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1. INTRODUCTION AND RESULTS

We say that a graph G is radially-maximal if adding of any edge from its
complement decreases its radius, i.e., if rad(G Ue) < rad(G) for every edge e
from G. A graph is selfcentric if its radius equals its diameter, otherwise it is
non-selfcentric.

Obviously, for every r there is a radially-maximal graph of radius r, as can
be shown by complete graphs (in the case » = 1) and even cycles (in the case
r > 1). Both complete graphs and cycles are selfcentric graphs. One may expect
that a graph is radially-maximal if it is either a very dense or a balanced (highly
symmetric) one. Therefore, it is interesting that for » > 3 there are non-selfcentric
radially-maximal graphs of radius r which are planar. Such graphs are neither
symmetric nor dense. In fact, in [1] we have the following conjecture:

Conjecture A. Let G be a non-selfcentric radially-mazimal graph with radius
r > 3 on the minimum number of vertices. Then we have

(a) G has ezxactly 3r — 1 vertices;
(b) G is planar;
(¢) the maximum degree of G is 3 and the minimum degree of G is 1.

Conjecture A deals with graphs on the minimum number of vertices, since from
these one can easily obtain larger ones (see the node-extension in [1]). This conjec-
ture was proved for the case r = 3, see [1], and by a computer also for » = 4 and
5, see [4]. For r = 3, 4 and 5 there are exactly 2, 8 and 22 graphs, respectively,
satisfying Conjecture A. And among the 22 graphs of radius 5 there is one which
is unicyclic, see Figure 1. In this paper we present a characterization of unicyclic
non-selfcentric radially-maximal graphs on the minimum number of vertices. This
characterization is based on the graph depicted in Figure 1.
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Definition. Let z be a vertex of degree 3 in a graph G. By Yg(2) (or by Y (2)
when no confusion is likely) we denote a graph operation consisting of subdividing
all edges incident with z, each by one vertex.

In the graph on Figure 1, let us denote the vertices of degree 3 by 21, 22, 23 and
z4. In the following, we use the same names for the vertices of degree 3, before as
well as after applying the operation Y. This enables us to apply Y several times
to a vertex. Now denote by G (4.c.4) @ graph obtained from the one in Figure 1 by
applying a times Y (z1), b times Y (22), ¢ times Y (z3), and d times Y (z4). Then the
graph in Figure 1 is G(0,0,0,0)- We have

G(0,0,0,0) :

Figure 1

Theorem 1. For every four-tuple of non-negative integers (a,b,c,d), the graph
G (a,b,c,) 18 unicyclic, non-selfcentric and radially-mazimal. Its order is 3r — 1, its
radius is r = a-+b+c+d+5 and its unique cycle has length 2(a+b+c+d)+8 = 2r—2.
Moreover, its central subgraph contains exactly four edges.

The following theorem complements Theorem 1.

Theorem 2. The graphs G, p.c,q) are the only unicyclic, non-selfcentric radially-
mazximal graphs on the minimum number of vertices.

Hence, Conjecture A is true in the class of unicyclic graphs.

Theorems 1 and 2 characterize unicyclic non-selfcentric radially-maximal graphs
on the minimum number of vertices. However, there are unicyclic non-selfcentric
radially-maximal graphs on more than 3r — 1 vertices, where r is the radius. One
of these graphs can be obtained from G 0,0,0)- The graph G 0,0,0) consists of
two parts (each having 7 vertices), which are glued together to form a cycle. If one
takes three such parts instead of two, then the resulting graph is unicyclic, radially-
maximal of radius 7 on 21 vertices. (The fact that this graph is radially-maximal
was verified by a computer.)

We conclude with an estimation of the number of graphs G, p.c 4y of radius r.

Corollary 3. There are ﬁr‘g + O(r?) unicyclic non-selfcentric radially-mazximal

graphs of radius v on 3r — 1 vertices.

2. PROOFS
By u — v geodesic we mean a shortest u — v path in a graph.

Proof of Theorem 1. It is obvious that G, p.c 4) 18 a unicyclic graph with a cycle

C of length 8 4+ 2a + 2b 4 2¢ + 2d. To this cycle, there are attached four paths.

Let us denote their endpoints by uq, ua, uz and uy, so that the path starting at z;

terminates at u;, 1 < ¢ < 4. Then the lengths of paths z; — uy, 22 — us, 23 — us
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and z4 —ug are a +2, b+ 1, c+ 2 and d + 1, respectively. In the following when
we discuss a subpath x; — x5, we always mean a clock-wise subpath of C. Then
the subpaths z; — 29, 20 — 23, 23 — 24 and 24 — 27 have lengths a +b+ 2, b+ c+ 2,
c+d+ 2 and a + d + 2, respectively, see Figure 2.

Figure 2

Let us distinguish eight vertices of G (4 p.c.4)- BY vi,c (v5,a) We denote a vertex of
C, which is at distance a + b+ ¢+ d + 5 from u;, and such that when reaching z;,
the u; — v; o (u; — v;,4) geodesic continues clockwise (anti-clockwise), see Figure 3.
Since the length of C'is 2(a + b + ¢ + d) + 8, the subpath v; . — v1 4 has length

2@+b+c+d)+8+2(a+2)—2(a+b+c+d+5)=2a+2.

Analogously, the subpaths vy . — v2.4, V3, — V3,4 and vs . — v4, have lengths 2b,
2¢ + 2 and 2d, respectively, see Figure 3. Hence, if b = 0 then vy, = v2, and if
d = 0 then vy . = v44.

The vertices v1 , and vy . are adjacent, since if we sum the lengths of subpaths
V1 — 21, 21 — 22 and 2y —vg . we obtain [(a+b+c+d+5) —(a+2)]+ (a+b+
2)+[(a+b+c+d+5)—(b+1)]=2(a+b+c+d)+8+1. This implies that vy . is
on a shortest vy o — u; path and vy 4 is on a shortest us — vy . path. Analogously,
in a clockwise rotation on C' we have the edges vy qV3 ¢, V3,qV4,c and vy 401 c, see
Figure 3. We remark that z; is not necessarily between vs . and v3 , on C. It can
happen that z; is between vy . and vy , or between vs . and v4,. For this reason
z1, %2, 23 and z4 are not depicted in Figure 3.

Every interior vertex of the subpath v; . — vy, has distance from wu; greater
than a + b + ¢ + d + 5. Also, every interior vertex of the subpath vy, — v1.
has distance from u; less than a + b + ¢+ d + 5. When analogous considerations
are applied for ws, us and w4, one can see that vi¢, vi4, ..., Vs, Vs, are the
only central vertices of G, 4)- Since the length of subpath v; . — v; 4 is even,
1 <4 < 4, the central subgraph of G4 4 contains exactly four edges, namely
V1,aV2,c, V2,4V3,cy U3,q4V4,c and v4 41 .. Moreover, by our previous analysis, both
v; ¢ and v; , have a unique vertex at distance a + b+ c+ d + 5, namely u;. As a
consequence, the radius of G(qp,c,q) I8 7 = a+b+c+d+ 5. Its number of vertices
isl4+3(a+b+c+d)=3@+b+c+d+5)—1=3r—1.
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Figure 3

Since any interior vertex of the subpath v; .—v1 o (the length of which is 2a+2 >
2) has distance from u; greater than a + b+ c+ d + 5, the graph G, 4 ¢,q4) is non-
selfcentric. Thus, it remains to prove that it is radially-maximal. We have to show
that the radius of G4 c,q) decreases after adding of any edge e = x1x2 from the
complement. We proceed by way of contradiction. Suppose that adding of e does
not decrease the radius. We distinguish three cases with several subcases each.

Case (1) Suppose that both endvertices of e are on C.

(1a) Suppose that both z; and z are on the subpath z; — 25, see Figure 4.

If 5 is on the subpath 23 —v3 ., then adding of e shortens the v3 . —u3 distance,
and hence the radius. Analogously, if z; is on the subpath vy 5 — 22, then adding of
e shortens the vy , — uo distance. Therefore, we can assume that the edge va 4v3 ¢
is on the subpath z; — z2. Let us denote the lengths of subpaths 1 — v2 , and
v3,c — &2 by t1 and t9, respectively. Then for the very same reason as above we can
assume that

d(’l)z,a,.’liz) =1 + tg S d(’l)z,a, .’171) + 1 S tl + 1 and
d(v3,c, 1) =1 +t1 < d(v3,c,72) +1 <ty + 1,
which gives t; = 5. However, analogously we can obtain that the edge v4 4v1  is

on the subpath 1 — x5, and in fact that d(x1,v4,q) = d(v1,¢, 22). Thus, vi . = v3 .
and v o = V24, a contradiction.

Figure 4

(1b) Suppose that z; is on the subpath z; — 29 and x5 is on the subpath 2z — z3.

Analogously as in the previous case the edge v3 4v4 . must be on the subpath

x1 — 2. And analogously as above we obtain that d(x1,vs4) = d(v4c, ). Similar

considerations for the edge v4 4v1 ¢ yield v o = v3 4 and vy o = V4, a contradiction.
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(1c) Suppose that z; is on the subpath z; — z5 and z3 is on the subpath z3 — 24,
see Figure 5.

Analogously as above one can see that the edge vy 4v3  is on the subpath zo — ;.
Moreover, if the lengths of subpaths v3 .—z1 and 9 —v, , are t; and ¢9, respectively,
then ¢; = ¢5. In a similar way one can see that vs qv1 . is on the subpath z; — z3,
and if the lengths of subpaths vi . — z2 and 1 — v4, are l; and I, respectively,
then [, = l,. Now consider the position of v; , and vy .. If v1 4 is on the subpath
v1,c — T2 then (as l; = Iy and vy . # v1,,) adding of e decreases the distance from
v1,q to u1. Therefore, v; , is on the subpath z3 — v2 ,. But now vy . cannot be on
the subpath vq . — 2, so that va . = v, and b = 0 (see Figure 3). Analogously
can be shown that v4 . = v4, and d = 0. Now the lengths of subpaths v4, — v c
and vy o — V4 are Iy + 1y and t1 + lo, respectively. As l; +¢2 = t1 4 l2 and as the
subpaths 23 — vy . and vy 4 — 22 have the same lengths, we have 2o = v4 4 = v4 . and
analogously z4 = vy o = v2 .. Since the subpaths 2 — z4 and z4 — 23 have lengths
2¢+4 and 2a+4, respectively (see Figure 2), we have a = c¢. Thus, all the subpaths
21 — 29, 29 — 23, 23 — 24 and z4 — 23 have the same length a + 2. Since t; = t3 and
l1 =I5, we have either x5 = z3 and 2,27 is an edge of C, or 1 = z; and z3x2 is an
edge of C. In the first case adding of e shortens the distance from v3 , to uz, while
in the second one it shortens the distance from vy 4 to uj.

Figure 5

Before proceeding with the other cases, we consider the position of z; with
respect to the vertices vy, V1,4, --., Vs,c and vy o. We have mentioned that z; is
not necessarily on the subpath vs . —v3 ,. Obviously, z; cannot be on the subpath
V1, — V1,q. Thus, 21 is on the subpath vy . — v 4 if the length of vy , — v1 . is not
greater than the length of the subpath z; — vy, see Figure 3. This gives

1+ (2c+2)+1+2d+1<(a+b+c+d+5)—(a+2), ie,d+c+2<b.

Analogously, z; is on the subpath vy . —v4 , if b4+c+2 < d. Similar equations hold
for the position of vertex z3. However, with z5 and z4 it is slightly different. The
vertex zp is on the subpath vy, —v1, if c+d+ 1 < a, and it is on the subpath
V3. — U3, ifa+d+1<c.

Case (2) Suppose that z is a vertex of C and x5 is on z; — uq path. (The case
when x5 is on z3 — uz path is symmetric and the cases when z5 is on z9 — ug or
z4 — uyq path are very similar.)

Without loss of generality we may assume that z; is on the subpath z3 — z;.
Since adding of e does not decrease the radius, z; is inside the subpath vy o — v1 4.
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Moreover, if we sum the lengths of those paths from u; to v; . and from v, , to uy,
which contain e, we obtain

(2a+2)+2+2(a+1)>2(a+b+c+d)+10, sothat a > b+c+d+ 2.

(We remark that in the case when s is on z3 —us path, we obtain b > a+c+d+4.)
This means that a > b+c¢+ 1 and a > ¢+ d+ 1, so that zo and z4 (and so also
z3) are on the subpath vy . — v1 o, see Figure 6. However, the position of 2; is not
determined yet. Therefore we have three subcases.

Figure 6

(2a) Suppose that z; is on the subpath vz . — v3 4, see Figure 6 a.

Denote by t1 and t5 the lengths of the subpaths z4—v1 , and z; —v3 4, respectively.
We evaluate t; and t9. Since d(us,vs.) =7 =a+b+c+d+5 and also d(us, v3 ) =
(c+2)+(c+d+2)+t;1 +1+2b+1, we have t; = a—b—c— 1. Since d(u1,v1,c) =
r=a+b+c+d+5 and also d(ug,v1) = (a+2)+t2 +1+2d+ 1, we have
t2 =b+c—d+1.

Now if we sum the lengths of those paths from v; , to u; and from vz, to us,
which contain e, we obtain

L1+ (c+d+2)+(c+2)]+2+[ta+ (a+2)]>2r=2(a+ b+ c+d)+ 10,

which gives 0 > 2b+ 2d + 2, a contradiction. (In the case when z is on z3 — us9
path, the constant 2 is replaced by 6.)

Since the proofs of all the other subcases are analogous to (2a), in the next we
abbreviate the reasoning. By d®(y1,y2) we denote the length of a shortest y; — yo
path containing e.

(2b) Suppose that z; is on the subpath v4 . — v4 4, see Figure 6 b.

Then t3 = d(vae,21) =d—b—c—2as d(viq,u1) =7 =1+2b+14+ (2¢+2) +
1+1t3+ (a+2). But 2r < d°(vi,q,u1) + d%(v3,4,u3) = [t1 + (c+d+2) + (c+2)] + 2+
[1+4t3+ (a+2)] gives 0 > 4b + 2¢ + 4, a contradiction.

(2c) Suppose that z; is on the subpath vy . — vs 4, see Figure 6 c.

Then t4 = d(z1,v2,0) =b—c—d—2 as d(u1,v1,c) =7 = (a+2) +tsa+ 1+ (2¢+2) +
14 2d+ 1. But 2r < d®(vyq,u1) + d®(us, v3,c) = [t1 + (c+d+2) + (c+2)]+ 2+ [1 +
ts + (a+2)] gives 0 > 2b + 2¢ + 2d + 4, a contradiction.

(In cases (2b) and (2c) when x5 is on z3 — us path, the constant 4 is replaced by
6.)

Case (3) Suppose that e connects vertices outside C. Since the radius trivially
decreases if both ;1 and x5 are on one path attached to C, there are just two cases
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to consider. First we discuss the case when 1 is on z; —u; path and x9 is on z4 —ug4
path. Suppose that d(z1,21) > d(z4,22). (The case d(z1,21) < d(z4,22) can be
solved similarly.) Since adding of e does not decrease the radius, z4 must lie inside
the subpath vy o — v1 4. Now 2r < d®(uq,v1,¢) +d°(V14,u1) < (2a+2) + 24 2(a+2)
gives a > b+c+d+1. (Inthe case when d(z1,21) < d(z4,x2) we have d > a+b+c+3.)
Consequently, a > b+ c+ 1 and a > ¢+ d + 1, so that z and z4 (and so also z3)
are on the subpath vy . — v1 4, see Figure 7. Analogously as above, we have three
cases. (Distances 1, ta, t3 and ¢4 are defined in Case (2).)

(3a) Suppose that z; is on the subpath vz . — v3 4, see Figure 7 a.

Then 2r < d®(vy,q,u1) + d®(ug, va,c) = [t1 + (d+1)] + 2+ [1 + t2 + (a+2)] gives
0 > 2b+ 2c + 2d + 4, a contradiction.

Figure 7

(3b) Suppose that z; is on the subpath vs . — v4 4, see Figure 7 b.

Then 2r < d°(vigq,u1) + d°(ug,va,.c) = [t1 + (d+1)] + 2 + [tz + (a+2)] gives
0 > 4b+ 4c + 8, a contradiction.

(3c) Suppose that z; is on the subpath vy . — vg 4, see Figure 7 c.

Then 27 < d°(v1,q, u1)+d% (g, va,c) = [t1+(d+1)]+2+[1+(2¢+2)+14+t4+(a+2)]
gives 0 > 2b 4 2c + 2d + 4, a contradiction.

(In cases (3a), (3b) and (3c) if we have d(z1,z1) < d(z4,z2), then the constants
4, 8 and 4 are replaced by 6, 8 and 6, respectively.)

It remains to consider the case when x4 is on z; —u; path and x5 is on z3—ug path.
(The case when z; is on z9 — us path and zs is on z4 — u4 path is similar.) Assume
that d(z1,x1) > d(z3,x3). Since adding of e does not decrease the radius, z3 is on
the subpath v1 . —v1,4. Then 2r < d®(u1, v1,c) +d°(v1,4,u1) = (204+2) +2+2(a+2)
gives a > b+ c+ d + 1. Hence, both 22 and 24 are on the subpath vy . — vy 4. But
now this case can be solved in the very same way as Case (2). O

In the proof of Theorem 2 we use several former results. By G — z we denote
a graph obtained from G by deleting the vertex z and all edges incident with this
vertex. Let S be a set of vertices of G (generally S # V(G)). By (S) we denote a
subgraph of G induced by the vertices in S. In [1] we have

Theorem B. Let G be a radially-mazximal graph of radius r > 3 containing a cut-
vertexr z. Then the graph G — z has exactly two components, say A’ and B'. Let
A= (V(A)U{z}) and B = (V(B') U {z}), and let the eccentricities of z satisfy
ea(z) > ep(z). Thenea(z) > r, eg(z) <r —2, and B is a diametrically-mazimal
graph with diameter eg(z).

Recall that a graph is diametrically-maximal if its diameter decreases after
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adding of any edge from its complement. These graphs have been characterized
by Ore in [5]:

Theorem C. A graph with diameter d is diametrically-mazimal if and only if it has
form K1+ Ky, + K, +-- -+ Kq,_, + K1 for some positive integers ai,az,...,aq4-1.

Here K,, denotes a complete graph on n vertices, and G1 + G5 + - - - + G arises
from G1 UG U ---U G; by adding edges uv, with v € V(G;) and v € V(Gj41),
1< <I-1.

A cycle C' in G is geodesic, if for any two vertices of C their distance on C
equals their distance in G. In [2] Haviar, Hrnéiar and Monoszové proved:

Theorem D. Let G be a graph with radius r, diameter d < 2r — 2, on at most
3r — 2 vertices. Then G contains a geodesic cycle of length 2r or 2r + 1.

In [3] we have:

Lemma E. Let G be a radially-maximal graph of radius r and diameter d. Then
d<2r-—2.

Theorem D and Lemma E are used to prove the (a) part of Conjecture A for
unicyclic graphs.

Proof of Theorem 2. Let G be a unicyclic non-selfcentric radially-maximal graph of
radius 7 on the minimum number of veritices. Let C' be its unique cycle. Since G is
non-selfcentric, it contains at least one vertex outside C'. Therefore, G contains cut-
vertices. Denote by 21, 2a, ..., 2 all cut-vertices lying on C'. (We remark that in all
this proof, when considering subpaths, then we always mean clock-wise subpaths of
C. Therefore, z1, 22, ..., 2 determine a clockwise rotation of C.) By Theorem B,
G — z; has exactly two components, say A, and B;. Denote A; = (V(4;) U z;),
B; = (V(B]) U z;) and assume that ea,(z;) > ep,(z;). By Theorem B, B; is a
diametrically-maximal graph. Since G has the minimum number of vertices (and
is unicyclic), B; is a path attached to C by its endvertex. Hence, G consists of a
cycle C and a collection of paths attached by their endpoints to different vertices
of C.

Denote by c the length of C' and suppose that ¢ > 2r. Let 21 and z2 be vertices
adjacent to z1, such that z; € V(C) and z5 ¢ V(C). Since adding of z1z5 to G
does not decrease the distances between the vertices of C, every vertex v of C has
a partner u on C such that dgugz,z, (u,v) > 7. Since G is unicyclic, r(GUz1z2) =7
and G is not radially-maximal, a contradiction. Thus, ¢ < 2r—1. By Lemma E and
Theorem D, G has at least 3r — 1 vertices. This (together with Theorem 1) implies
that Conjecture A is true in the class of unicyclic graphs. Moreover as ¢ < 2r — 1,
every vertex of C has an eccentric vertex outside C'. By Theorem B, central vertices
of G must be on C.

Now we introduce notation analogous to the one used in the proof of Theorem 1.
At every vertex z;, there is attached a path to C. Denote by u; the other endvertex
of this path and by ; its length. Moreover, denote by v; . and v; , two vertices of C.
Both these vertices are at distance r from u;, but the u; —v; . geodesic contains the
subpath z; —v; . and the u; — v; , geodesic contains the subpath v; , — z;. Observe
that our definition is correct. The reason is that if 2r > 2I; 4 ¢, then every vertex of
C has distance smaller than r to u;. Therefore adding of xyz5 to G, where x; and
x9 are neighbours of z;, z; € V(C) and x5 ¢ V(C), does not decrease the radius, a
contradiction. Thus, in the worst case, when 2r = 2[; + ¢, we have v; . = v; 4.
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Now suppose that there are 7 and j such that v; . (the case of v; , is symmetric)
is a vertex of the subpath v; . — v; .. Denote by x; a clockwise neighbour of z; on
C and denote by z2 a neighbour of z; outside C. The edge x1z2 connects vertices
at distance 2 in G. Therefore, if the radius decreases after adding of z1x5, then it
decreases by one and the central vertices of G U z125 must be central in G. We
know that every vertex of C' has an eccentric vertex outside C. This eccentric
vertex can be only u; for some ¢t. But adding of xy22 can decrease only distances
to uj. And there is only one vertex of C' whose distance to u; is r in G and whose
distance to u; is smaller than r in G U 12, namely v; .. However, since v; is on
the subpath v; . — v; 4, We have dguz, e, (Vj,c,4;) > 7. This implies that G is not
a radially-maximal graph, a contradiction. Therefore, the vertices v; . and v; , are
on C in (clockwise) order vy ¢, v14, U2,c; V2,45 --- » Uk,c, Uk,a, and although it can
happen that v; . = v;, for some i, we always have v; o # viy1 .. (By vgy1,. we
mean vy c.)

Now suppose that there is ¢ such that v; o and v;41 . are not adjacent. Then
there is a vertex, say v, on the subpath v; , — v;41,.. Since v is outside all the
subpaths v; . — v 4, its distance to all vertices u;, 1 < ¢ < k, is smaller than r, a
contradiction. Thus, v; , and v;41 . are adjacent for all ¢ =1,2,..., k.

Since the vertex eccentric to z; must lie outside C' and since dg(z1,u1) <7 — 2
by Theorem B, we have k > 2.

Now we derive an identity which plays a key role in this proof. For every i,
1 <14 < k, the sum of distances from v; 4 to u;, from u;11 to v;11 . and the length
of subpath z; —z; 1 is 2r+d(z;, z;+1) as well as c+1;+1;11+1. (Observe that here we
use k£ > 2.) Summing these equalities for all i we get k-2r+c¢ = k-c+2 Zle L+ k,
i.e.,

k
k(2r—1) = (k=1)c+2) L (1)

By (1), k must be even. Having k even, ¢ must be also even by (1). Suppose that
k = 2. Then since v 4v2, and vy 4v1,. are edges of C, the vertices z; and 2y are
opposite on C (i.e., their distance in G is 1¢). Denote by z1 and x5 the neighbours
of z; on C. Then adding of x1z2 can decrease the distances to neither u; nor us,
so that G is not radially-maximal, a contradiction. Hence, k > 4.

For the number of vertices of G we have |V (G)| = ¢ + Zle l;. By (1), c+

¢ 1 = L[k@2r — 1) — (k — 3)d], so that
V(G| = k(2= 1) - (k = 3)c] o)

If ¢ < 2r — 3, then (2) gives |V(G)| > 1(6r + 2k — 9), and since k > 4, we have
[V(G)| > 3r — 1. This contradicts the fact that |V/(G)| = 3r — 1. Since ¢ is even
and we already proved that ¢ < 2r, we have ¢ = 2r — 2. Substituting ¢ = 2r — 2
into (2) we get |V(G)| = 3r —1 = $[k(2r — 1) — (k — 3)(2r — 2)], which gives k = 4.

To conclude the proof it suffices to show that the subpath z; — z; 1 has length
li+1l;+1—1 and that [; +1;41 > 3,1 < ¢ < 4. However, we already derived that the
length of the subpath z; — z;11 is ¢+ 1; + 1;41 + 1 — 2r (see the identities producing
(1)) And ¢+ lz + li—}—l +1—-2r = ll + li+1 — 1.

Finally, suppose that I; + l;11 < 2 for some ¢. By definition, [; > 1 for every j,
so that l; = l;41 = 1 and z;2;41, z;u; and z;1q1u;+1 are edges of G. Now add to
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G the edge u;u;4+1. This edge cannot decrease distances between any vertex of C
and u;, 1 <t < 4. Since G is a radially-maximal graph, the center of G U u;u;41
is outside C. But as ¢ = 2r — 2, every vertex outside C has a partner on C at
distance at least r in both G and G U u;u;41. This contradicts the fact that G is
radially-maximal. [

Proof of Corollary 3. By Theorems 1 and 2, unicyclic non-selfcentric radially-
maximal graphs of radius r on 3r — 1 vertices are characterized by the lengths
of their four paths attached to the cycle. Since 2r — 2 vertices are used for the
cycle, for the paths we have r + 1 vertices. A set of r + 1 elements can be decom-
posed into 4 parts in (T"§4) ways. Only a few of the decompositions have two parts
of the same size. (More precisely, their number is at most O(r?).) Analogously,
only a few of them contain a part of size at most 1. This means that there are
%r3 + O(r?) decompositions of r + 1 elements into 4 sets of different sizes, all with
at least 2 elements. However, every one such decomposition has 4! = 24 different re-
orderings, which yield 3 different graphs, namely G4 ¢ 5,4, G(a,b,c,d) a0d G(4,0,d,c)-
Thus, the number of graphs satisfying Theorems 1 and 2 is [373 + O(r?)], ie.,
& +0(?). O
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