DOMINATION IN A DIGRAPH AND IN ITS REVERSE
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ABsTrRACT. Let D be a digraph. By (D) we denote the domintaion number of D
and by D~ we denote a digraph obtained by reversing all the arcs of D. In this paper
we prove that for every § > 3 and k > 1 there exists a simple strongly connected
d-regular digraph Dsj such that v(Dj,) — v(Dsx) = k. Analogous theorem is
obtained for total domination number pirovided that § > 4.
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1. INTRODUCTION AND RESULTS

Let D = (V(D), E(D)) be a digraph. Then D is strongly connected if for every
ordered pair u, v of its vertices there exists a directed u — v path in D. If for every
vertex v of D there are exactly ¢ arcs starting at v and exactly § arcs terminating
at v, then D is d-regular. The reverse digraph D~ (which is sometimes called the
converse of D) is obtained by reversing all the arcs of D. Let v € V(D). By N(v)
we denote the set of all neighbours of v, i.e., N(v) = {u; (v,u) € E(D)}, while
by N[v] we denote the closed neighbourhood of v, i.e., N[v] = N(v) U {v}. A set
S of vertices is a dominating set (total dominating set) if U,esN[v] = V(D) (if
UyesN(v) = V(D)). The minimum size of a dominating set (total dominating set)
is the domination number (D) (total domination number (D)) of D. Some
authors use the notion “out-domination number” for v(D) and “in-domination
number” for y(D™), see e.g. [1].

The topic of domination belongs to most studied areas in graph theory. Prob-
lems of resource allocations and scheduling in networks are frequently formulated
as domination problems on underlying (di)graphs, for terminology and survey of
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results see [6]. Comparing with graphs, there exists smaller number of results for
domination in digraphs. The domination number in digraphs was introduced in
[3]. If a digraph is antisymmetric, then both D and its reverse D~ are orientations
of the same graph G. The relationship between domination numbers of different
orientations of a graph was studied in [2]. A survey on domination in directed
graphs is given in [4].

In [1] the authors prove the following theorem.

Theorem A. For every digraph D of order n > 2 with no isolated vertices, the
following bound is sharp:

2<y(D)+~(D7) < %

While Theorem A bounds the sum of y(D) and (D), we study their difference.

Let D be a weakly connected digraph on n vertices. Then its dominating number
can be bounded by

1<yD)<n-1

where every value from the range [1,n—1] is admissible, as can be shown by a
suitable orientation of a star Ki,_;. Better bounds can be expressed in terms
of the maximal and minimal in- and out-degrees of vertices in D, see [7] and [4].
Anyway, the greatest difference of y(D~) — (D) is n —2 as is shown by orientation
of Ky y—1 if we direct all the arcs from the center. The problem is that this digraph
is not strongly connected and its total domination number is co. In the present note
we show that the difference v(D~) —v(D) can not be bounded by a constant, even
if we restrict to strongly connected regular digraphs. We present constructions
of regular digraphs of given degree 4, where the difference between the (total)
domination number of D~ and that of D is arbitrarily large. We prove the following
two statements.

Theorem 1. Let § and k be integers, d > 3 and k > 1. Then there exists a simple
strongly connected 6-reqular digraph Ds s, such that v(Dy ) — v(Dsk) = k.

Theorem 2. Let § and k be integers, d > 4 and k > 1. Then there exists a simple
strongly connected 0-reqular digraph Csy, such that -y (C’gk) —7(Cs.i) = k.

As regards small values of §, the unique strongly connected 1-regular digraph
is a directed cycle C. Since C~ is a digraph isomorphic to C, we have y(D) =
~v(D7) and v¢(D) = v(D™) for 1-regular strongly connected digraphs. However,
the relation between (D) and (D7) is not so obvious in the class of 2-regular
strongly connected digraphs. Analogously, we do not know what is the relation
between 7v;(D) and (D7) in the class of 2-regular and 3-regular strongly connected
digraphs. Therefore we pose the following problems:

Problem 1. Can be the difference v(D™) — (D) arbitrarily large in the class of
2-regular strongly connected digraphs?

Problem 2. Can be the difference v;(D~) — (D) arbitrarily large in the classes
of 2-regular and 3-regular strongly connected digraphs?

Since the ratio y(D~)/v(D) (as well as v (D~) /v (D)) equals 7/6 in our proofs,
we have another problem:

Problem 3. What is the greatest ratio v(D~)/v(D) (or v.(D~)/v(D)) if D is a
0-regular strongly connected digraph?

The proofs are postponed to the next section.
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2. PROOFS

Let D = (V(D), E(D)) be a digraph (possibly with loops and multiple arcs) and
let A be a group. Any mapping ¢ : E(D) — A is called a voltage assignment and
the value ¢(e) is the voltage on the arc e. Having voltage assignment on D, we can
lift D to a larger digraph. The lifted digraph has vertex set V(D) x A and there is an
arc from (u, g) to (v, h) if and only if e = (u, v) is an arc of D and h = g®¢(e), where
© is the group operation in A. As is a custom, we write u, and vy, instead of (u, g)
and (v, h), respectively. In this paper we use A = Zj3 only, so that g, h € {0,1,2}.
More general lifts are obtained by assigning permutations of n = |A| element set,
say {0,1,...,n—1} to every arc of D. Denote by «. the permutation assigned to
the arc e. Then the lifted digraph has vertex set V(D) x {0,1,...,n—1} and there
is an arc from u,4 to vy, if and only if e = (u,v) is an arc of D and h = a.(g). We
mix these two types of voltage assignments in this paper, but as the underlying sets
for both types of assignments will be identical (namely {0, 1, 2}), this will cause no
problems. See [5] for more information about voltage assignments.

Let zg,z1,...,T,_1 be vertices. By (zo,%1,...,%n_1)" we denote the arcs of a
directed cycle (zg,Z1, .- .,%Tn_1), while by (zg,x1,...,Tn_1)%, t > 2, we denote arcs
(4, Zi+t), 0 < i < n—1 (the addition in subscript is modulo n).

Jj—1 Jj+1
‘D6 D(S

/Cj-i—l

Figure 1. The digraph Dsy for 6 = 4.

Proof of Theorem 1. Let us denote by D} = (V(Dj}), E(Djy)) a d-regular digraph
on 0 + 1 vertices, where

V(D%) = {a,b1,b2,...,b(6—2), ¢, d},

E(Dj5) = {(a,c), (a,d), (d,a), (d,a), (c,c), (c,d) }
U {(a, bi), (bi, a), (bi, bi); 1 < i < 6—2}

UUOZ (01,02, ...b(6-2), ¢, d)’.

Observe that D} contains 6 —1 loops and two multiple arcs, namely (d, a) and (c, d).

Now we assign voltages of Z3 to arcs of Dj. All the arcs of D} receive voltage 0

except (bi,bi), 1 < i < §—2, one of (¢,d), one of (d,a) and (b1,b2) (for the case

d > 4), which receive voltage 1; and (c, ¢), which receives a permutation voltage « :

(0)(1,2). Now we construct the lifted digraph D;. This digraph contains no multiple

arcs due to different voltages on parallel arcs, and it has only one loop, namely
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(co, co)- Analogously as D3, also Ds is ¢- regular and it is also strongly connected.

Denote by DJ a copy of Ds with vertices {aJ b1J oo, b(6— )Z,cg,dg, 0<1i<2}.
Now take 2k copies DY, D}, ..., D% ! remove from these copies the loops (¢}, &),

0 < j < 2k—1, replace them by (08, cdy - cgk 1) and denote the resulting digraph

by Ds 1, see Figure 1 for the case 6 = 4. Then Dy 1, is simple and strongly connected
d-regular digraph. In the following we prove vy(Djs ) = 6k and v(Djy,) = k.
Since Dy is d-regular digraph on 2k - 3(d+1) vertices, we have ’V(D(s,k) > 6k.
AsT = U?igl{ag, al,al} is a dominating set of size 6k, we have v(Ds, k) = 6k.
Now consider Dy . In the following table we have for every vertex the list of
its neighbours in Dy (observe that if § = 3 then b1 = b(d—2), i.e., the list of blg

terminates with df in that case; similarly the list of b2g terminates with dz ifé =4
etc.).

af 01,02, b6,

b1y :al b1l | b((i 2) ,b(6—3),...b37

1—17 g1 Vg
b27 :al b20 b1l dl cl b(5—-2)7,b(0—3)),...b4!

1—1 7,’ 7

bl ad bl b(1—1),b(1-2), ... 012, d2, ¢ b(6—2)), b(6—3)], ... b(I+2)

1) ) )

6—2)7_,,b(6—3)] b(5—4)4 bl

b(6_2)z :az’b( Rt
c :al,b(6-2)7,b(6-3)!,...,b17, ¢4
& :al,cl el 1, b(6—2)!,b(0-3),. .., b2

We remark that the bottom 1ndlces are always modulo 3 and the upper indices are
modulo 2k. The vertex ¢, ;) is 7 ifi=0,itis ¢ if i =1 and it is ¢ if i = 2.

Denote by S a dominating set in Dy, and denote 7 = SNV(DJ). it e §it1

then since cé“ has only 4 — 1 neighbours in V(Df;‘Jr ) and since only cg)+ can be
dominated from outside S7+1, we have |S9+1| > 4. Now suppose that ;" ¢ $9+1,
We prove [S7| > 4.

Since cgﬂ ¢ S+ all vertices of V(Dg) are dominated by S7. By contradiction,
suppose that |S?7| = 3 and denote by z, y and z the three vertices of S7. Moreover,
denote by M the multiset consisting of N[z], N[y| and N|[z] in DM Then M
contains every vertex of V(DJ ) exactly once. ILe., in M there is a’ three times
(with 3 different bottom indices 0, 1 and 2), also bl.j , ¢ and & are 3 times each in
M. Therefore S7 does not contain two a’’s as then M would contain 4 times d’.
Analogously S7 does not contain two bl?’s (due to four bl?’s in M); Si does not
contain two ¢’s (due to four ¢’s in M, observe that ) ¢ S7 as shown above); and
S7 does not contain two d’’s (due to four ¢’’s). Now suppose that we have in S7
one bl? and one bt’ for | < t. Distinguish two cases:

Case 1: ¢ > 1+ 1. Thené > 5. In N(bfj) there is missing exactly one of

b’s if f < 6—2, namely b(f+1)?, and N(b(6— 2)7) contain all b’s. Therefore in the
multiset consisting of N[bl/] and N[bt/] we have three bl?’s and three bt’’s. Since
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there is either bl or b’ in N[v] for any v € V(Dg), the multiset M contains either
four bl’s or four bt?’s, a contradiction.

Case 2: t =1+ 1. Then § > 4. Analogously as in Case 1 one can see that there
are three bl’s in the multiset consisting of N[bl’] and N[bt/], so that the third vertex

of §7 cannot have bl? in its closed neighbourhood. That means that this third vertex
is either b(I—1)7 if I > 1 or it is d’ if | = 1. Since S9 = {b(I—1)?, 17, b b(l+1)? '\ was
excluded in Case 1, we have S7 = {b17 b2’ dj} Suppose that S7 = {b17,b27,d7}.
Since ¢! € N[b17] (recall that § > 4) and ¢,/ _, € N|[df], we have s = i + 2 (recall
that the arithmetics in bottom indices is considered modulo 3). Since a‘ eN [blz 1,

al g € dz-|-2 and al € b2J, we have r = i + 1. Therefore S7 = {17, b2f_|_1, i'_|_2}.

But then blJ occurs twice in M, a contradiction.

Thus, we have at most one of b’s in $7. If S9 contains ¢/ and d’, then either
¢/ € 87 in which case |S7| > 4 as proved above, or there are four ¢¥’s in M. Hence,
S7 contains a?, blY for some | and either ¢ or d’. However, if S¥ = {a? bl '}
then M contains four bl?’s, while if S* = {a?,bl?, &’} then M contains four d?’ S.
Thus, we proved that [S7| > 4 if )T ¢ S9+1.

Now ™' € Si*1 gives |S9+1| > 4 while ™' ¢ S9! gives [S7| > 4. This
means that |[S7 U S7t!| > 7 and consequently Y(Dsx) = S| > 7k. It remains
to find a dominating set of size 7k in Djy,. Set Q= {ao,al,c;} Then the
only vertex of V(DJ) which is not dominated by @7 is ¢} (while d is dominated
“twice”). Therefore RIT' = {a™" a?™' 1" 1"} is a dominating set in DIt
Consequently, S = UJ: Q¥ U R23+1) is a dominating set of size 7k in Da,k, S0
that v(Dj ) = Tk. O

Observe that D5y can be obtained from Ds by lifting in Zoy, if all the arcs of Ds
except (co,co) receive the voltage 0, while (co, co) receives voltage 1.

j—1 j+1
Cé C&

/C(j)+1

Figure 2. The digraph Csy for § = 5.

Proof of Theorem 2. We construct Cs similarly as was constructed Dsj in the
proof of Theorem 1. Denote by C5 = (V(C5), E(C5)) a é-regular digraph on 6
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vertices, where

V(C;) ={a,b1,b2,...,b(0—3),c,d},
E(C5) = {(a, a), (a, C) (a,d), (d; a), (d,a), (¢,0)}
U {(a, bi), (bi,a); 1 <i < 6—-3}

); 1
U (d, ¢, b(6—3),b(6—4),...,b1)* — {(d, )}
U (b1,02,...6(0—3),¢,d)*
UUSZ3(b1,02,...b(6—3), ¢, d)’.

Then Cj contains two loops, (a, a) and (c, ¢), and § multiple arcs, namely (d, a) and
(b1,02,...,b(6—3),c,d)'. Now we assign voltages of Zs to arcs of C§. All simple arcs
of Cj receive voltage 0 except (a, d), which receives voltage 1. Every pair of multiple
arcs will receive voltages 0 and 1, the loop (a, a) receives voltage 1 and (c, ¢) receives
permutation voltage « : (0)(1,2). The lifted digraph Cs contains no multiple arcs
and it has only one loop, namely (co,co). Further, Cs is J-regular and strongly
connected. Denote by CJ a copy of Cs with vertices {aJ blj .o, b(0— 3)1, f, dZ, 0<
i < 2}. Take 2k copies 05,05,...,02’“ 1 remove from these copies the loops
(¢,c3),0 < j < 2k—1, replace them by (c3, ¢}, . .., c¢2¥~1)1, and denote the resulting
digraph by Cs x, see Figure 2 for the case 6 = 5. Then Cs is simple and strongly
connected J-regular digraph. In the following we prove 7;(Cs ;) = 6k and v,(Cj ) =
Tk.

Since Csy is 6 regular digraph on 2k - 30 vertices, we have v;(Csx) > 6k. As
T = U% 1{a0, al,al} is a total dominating set of size 6k, we have Y:(Cs i) = 6k.

Now consider Cy . In the following table we have for every vertex the list of its

neighbours in Cy

al cal_ 017,027 ... b(0-3)),d!, d?

39 g0 Pg—1

b1l cal 027 630, ... b(0—3)

z’ 29 g Yi—10

b27 :al, ¢l dl b1d b1 b30 b4l b(6—3)

’l’ 17 ) (2

bl ol el dl b1l 027 b(1-1)2 b(I—1)_,, b(14+1)], b(142)7, ..., b(6—3)]

1?7

1.cl,dl b1],b2] ...,b(5—4)4’ b(6—4)]_,

)-27 17 )
c :ag,bﬂ b2!,...,b(6=3)],b(6-3)]_,, chy
d ial_j el el 01620, b(6-3)],

1’217

Analogously as in the proof of Theorem 1, the bottom indices are always modulo
3, the upper indices are modulo 2k, and ¢}, ) is A Nifi=0,itis ¢ ifi = 1 and it
is ¢l if i = 2.

Denote by S a total dominating set in Cj, and denote Si=8nV(C). If

! € Sit1 then since ¢! has only § — 1 neighbours in V(C’]H) and since only
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¢3! can be dominated from outside S9!, we have |S7+!| > 4. Now suppose that

At ¢ Sl We prove |S7| > 4.

Since ¢}t ¢ S9+1, all vertices of V(Cg ) are dominated by S7. By contradiction,
suppose that |S7| = 3 and denote by z, y and z the three vertices of S7. Denote
by M the multiset consisting of N(z), N(y) and N(z) in Cy,. Then M contains
every vertex of V(C’J ) exactly once. Therefore S7 does not contain two a’’s as then
M would contain 4 times d’, S7 does not contain two bl?’s (due to four b(i—1)”’s if
I > 1 and four d’’s if | = 1); S7 does not contain two ’s (due to four b(6—3)7’s);
and S7 does not contain two d’’s (due to four & s). Now suppose that we have in
S7 one bl? and one bt? for | < t. Distinguish two cases:

Case 1: | > 1. In N(bf?) there is missing exactly one of b’s, namely bf?. Since
b(1—1)? is twice in N(bl?), in the multiset consisting of N (blY) and N (bt’) we have
three b(I—1)7’s (recall that ¢ > [). That means that the third element of S7 is
b(1—1)?. Now if I = 2 then there are four d’’s in M, a contradiction. On the other
hand, if I > 2 then there are four b(I—2)?’s in M, a contradiction.

Case 2: | = 1. Then the multiset consisting of N(b17) and N (bt” ) contains
three d’’s, which means that the third element of S7 is either ¢/ or &/. If S9 =
{b17,bt7, dj} then we have four ¢’s in M, a contradiction. Hence, suppose that
S3 = {b1?,b¢?, ?}. Since M contains four b(6—3)?’s if ¢ # 6—3, we have t = §—3.
Since M contains four b(6—4)?’s if 1 < §—4, we have § = 5. Thus, §—3 = 2 and
Si = {blg, b2J,¢l} for some 4, r and s. Since dz, dz_1 € N(blg) and dJ € N(b27), we
have r = i + 1 (recall that the arithmetics in bottom indices is considered modulo
3). Since b2! € N(blj) and b29, 627, € N(c,), we have s = i + 2. But then
S7 = {b1,b2],,cl,,} and ¢!, ¢ M, a contradiction.

Thus, we have at most one of b’s in $7. If S/ contains ¢ and d’, then since
neither N(c¢?) nor N(d?) contain d’s, there are at most two d’’s in M. Hence, S7
contains a?, bl for some I and either ¢/ or d/. However, if S¥ = {a?,bl?, ¢’} then
M contains only two ¢’s, while if ¥ = {a,bl?, d’} then M contains only two bl’s
Thus, we proved that [S7| > 4 if Tt ¢ §7+1,

Analogously as in the proof of Theorem 1 we conclude [S7 U S7t1| > 7 and
consequently v¢(Cs) = |S| > 7k. It remains to find a total dominating set of
size Tk in Cy. Set Q7 = {a},al,d}. Then the only vertex of V(C}) which is
not dominated by Q7 is ¢} (while d is dominated “twice”). Therefore RIt! =
{ad™adT 5T, T} is a total dominating set in CJT'. Consequently, S =
Uf:é (Q23 U R23+1) is a total dominating set of size 7k in Cy, so that %(Cy) =
k. O

J

Analogously as Ds i, also Cs j can be obtained from Cj by lifting in Zo.
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