then S′ is an independent set of X(G) and |S′| ≥ |S|.

If deg(v) > 2, then |S′| > |S|, which contradicts the maximality of S. Hence deg(v) = 2 and

|S′| = |S|. However, |{w : wy ∈ S′ for every y ∈ N(w)}| > |{w : wy ∈ S for every y ∈ N(w)}|,

which contradicts the choice of S. Thus there are at least two arcs starting from u which belong
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to S and so u ∈ V1. So we have proved that the unique neighbour u of v such that vu ∈ S must

be in V1. If there exists x ∈ N(v) − {u} such that x ∈ V1, then there exists y ∈ N(x)− {v} as

δ(G) ≥ 2. Since x ∈ V1, we have xy ∈ S and {xy, vu} ∈ E(X(G)), a contradiction. Therefore,

u is the unique neighbour of v in V1.

Finally, for distinct v1, v2 ∈ V2, there is a unique ui ∈ N(vi), i = 1, 2, such that viui ∈ S.

Moreover, u1, u2 ∈ V1 from the proof above. Thus, v1 and v2 cannot be adjacent in G, for

otherwise {v1u1, v2u2} ∈ E(X(G)), a contradiction. Hence V2 is an independent set of G. 2

In the proof above the maximality of |{v ∈ V (G) : vu ∈ S for all u ∈ N(v)}| was used only

when G contains a degree-two vertex. Thus, in the case when δ(G) ≥ 3, the proof of Lemma 1

gives the following result.

Theorem 2 Let G be a graph with δ(G) ≥ 3. Then all maximum independent sets of X(G) are

good.

The following lemma strengthens Lemma 1 and it will be used in subsequent discussion.

Lemma 3 Let G be a graph with δ(G) ≥ 2. Then there exists a good maximum independent set

S of X(G) such that V S
1 is a maximal independent set of G.

Proof We start with a good maximum independent set S of X(G) (whose existence is guar-

anteed by Lemma 1). Suppose that V S
1 is not a maximal independent set of G. Then there

exists w ∈ V (G) such that V S
1 ∪ {w} is an independent set of G. Since no neighbour of

w is in V S
1 , we have w ∈ V S

3 . Moreover, all the neighbours of w are in V S
2 ∪ V S

3 . Denote

T = (S − {ux : u ∈ N(w), x ∈ N(u)}) ∪ {wu : u ∈ N(w)}. Since δ(G) ≥ 2 and S is good, using

(a)-(c) in Definition 2 one can see that T is an independent set of X(G) such that |T | ≥ |S|,

and the equality occurs if and only if N(w)∩V S
3 = ∅. Since S is a maximum independent set of

X(G), we have |T | = |S| and hence N(w) ∩ V S
3 = ∅, which implies N(w) ⊆ V S

2 . One can prove

that T is a good maximum independent set of X(G) with V T
1 = V S

1 ∪ {w}, V T
2 = V S

2 −N(w)

and V T
3 = (V S

3 −{w})∪N(w). If V T
1 is a maximal independent set of G, we are done; otherwise

we repeat this procedure. Since G is finite, eventually we obtain a good maximum independent

set R of X(G) such that V R
1 is maximal. 2

The word ‘maximal’ in Lemma 3 cannot be replaced by ‘maximum’ in general. For example,

let G = K̄3 +C2t (t ≥ 4) be the join of three isolated vertices K̄3 and the cycle C2t of length 2t.

Take S to be a good set of X(G) such that V S
1 consists of the three vertices of K̄3. Then V S

2 = ∅,

|S| = 6t and S is an independent set of X(G). However, V S
1 is not a maximum independent

set of G since α(G) = t. On the other hand, consider a good set T of X(G) such that V T
1 is a

maximum independent set of G. In such a case V T
1 consists of every second vertex of C2t and

V T
2 is empty, which gives |T | = 5t. Since |S| > |T |, there is not a good maximum independent

set Q in X(G) such that V Q
1 is a maximum independent set in G.

Since every good set is independent, the following formula is an immediate consequence of

Lemma 3, where W plays the role of V S
1 and α(GW ) = |V S

2 |.

Theorem 4 Let G be a graph with δ(G) ≥ 2. Then

α(X(G)) = max
W

{

α(GW ) +
∑

v∈W

degG(v)

}

,
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where the maximum is taken over all maximal independent sets W of G, and GW is the subgraph

of G induced by those vertices which have exactly one neighbour in W .

Theorem 4 can be used to find α(X(G)) for some graphs G with δ(G) ≥ 2. Consider a cycle

of length n, Cn, and let W be a maximal independent set of Cn. Then the graph induced by

V (Cn) − W consists of isolated vertices and edges. Therefore, if |W | = k, then GW consists

of n − 2k isolated edges. Consequently, α(GW ) = n − 2k and α(X(Cn)) = (n−2k) + 2k = n.

Another maximum independent set of X(Cn) can be obtained by choosing all arcs of Cn in

accordance with a fixed orientation of Cn. One can check that this maximum independent set

is not good. This demonstrates that if δ(G) = 2 then not every maximum independent set of

X(G) is good. In other words, the condition δ(G) ≥ 3 in Theorem 2 cannot be removed.

Next consider the wheel G = Wn on n+1 vertices. Let W be a maximal independent set of G.

If W consists of the central vertex, then α(GW ) = ⌊n2 ⌋ and so α(GW ) +
∑

v∈W degG(v) = ⌊3n2 ⌋.

If the central vertex of G is not in W , then k = |W | ≤ ⌊n2 ⌋ and α(GW ) = n − 2k. Hence

α(GW ) +
∑

v∈W degG(v) = (n− 2k) + 3k ≤ ⌊3n2 ⌋. Therefore, α(X(Wn)) = ⌊3n2 ⌋ by Theorem 4.

Theorem 4 implies the following bounds for regular graphs.

Theorem 5 Let G be a connected d-regular graph with d ≥ 2. Then

d ≤
α(X(G))

α(G)
≤ d+1. (1)

Moreover, both bounds are attainable.

Proof Choose a maximum independent set W of G. Then α(X(G)) ≥
∑

v∈W degG(v) = d α(G)

by Theorem 4. On the other hand, by Theorem 4 there exists a maximal independent set W ∗

of G such that α(X(G)) = α(GW ∗)+
∑

v∈W ∗ degG(v). Since α(GW ∗) ≤ α(G), |W ∗| ≤ α(G) and

G is d-regular, it follows that α(X(G)) ≤ (d+ 1)α(G).

Denote by v1, v2, . . . , vn the vertices of a complete graph Kn. Then S = {v1v2, v1v3, . . . , v1vn,

v2v1} is a good independent set of size n in X(Kn), so that α(X(Kn)) ≥ n. Since Kn is (n−1)-

regular and α(Kn) = 1, we have α(X(Kn)) ≤ n by (1). Thus α(X(Kn)) = n, which achieves

the upper bound in (1).

The lower bound in (1) is achieved by the complete bipartite graphKn,n because α(X(Kn,n)) =

|E(Kn,n)| = n2 = n α(Kn,n) by Theorem 6 below. 2

In the proof of Theorem 5, we demonstrated that the upper bound is achieved by complete

graphs, which satisfy α(Kn) = 1. However, this bound is achieved also by graphs G for which

α(G) > 1. Let Gt = K2t�Ct be the Cartesian product of K2t and Ct. That is, Gt consists

of t vertex-disjoint copies of K2t with vertices {vi0, v
i
1, . . . , v

i
2t−1} in the ith copy, 0 ≤ i ≤ t−1,

together with 2t2 edges {vij , v
i+1
j }, 0 ≤ j ≤ 2t−1, 0 ≤ i ≤ t−1, where superscripts are taken

modulo t. Obviously, Gt is a (2t + 1)-regular graph. Since any independent set of Gt contains

at most one vertex from each copy of K2t and V1 = {v00 , v
1
1 , . . . , v

t−1
t−1} is an independent set of

Gt, we have α(Gt) = t. Now we take S to be the set of arcs of Gt starting from V1 and those

from {v0t , v
1
t+1, . . . , v

t−1
2t−1} to V1. Then S is a good independent set of X(G) with cardinality

|S| = t(2t+1) + t = (2t+2)t, which is the upper bound in (1).

Using Lemma 3 we are able to determine α(X(G)) when G is a bipartite graph.
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Theorem 6 Let G be a bipartite graph with δ(G) ≥ 2. Then

α(X(G)) = |E(G)|.

Proof Let {U,W} be the bipartition of G. Then S = {uv : u ∈ U and v ∈ N(u)} is a good

independent set of X(G) with size |E(G)|. It remains to prove that a maximum independent

set of X(G) has cardinality at most |E(G)|.

Let S be a good maximum independent set of X(G) guaranteed by Lemma 3, and let

{V S
1 , V S

2 , V S
3 } be the corresponding partition of V (G). Denote Ui = U ∩ V S

i and Wi = W ∩ V S
i ,

i = 1, 2, 3. Since V S
1 is an independent set of G, there is no edge of G with one end-vertex in

U1 and the other end-vertex in W1. Similarly, since V S
2 is an independent set, there is no edge

between U2 and W2. By the definition of {V S
1 , V S

2 , V S
3 }, each vertex in U2 is adjacent to a unique

vertex in W1, and each vertex in W2 is adjacent to a unique vertex in U1. Thus, since δ(G) ≥ 2,

each vertex in U2 (W2, respectively) is adjacent to at least one vertex in W3 (U3, respectively).

Hence |(U2,W3)| ≥ |(U2,W1)| and |(U3,W2)| ≥ |(U1,W2)|, where (X,Y ) is the set of edges of G

between X ⊆ U and Y ⊆ W . Therefore, |S| = |(U1,W )|+ |(U,W1)|+ |(U2,W1)|+ |(U1,W2)| ≤

|(U1,W )|+ |(U,W1)|+ |(U2,W3)|+ |(U3,W2)| ≤ |E(G)|. 2

The conclusion in Theorem 6 may not be true when δ(G) = 1 as exemplified by α(X(K1,n)) =

2n. On the other hand, if G is a bipartite graph with δ(G) ≥ 3, then from the proof of Theorem

6, for any good maximum independent set S of X(G) we have V S
2 = ∅ and V S

3 is an independent

set of G. Therefore, if in addition G is connected, then the bipartition of G must be {U1,W3}

or {U3,W1}.

3 Domination in 3-arc graphs

A dominating set of a graph G is a subset S of V (G) such that V (G) − S ⊆ ∪u∈SN(u), where

N(u) is the neighbourhood of u in G. The domination number of G, γ(G), is the minimum

cardinality of a dominating set of G.

Theorem 7 Let G be a connected graph of order n ≥ 4 and δ(G) ≥ 2. Then

3 ≤ γ(X(G)) ≤ n (2)

and both bounds are sharp. Moreover, γ(X(G)) = n if and only if G is an n-cycle, and

γ(X(G)) = 3 if and only if G contains a 3-cycle C3 such that |N(u) ∩ V (C3)| ≥ 2 for ev-

ery u ∈ V (G). Furthermore, for each integer k with 3 ≤ k ≤ n, there exists a graph G with

δ(G) ≥ 2 and order n such that γ(X(G)) = k.

Proof Since uv does not dominate vu, X(G) does not have any dominating set of cardinality

one. Suppose that there exists a dominating set S of X(G) with |S| = 2, say, S = {uv,wz}.

Then u 6= w for otherwise S does not dominate vu. Further, {u,w} ∈ E(G) since otherwise S

does not dominate uy for y ∈ N(u)−{v}. If v 6= w then S does not dominate uw; if z 6= u then S

does not dominate wu; and if v = w and z = u then S does not dominate uy for y ∈ N(u)−{v}.

Hence γ(X(G)) ≥ 3.

Now we prove γ(X(G)) ≤ n. Since δ(G) ≥ 2, G contains at least one cycle. Let C =

(v1, v2, . . . , vh, v1) be a shortest induced cycle in G, where h ≥ 3. Expand the path v1, v2, . . . , vh
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to a spanning tree T of G. Let U denote the unicyclic graph obtained by adding the edge

{vh, v1} to T . Let S1 = {v1v2, v2v3, . . . , vh−1vh, vhv1}, and let S2 consist of all arcs xy such that

{x, y} ∈ E(U) − E(C) and x is further than y from C in U (that is, dU (x, vi) > dU (y, vi) for

one and hence all i with 1 ≤ i ≤ h). Denote S = S1 ∪ S2. Then |S| = n since U is unicyclic.

Moreover, by the definition of S1 and S2, the n arcs of S start at n different vertices of G. For

each u ∈ V (G), let ū denote the neighbour of u such that uū ∈ S. For any arc xy of X(G), if

y = x̄, then xy = xx̄ ∈ S; if y 6= x̄, then xy is dominated by zz̄, where z = x̄ (note that z̄ 6= x

by the chioce of S). Hence S is a dominating set of X(G) and γ(X(G)) ≤ n.

If G is a cycle, then since S1 above is a dominating set of X(G), we have γ(X(G)) ≤ n.

However, each vertex of X(G) dominates at most one vertex of S1, so that γ(X(G)) ≥ |S1| = n.

Thus γ(X(G)) = n in this case.

Suppose that G is not a cycle, so that V (U) − V (C) 6= ∅. Let w ∈ V (U)− V (C) such that

w has degree one in U . Let S′ = S − {ww̄}. For any arc xy of G, we have x̄ 6= w for otherwise

both x and w̄ are neighbours of w in U . Thus, if xy 6∈ S, then xy is dominated by zz̄ ∈ S′,

where z = x̄. Since δ(G) ≥ 2, there exists a neighbour u of w in G other than w̄. Then ww̄ is

dominated by uū. Therefore, S′ is a dominating set of X(G), which implies γ(X(G)) ≤ |S′| < n.

Next we characterize graphs attaining the lower bound.

Suppose first that G contains a 3-cycle C3 = (u1, u2, u3, u1) such that |N(u)∩V (C3)| ≥ 2 for

each u ∈ V (G). Let S = {u1u2, u2u3, u3u1}. Consider any arc xy of G not in S. If x ∈ V (C3),

say, x = u1, then u2u3 dominates xy. If x /∈ V (C3), without loss of generality we may assume

u1, u2 ∈ N(x). If y 6= u1, then xy is dominated by u1u2; if y = u1, then xy is dominated by

u2u3. Hence S is a dominating set of X(G) and γ(X(G)) = 3.

Suppose now that γ(X(G)) = 3. Let S = {u1v1, u2v2, u3v3} be a dominating set of X(G).

We first show that |N(x)∩{u1, u2, u3}| ≥ 2 for any x ∈ V (G)−{u1, u2, u3}. Since δ(G) ≥ 2, there

is a neighbour y of x. Since S dominates xy, we have |N(x)∩ {u1, u2, u3}| ≥ 1. Without loss of

generality we may assume that u1 ∈ N(x). Since S dominates xu1, we have either {u2, x} ∈ E(G)

or {u3, x} ∈ E(G). Hence |N(x)∩{u1, u2, u3}| ≥ 2. Consequently, |{u1, u2, u3}| ≥ 2. It remains

to show that u1, u2 and u3 form a 3-cycle in G.

We first prove that u1, u2 and u3 are pairwise distinct. Suppose to the contrary that two

of them are the same, say, u1 = u2. Then u3 6= u1 and there exists a neighbour z3 of u3 such

that z3 6= v3. Since u3z3 is not dominated by u3v3, it must be dominated by u1v1 or u2v2 and

hence {u1, u3} ∈ E(G). We must have u1u3 ∈ S for otherwise it is not dominated by any arc

in S. Thus, u1u3 must be identical to one of u1v1 and u2v2. Without loss of generality we may

assume u1u3 = u1v1, so that u3 = v1. We must have u3u1 ∈ S for otherwise none of the arcs in

S dominates u3u1 ∈ S, a contradiction. Hence u3u1 = u3v3 and therefore v3 = u1. Since n ≥ 4,

there exists a vertex x ∈ V (G)−{u1, u3, v2}. Since u1 = u2 and |N(x)∩{u1, u2, u3}| ≥ 2 by the

previous paragraph, x is adjacent to both u1 and u3. However, u1x is not dominated by any arc

in S, which is a contradiction. So we have proved that u1, u2 and u3 are pairwise distinct.

We now prove that u1, u2 and u3 are pairwise adjacent. Suppose otherwise, say, {u1, u2} /∈

E(G). Since δ(G) ≥ 2, there is a neighbour z1 of u1 such that z1 6= v1. Since {u1, u2} /∈ E(G),

neither u1v1 nor u2v2 dominates u1z1. Hence u1z1 is dominated by u3v3 and so {u1, u3} ∈ E(G).

Similarly, there exists a neighbour z2 of u2 such that z2 6= v2. An analogous argument shows

that {u2, u3} ∈ E(G). Note that neither u2v2 nor u3v3 dominates u1u3. Thus, if u1u3 6= u1v1,

then none of the arcs in S dominates u1u3, which is a contradiction. Hence u1v1 = u1u3 and so

v1 = u3. Similarly, v2 = u3. Now if v3 6= u1 then S does not dominate u3u1, while if v3 6= u2
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then S does not dominate u3u2. Hence S is not a dominating set of X(G). This contradiction

shows that u1, u2 and u3 form a 3-cycle in G.

Example 1 below shows that every integer between 3 and n can be taken by γ(X(G)) for

some graph G with δ(G) ≥ 2 and order n. 2

Example 1 For any integers k and n with 3 ≤ k ≤ n, there exists a graph with order

n and δ(G) ≥ 2 such that γ(X(G)) = k. In fact, let Gn,k be the graph with vertex set

{u1, u2, . . . , un−k} ∪ {v0, v1, . . . , vk−1} and edge set {{ui, v0}, {ui, v1} : 1 ≤ i ≤ n − k} ∪

{{v0, v1}, {v1, v2}, . . . , {vk−2, vk−1}, {vk−1, v0}}. (Note that Gn,n is exactly the n-cycle.) Let

S = {v0v1, v1v2, . . . , vk−2vk−1, vk−1v0}. Observe that any arc of Gn,k can dominate at most one

arc of S. Hence γ(X(G)) ≥ |S| = k. On the other hand, it is easy to see that S dominates

X(G). Therefore, γ(X(G)) = k.

A k-dominating set [5] of a graph H is a subset S of V (H) such that |N(u)∩S| ≥ k for every

u ∈ V (H)− S. The k-domination number of H, denoted by γk(H), is the minimum cardinality

of a k-dominating set of H. Note that γ1(H) = γ(H). Our next result gives an upper bound for

γ(X(G)) in terms of γ2(G). At the time of writing we are unable to give a sharp upper bound

for γ(X(G)) in terms of γ(G).

Algorithm 1

Input: A graph G with δ(G) ≥ 2 and a minimum 2-dominating set T of G.

Output: A set S of arcs of G.

Set S := ∅, i := 0, U := ∅. {Comment: U ⊆ V (G) and i = |U |}

While T −N(U) 6= ∅ do

i := i+ 1;

choose ui ∈ V (G)− (T ∪ U) with N(ui) ∩ (T −N(U)) 6= ∅;

let N(ui) ∩ (T −N(U)) = {v1, v2, . . . , vk};

if k ≥ 2, then

if N(ui) ∩ (V (G) − T ) 6= ∅, then

let S1 = {v1ui, v2ui, . . . , vkui, uiwi, wixi},

where wi ∈ N(ui) ∩ (V (G) − T ) and xi ∈ N(wi)− {ui};

set S := S ∪ S1;

else if N(ui) ∩N(U) ∩ T 6= ∅, then

let S2 = {v1ui, v2ui, . . . , vkui, uiwi},

where wi ∈ N(ui) ∩N(U) ∩ T ;

set S := S ∪ S2;

else

let S3 = {v1ui, uiv1, v2ui, uiv2, . . . , vkui, uivk};

set S := S ∪ S3;

end;

if k = 1, then

let S4 = {v1ui, uiwi}, where wi ∈ N(ui) ∩N(U) ∩ T ;

set S := S ∪ S4;
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end;

U := U ∪ {ui};

end.

Theorem 8 Let G be a graph with δ(G) ≥ 2. Then

γ(X(G)) ≤ 2γ2(G) (3)

and this bound is sharp.

Proof Let T be a minimum 2-dominating set of G. We apply Algorithm 1 to obtain a set S of

arcs of G.

In the ith iteration of the While loop in Algorithm 1, we have U = {u1, u2, . . . , ui−1}. We

choose ui ∈ V (G)− (T ∪U) so that N(ui)∩ (T −N(U)) 6= ∅. In other words, ui has a neighbour

in T which is not a neighbour of any uj, j < i. Since T is a minimum 2-dominating set of G,

every vertex v ∈ T has at least one neighbour not in T . Therefore, after several iterations we

have T −N(U) = ∅ and the algorithm terminates.

In the ith iteration of theWhile loop in Algorithm 1, we have either |N(ui)∩(T−N(U))| ≥ 2,

for which we obtain one of S1, S2 and S3, or |N(ui)∩ (T −N(U))| = 1, for which we get S4. In

the last case, since T is a 2-dominating set of G, there must exist a neighbour wi of ui such that

wi ∈ T ∩N(U). In all cases we add to S at most 2k arcs, where k is the number of neighbours of

ui in T −N(U). Hence |S| ≤ 2|T |. We now prove that S dominates X(G) and hence complete

the proof of (3).

Let xy be an arbitrary arc of G not in S. We distinguish three cases.

Case 1. x ∈ T . Denote by ui the first vertex in U such that x ∈ N(ui). If y = ui, then

xy ∈ S. If y 6= ui, then uiwi dominates xy in cases S1, S2 and S4, while in case S3 either uiv1
or uiv2 dominates xy.

Case 2. x ∈ U . In this case x = ui for some i. Then wixi dominates xy in case S1. Observe

that wi ∈ T ∩ N(U) in cases S2 and S4. Hence there exists uj such that j < i and wiuj ∈ S.

Since xy 6= uiwi, the arc wiuj dominates xy in cases S2 and S4. Since xy /∈ S, case S3 is

impossible.

Case 3. x /∈ T ∪ U . Since T is 2-dominating set in G, there are at least two neighbours of

x in T . Let v be a neighbour of x in T such that v 6= y, and let ui be the first vertex of U such

that v ∈ N(ui). Then vui dominates xy.

So far we have completed the proof of (3). Observe that γ(X(Cn)) = 2γ2(Cn) if n is even.

Hence the bound in (3) is sharp. 2

Corollary 9 Let G be a bipartite graph with bipartition {U,W} and δ(G) ≥ 2. Then

γ(X(G)) ≤ 2min{|U |, |W |}

and this bound is sharp.

Proof Since δ(G) ≥ 2, each part of the bipartition of G is a 2-dominating set. By Theorem 8

we have γ(X(G)) ≤ 2γ2(G) ≤ 2min{|U |, |W |}. Similar to Theorem 8, the equality is attained

by even cycles. 2
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In the next theorem we give a lower bound for γ(X(G)) and compare it with an upper bound

derived from the following known result ([1, 2, 15]) for any graph H of order n and minimum

degree δ:

γ(H) ≤
n

δ + 1

(

ln(δ + 1) + 1
)

. (4)

Theorem 10 Let G be a graph with n vertices, m edges, maximum degree ∆ and minimum

degree δ ≥ 2. Then

⌈

2n

∆

⌉

≤ γ(X(G)) ≤
2m

δ2 − 2δ + 2

(

ln(δ2 − 2δ + 2) + 1

)

. (5)

Moreover, the lower bound is sharp.

Proof X(G) has 2m vertices and minimum degree δ(X(G)) ≥ (δ − 1)2. Applying (4) to X(G)

and noting that lnx+1
x

is a decreasing function for x ≥ 1, we obtain the upper bound in (5)

immediately.

To prove the lower bound in (5), we partition the arcs of G into n disjoint parts Au, u ∈ V (G),

where Au = {uv : v ∈ N(u)}. Let S be a dominating set of X(G) with minimum cardinality.

Every arc in S dominates arcs in at most ∆ different parts Au. On the other hand, it requires

at least two different arcs in S to dominate all arcs in a single Au. Counting the number of

ordered pairs (a,Au), where a is an arc in S dominating some arcs in Au, we obtain ∆|S| ≥ 2n.

Hence γ(X(G)) = |S| ≥ 2n
∆ . That the lower bound is sharp is demonstrated by cycles Cn. 2

Theorem 10 can be used to find γ(X(G)) for some graphs G with δ(G) ≥ 2.

Example 2 Let Pk be the prism on 2k vertices with V (Pk) = {u0, u1, . . . , uk−1, v0, v1, . . . , vk−1}

and E(Pk) = {{ui, ui+1}, {vi, vi+1}, {ui, vi} : 0 ≤ i ≤ k−1}, where the addition in subscripts is

modulo k. Let t = ⌊k3⌋.

If k ≡ 0 mod 3, then k = 3t and γ(X(Pk)) ≥ 4t by Theorem 10. On the other hand,

S = {uiui+1, ui+1vi+1, vi+1vi, viui : i = 0, 3, . . . , 3(t−1)} is a dominating set of X(Pk) with

cardinality 4t. Hence γ(X(Pk)) = 4t.

If k ≡ 1 mod 3, then k = 3t+1 and γ(X(Pk)) ≥ 4t+ 4
3 by Theorem 10. One can check that

S = {uiui+1, ui+1vi+1, vi+1vi, viui : i = 4, 7, . . . , 3(t−1) + 1} ∪ {u0u1, u1u2, u2v2, v2v1, v1v0, v0u0}

is a dominating set of X(Pk) with cardinality 4t+ 2. Hence γ(X(Pk)) = 4t+ 2.

In the two cases above the lower bound in (5) is attained.

In the case where k ≡ 2 mod 3, by Theorem 10 and an analogous argument we obtain

⌈2n∆ ⌉ = 4t+ 3 ≤ γ(X(Pk)) ≤ 4t+ 4, where the lower bound is attained when, say, t = 1.

For a d-regular graph G with d ≥ 3, the upper bound in (5) is strictly less than n
d−2(ln(d

2 −

2d+ 2) + 1). Thus, by Theorem 10 and Example 2, we have the following corollary.

Corollary 11 Let G be a d-regular graph of order n, where d ≥ 3. Then

⌈

2n

d

⌉

≤ γ(X(G)) <
n

d− 2

(

ln(d2 − 2d+ 2) + 1

)

and the lower bound is sharp.

For sufficiently large d, this upper bound is better than the one in Theorem 7.
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4 Coloring 3-arc graphs

We observe that a proper vertex-coloring of X(G) is exactly a coloring of arcs of G, such that

any two arcs uv and xy with v 6= x and y 6= u, whose tails u and x are joined by an edge in

G, receive different colors. (A vertex-coloring of a graph or directed graph is called proper if

adjacent vertices receive different colors.) The latter, called a 3-arc coloring of G, is a new notion

of arc-coloring for graphs that is different from the existing arc-coloring models [3, 8, 14, 16].

Define χ′
3(G) to be the minimum number of colors needed by a 3-arc coloring of G and call it the

3-arc chromatic index of G. Equivalently, χ′
3(G) is defined as the chromatic number of X(G).

The notion of 3-arc coloring can be extended to directed graphs in an obvious way by

requiring that any two arcs uv and xy with v 6= x and y 6= u, whose tails are joined by an arc (in

either direction), receive distinct colors. So we can speak of the 3-arc chromatic index χ′
3(D) of

a directed graph D, though we will mainly discuss the undirected case. Of course χ′
3(G) is equal

to the 3-arc chromatic index of the directed graph obtained from G by replacing each edge by

two arcs of opposite directions.

A tournament is a digraph T , such that for every u, v ∈ V (T ), u 6= v, we have either

uv ∈ E(T ) or vu ∈ E(T ). The tournament is transitive if uv, vw ∈ E(T ) implies uw ∈ E(T ) for

every triple u, v, w ∈ V (T ). A Halin graph is a planar graph H = T ∪ C whose edge set can be

partitioned into a tree T with no vertex of degree two and a cycle C whose vertices are exactly

the degree-one vertices of T .

Theorem 12 The following hold:

(a) If Tn is a transitive tournament on n vertices, then χ′
3(Tn) = n− 1;

(b) χ′
3(Kn) = n− 1;

(c) for a connected graph G, χ′
3(G) = 1 if and only if G is a star;

(d) for a connected graph G, χ′
3(G) = 2 if and only if G is not a star and the subgraph of G

induced by the vertices of degree at least three is bipartite;

(e) if H is a Halin graph, then χ′
3(H) = 2 if H is bipartite and χ′

3(H) = 3 otherwise.

Proof (a) Since Tn is acyclic, each vertex vi of Tn can be assigned an integer ni such that

ni < nj for each arc vivj of Tn. Color each arc vivj of Tn by ni. Since no arc emanates from vn,

this is a 3-arc coloring of Tn using n − 1 colors. Hence χ′
3(Tn) ≤ n − 1. On the other hand we

have χ′
3(Tn) ≥ n− 1 because v1vn, v2vn, . . . , vn−1vn require pairwise distinct colors in any 3-arc

coloring of Tn.

(b) Since Tn is an orientation of Kn, we have χ′
3(Kn) ≥ χ′

3(Tn) = n − 1. Let V (Kn) =

{v1, v2, . . . , vn}. Color all arcs emanating from vi by i, and color vnvi by i, for i = 1, 2, . . . , n−1.

In this way we get a 3-arc coloring of Kn, so that χ′
3(Kn) = n− 1.

(c) χ′
3(G) = 1 if and only if X(G) is a graph without edges. Since X(G) is edgeless if and

only if G has neither 3-cycles nor paths of length 3, χ′
3(G) = 1 if and only if G is a star.

(d) Suppose that G is not a star. Denote by G0 the subgraph of G induced by all vertices of

degree at least three. Since χ′
3(G) = 2 if and only if X(G) is bipartite, it suffices to prove that

X(G) has an odd cycle if and only if G0 has an odd cycle.
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Suppose that G0 has an odd cycle (u0, u1, . . . , uk−1, u0). Since the degree of ui is at least

three, 0 ≤ i < k, there is a vertex vi in G such that vi 6= ui−1 and vi 6= ui+1, the subscripts

being modulo k. Then (u0v0, u1v1, . . . , uk−1vk−1, u0v0) is an odd cycle in X(G).

Now suppose that X(G) contains odd cycles. Let C = (u0v0, u1v1, . . . , uk−1vk−1, u0v0) be

a shortest odd cycle in X(G). We prove that u0, u1, . . . , uk−1 ∈ V (G0). The vertex ui is

adjacent to ui−1, ui+1 and vi, 0 ≤ i < k, indices being modulo k. Suppose that there is a

subscript j such that uj−1 = uj+1. If uj−2 = uj then (u0v0, . . . , uj−2vj−2, uj+1vj+1, . . . , u0v0)

is an odd cycle of length k − 2 in X(G), which contradicts the choice of C. Thus, uj−2 6= uj
and analogously we get uj+2 6= uj. But then (u0v0, . . . , uj−2vj−2, uj−1uj, uj+2vj+2, . . . , u0v0) is

a cycle of length k − 2 in X(G), which contradicts the choice of C. Therefore ui−1 6= ui+1 for

all i, 0 ≤ i < k. As vi is distinct from both ui−1 and ui+1, the degree of ui is at least 3 in

G. Therefore (u0, u1, . . . , uk−1, u0) is a closed walk of odd length in G0, so that G0 has an odd

cycle.

(e) Let H = T ∪ C. Denote C = (v1, v2, . . . , vt, v1) and let f be a proper vertex-coloring of

T using colors 1 and 2. Define f ′ : V (H) → {1, 2, 3} such that f ′(x) = 3 if x = vj for an odd j

and f ′(x) = f(x) otherwise. If t is even, then color each arc xy of H by f ′(x). One can check

that this is a 3-arc coloring of H. Assume that t is odd. Since H is a Halin graph, there is a

unique neighbour w of vt not on C. Color each arc xy with x 6= vt by f ′(x) and color vtv1 by

3. If f ′(vt−1) = f ′(w) = 1, then color vtvt−1 and vtw by 2; if f ′(vt−1) = f ′(w) = 2, then color

vtvt−1 and vtw by 1; and if f ′(vt−1) 6= f ′(w), then color vtvt−1 by f ′(vt−1) and vtw by f ′(w). It

can be verified that this is a 3-arc coloring of H. Hence χ′
3(H) ≤ 3. Since each vertex of H has

degree at least three, by (d), χ′
3(H) = 2 if H is bipartite and χ′

3(H) = 3 otherwise. 2

A major result in this section is Theorem 15 below, which gives sharp lower and upper

bounds on χ′
3(G) in terms of the chromatic number of G. To prove Theorem 15 we first discuss

directed graphs with 3-arc chromatic index one.

Lemma 13 Let Dn be an orientation of a cycle of length n ≥ 3. Then χ′
3(Dn) = 1 if and only

if either Dn is a directed cycle, or n is even and any two consecutive arcs of Dn have opposite

directions.

Proof The sufficiency is easy to see, so we prove the necessity only.

Hence, suppose that χ′
3(Dn) = 1. Let v0, v1, . . . , vn−1 be the vertices of Dn in a cyclic order.

Suppose that there are two consecutive arcs of Dn having the same direction. Without loss of

generality we may assume that v0v1 and v1v2 are arcs of Dn. Since χ
′
3(Dn) = 1, vn−1v0 is an arc

of Dn. Similarly, one can show successively that vn−2vn−1, vn−3vn−2, . . . , v2v3 are arcs of Dn.

Thus, Dn is a directed cycle.

Now suppose that no two consecutive arcs of Dn have the same direction. Then n is even

and any two consecutive arcs of Dn have opposite direction. 2

A semi-cycle (semi-path, respectively) in a directed graph is a directed subgraph whose

underlying graph is a cycle (path, respectively). A semi-cycle is odd if its length is odd. A

directed graph is weakly connected if its underlying graph is connected.

Lemma 14 Let D be a weakly connected directed graph with χ′
3(D) = 1. Then D contains at

most one odd semi-cycle, and moreover such a semi-cycle must be a directed cycle.
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Proof Since χ′
3(D) = 1, every odd semi-cycle in D should have 3-arc chromatic index equal to

one and hence is a directed cycle by Lemma 13.

Suppose that D contains two distinct odd semi-cycles, say, D1 and D2. Then D1 and D2 are

directed cycles in D as shown above. If D1 and D2 have common vertices, then there exists an

arc uv of D1 such that u is the initial vertex of a directed path u, x, y of length two in D2. So

any 3-arc coloring of D assigns different colors to uv and xy, which contradicts the assumption

χ′
3(D) = 1. Hence D1 and D2 are vertex-disjoint. Since D is weakly connected, there exists a

semi-path v1, v2, . . . , vk in D such that v1 ∈ V (D1) and vk ∈ V (D2). Since D1 is a directed cycle

and v1 is on D1, the arc between v1 and v2 must be v2v1 and the arc between v2 and v3 must be

v3v2. Based on these and the assumption χ′
3(D) = 1, one can show that vj+1vj, j = 1, . . . , k−1,

are arcs of D. Since D2 is also a directed cycle and vk is on D2, any 3-arc coloring of D assigns

different colors to vkvk−1 and an arc of D2. This contradiction proves the result. 2

Theorem 15 Let G be a connected graph. Then
⌈

χ(G) + 1

3

⌉

≤ χ′
3(G) ≤ χ(G) (6)

and moreover both bounds are attainable.

Proof Let G be a connected graph. For a proper vertex-coloring of G using χ(G) colors, the

coloring of arcs of G such that each arc is assigned the color of its tail is a 3-arc coloring of G.

Hence χ′
3(G) ≤ χ(G). The equality holds when, for example, G is an even cycle, or the graph

obtained from any complete graph Kn by adding a new vertex v′ for each v ∈ V (Kn) and joining

v and v′ by an edge.

Now we prove the lower bound in (6). By Theorem 12 (c), if χ′
3(G) = 1 then G must be

a star, which implies χ(G) = 2 and hence (χ(G) + 1)/3 = χ′
3(G). In the following we assume

k = χ′
3(G) ≥ 2.

Denote by D the directed graph obtained from G by replacing every edge by a pair of arcs

of opposite directions. Let f be a 3-arc coloring of G (and hence of D) using colors 1, 2, . . . , k.

Denote by Di the directed subgraph of D induced by those arcs of D which are colored by i

under f . Then χ′
3(Di) = 1, and so by Lemma 14, each component of Di has at most one odd

semi-cycle. Hence the vertices of Di can be colored properly by three colors. Based on this we

give a proper vertex-coloring of G as follows.

First, we color properly the vertices of D1 other than sinks by three colors. (A sink in a

directed graph is a vertex which is not the tail of any arc of the directed graph.) We show that

in this way we obtain a proper partial coloring of G. Assume that two vertices of D1, say u

and x, receive the same color. Then there are v, y ∈ V (D1) such that uv and xy are arcs of D1.

Since χ′
3(D1) = 1, the arcs uv and xy are not adjacent in X(G). Moreover, as u and x are not

adjacent in D1, we have v 6= x and y 6= u. Consequently, in G we cannot have the edge {u, x},

so that the described partial coloring of G is proper.

Now we use three new colors to color properly those vertices of D2, which are not sinks.

However, we color only those non-sink vertices of D2, which did not receive any color in the

previous step. Analogous to the argument above, one can show that in such a way we obtain a

proper partial coloring of G, in which we color all the vertices of D1 ∪D2, which are not sinks

in D1 ∪D2. (That is, we color those vertices of D1 ∪D2 at which there starts at least one arc

either in D1 or in D2.)
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Repeating this process forD3, D4, . . . , Dk−1 we obtain a proper partial coloring of G using at

most 3(k−1) colors. Now consider a component of Dk. If this component has no odd semi-cycle,

then its non-sink vertices can be colored properly by two colors. If this component contains a

(unique) odd semi-cycle, then by Lemma 14 this odd semi-cycle is a directed cycle. Hence all

its vertices are already colored and the remaining non-sink vertices can be colored properly by

two colors. In any case, to color properly non-colored non-sink vertices of any component of

Dk it suffices to use two colors. Thus, non-sink vertices of ∪k
i=1Di = D can be colored properly

by at most 3k − 1 colors. Since every vertex of D is a non-sink vertex of some Di, we have

χ(G) ≤ 3χ′
3(G)− 1 and the lower bound in (6) is established.

Let Gn be a graph consisting of n ≥ 1 edge-disjoint triangles with a common vertex u. Then

χ(Gn) = 3 and χ′
3(Gn) ≥ 2. For each triangle of Gn, color the two arcs starting from u by

color 1, and color one of the two arcs entering into u by 1 and the other one by 2. Color the

remaining two arcs in each triangle by 2. One can verify that this is a 3-arc coloring of G. Hence

χ′
3(Gn) = 2 and the lower bound in (6) is attained by Gn. 2

It is easily seen that the problem of deciding whether χ′
3(G) ≤ k can be solved in polynomial

time when k = 1 or 2, see Theorem 12. The following result shows that this problem is NP-

complete when k = 3 even when restricted to planar graphs.

Theorem 16 The problem of deciding whether χ′
3(G) ≤ 3 for a planar graph G is NP-complete.

Proof Given a planar graph G, we construct a graph G∗ from G by adding a new vertex

v′ for each v ∈ V (G) and joining v and v′ by an edge. Obviously G∗ is planar and G∗ can

be constructed in polynomial time. We show that χ′
3(G

∗) ≤ 3 if and only if G is 3-colorable.

Suppose that G∗ has a 3-arc coloring f using three colors. Color the vertices of G such that

v ∈ V (G) receives color f(vv′). It can be easily seen that this is a proper vertex-coloring of G

by three colors. Thus G is 3-colorable. Conversely, suppose G is 3-colorable and g is a proper

vertex-coloring of G by three colors. For each v ∈ V (G), assign color g(v) to all arcs of G∗

with tail v, and assign any of the three colors of g to v′v. It can be verified that this is a 3-arc

coloring of G∗ and hence χ′
3(G

∗) ≤ 3. Thus we have proved that χ′
3(G

∗) ≤ 3 if and only if G is

3-colorable. Since the problem of deciding whether a planar graph is 3-colorable is NP-complete

[6], the problem of deciding whether χ′
3(G) ≤ 3 is NP-complete, too.

5 Problems

It is known that line graphs and 2-path graphs (that is, 3-path graphs as used in [12]) have

forbidden subgraph characterizations; see [17, 7.1] and [12], respectively. In contrast, as far as

we are aware, there is no known characterization of 3-arc graphs.

Problem 1 Characterize 3-arc graphs of connected graphs.

Other interesting problems include the following two.

Problem 2 Let G be a connected graph with δ(G) ≥ 3. Under what conditions is X(G) Hamil-

tonian?

Problem 3 Give a sharp upper bound on γ(X(G)) in terms of γ(G) for any connected graph

G with δ(G) ≥ 2.
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There is a wide space for improving results of this paper. For instance, the gap between the

upper and lower bounds in (2) is big (though both bounds are sharp in general) and it may be

improved for some special families of graphs. Also, the lower bound in (6) seems to be far from

optimal for χ′
3(G) > 2.

There is an extensive literature on line graphs with hundreds of publications, and also dozens

of papers on path graphs have been published (e.g. [4, 12]). As these two graph operators are

related [10] to the 3-arc graph operator, we expect that techniques used previously for line

graphs and path graphs may be utilized to derive properties of 3-arc graphs.
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