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Abstract

An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices such
that both (v, u, x) and (u, x, y) are paths of length two. The 3-arc graph of a given graph
G, X(G), is defined to have vertices the arcs of G. Two arcs uv, xy are adjacent in X(G)
if and only if (v, u, x, y) is a 3-arc of G. This notion was introduced in recent studies of
arc-transitive graphs. In this paper we study diameter and connectivity of 3-arc graphs. In
particular, we obtain sharp bounds for the diameter and connectivity of X(G) in terms of
the corresponding invariant of G.
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1 Introduction

In this paper we study a new graph operator, namely the 3-arc graph construction which was first

introduced [11, 16] in studying those arc-transitive graphs whose automorphism group contains a

subgroup acting imprimitively on the vertex set. (A graph is arc-transitive if its automorphism

group is transitive on the set of oriented edges.) This construction has been proved to be

very useful in classifying or characterizing [11] certain families of arc-transitive graphs. For

example, the cross-ratio graphs in [5] can be defined [15] equivalently as 3-arc graphs of (Γ, 2)-

arc transitive complete graphs, where Γ is a 3-transitive subgroup of PΓL(2, q), and the main

result in [17] relies heavily on this construction as well. In two recent papers [7, 12] the 3-arc

graph construction has also been used to construct some families of arc-transitive graphs. In

this paper we will investigate this construction from a pure combinatorial point of view without

involving arc-transitivity with focus on diameter and connectivity.

Let G be a graph. An arc of G is an ordered pair of adjacent vertices. For adjacent vertices

u, v of G, we use uv to denote the arc from u to v, vu (6= uv) the arc from v to u, and {u, v}

the edge between u and v. A 3-arc of G is a 4-tuple (v, u, x, y) of vertices of G such that both
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v, u, x and u, x, y are paths of length two. It is allowed to have v = y, and in this case the 3-arc

(v, u, x, y) becomes the oriented cycle (v, u, x, v) of length three. A set ∆ of 3-arcs of G is said

to be self-paired if (v, u, x, y) ∈ ∆ implies (y, x, u, v) ∈ ∆.

Definition 1 Let G be a graph and ∆ a self-paired set of 3-arcs of G. The 3-arc graph [11, 16]

of G with respect to ∆, X(G,∆), is defined to have vertex set the set of arcs of G such that two

vertices corresponding to two arcs uv, xy are adjacent if and only if (v, u, x, y) ∈ ∆. The edge

of X(G,∆) between uv and xy will be denoted by {uv, xy}.

In the case when ∆ is the set of all 3-arcs of G, the corresponding graph X(G,∆) is called

the 3-arc graph of G, denoted by X(G).

Since ∆ is self-paired, X(G,∆) is an undirected graph. In particular, X(G) is an undirected

graph with 2 |E(G)| vertices and
∑

{u,x}∈E(G)(degG(u) − 1)(degG(x) − 1) edges.

We can view X as a graph operator which outputs the 3-arc graph X(G) for any given

G. This operator is closely related to the well known line graph operator L. In fact, we can

obtain X(G) from the line graph L(G) of G by the following operations. First, we split each

vertex {u, v} of L(G) (that is, an edge of G) into two vertices, namely uv and vu. Then, for

any two vertices {u, v}, {x, y} of L(G) which are distance two apart in L(G), say, u and x are

adjacent in G, we join uv and xy by an edge. The graph obtained this way is isomorphic to

X(G). On the other hand, define P{u, v} = {uv, vu} for each vertex {u, v} of L(G), and let

P = {P{u, v} : {u, v} ∈ E(G)}. Then P is a partition of the vertex set of X(G) into parts of

size two, and the quotient graph of X(G) with respect to P is isomorphic to the graph obtained

from the square of L(G) by deleting the edges of L(G). (The square of a graph is defined to

have the same vertex set in which two vertices are adjacent if and only if their distance in the

original graph is one or two.) Obviously, there is a bijection between the edges of X(G) and

those of the 2-path graph P2(G), which is defined to have vertices the paths of length two in G

such that two vertices are adjacent if and only if the union of the corresponding paths is a path

or a cycle of length three, see [4]. Since P2(G) is a spanning subgraph of the second iterated

line graph L2(G) = L(L(G)) (see e.g. [8]), we have yet another relation between 3-arc graphs

and line graphs.

There is an extensive literature on line graphs. See for example [6, 14] for surveys and [13, 9]

for diameter and connectivity of iterated line graphs respectively. Some results on diameter of

path graphs can be found in [2], while the connectivity of P2-path graphs is studied e.g. in [10]

and [1]. In contrast, we know little about the 3-arc graph operator X, despite its usefulness in

algebraic graph theory. In this paper we will focus on diameter and connectivity of 3-arc graphs.

Obviously, adding or deleting isolated vertices does not affect X(G). Moreover, if G contains

two connected components other than isolated vertices, then X(G) is a disconnected graph; if

G contains a degree-one vertex, say, u, which is adjacent to v, then uv is an isolated vertex of

X(G). Therefore, we will consider only connected graphs G with minimum degree δ(G) ≥ 2.

We use degG(u) to denote the degree of a vertex u in G, dG(u, v) the distance in G between

u and v, and (u, . . . , v) a path connecting u and v. The reader is referred to [3] for terminology

undefined in the paper.
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2 Results

Unlike the line graph L(G), the 3-arc graph X(G) is not necessarily connected even for connected

G. Our first result, Theorem 2 below, tells us precisely when X(G) is connected. Define G÷

to be the graph obtained from G by replacing each vertex u of degree two by a pair u′, u′′ of

nonadjacent vertices, each joined to exactly one neighbour of u. Note that u′, u′′ are degree-one

vertices of G÷. Thus, G÷ contains no degree-two vertex, and it has twice as many degree-one

vertices as is the number of degree-two vertices in G. In particular, if δ(G) ≥ 3, then G÷ = G.

Theorem 2 Let G be a connected graph with δ(G) ≥ 2. Then X(G) is connected if and only if

G÷ is connected. In particular, if δ(G) ≥ 3, then X(G) is connected.

Next we consider the connectivity κ. X(G) can be disconnected when 1 ≤ κ(G) ≤ 2. In the

case κ(G) ≥ 3, we can bound the connectivity of X(G) in terms of the connectivity of G.

Theorem 3 Let G be a graph with connectivity κ(G) ≥ 3. Then

κ(X(G)) ≥ (κ(G) − 1)2.

Moreover, this bound is best possible.

In fact, for any maximally connected k-regular graph G (that is, κ(G) = k), where k ≥ 3,

X(G) is a (k − 1)2-regular graph and thus cannot be more than (k − 1)2-connected. Hence

κ(X(G)) = (κ(G) − 1)2 and the bound in Theorem 3 is attained by G.

Denote by diam the diameter of a graph. We will prove the following results.

Theorem 4 Let G be a connected graph with δ(G) ≥ 3. Then

diam(G) ≤ diam(X(G)) ≤ diam(G) + 2

with both bounds attainable. In addition, the lower bound holds as long as G has at least two

vertices.

Theorem 5 Let r and s be arbitrary integers such that 4 ≤ r ≤ s − 4 and s ≥ 10. Then there

exists a graph Gr,s such that diam(Gr,s) = r and diam(X(Gr,s)) = s.

By Theorem 4 any graph Gr,s satisfying the conditions of Theorem 5 must satisfy δ(Gr,s) = 2,

because otherwise we would have r ≤ s ≤ r + 2 which violates r ≤ s− 4. Theorem 5 shows that

diam(X(G)) can be arbitrarily large when diam(G) ≥ 4 (and δ(G) = 2). This is not the case if

diam(G) ≤ 3 as indicated by the following result.

Theorem 6 Let G be a connected graph such that X(G) is connected. Then the following hold:

(a) if diam(G) = 1, then diam(X(G)) = 2;

(b) if diam(G) = 2, then diam(X(G)) ≤ 7;

(c) if diam(G) = 3, then diam(X(G)) ≤ 14.
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Let G be the graph obtained from a 6-cycle (u0, u1, u2, u3, u4, u5, u0) by adding two chords

{u0, u2} and {u2, u4}. Then diam(G) = 2 and diam(X(G)) = 6 (with the diameter achieved by

dX(G)(u0u2, u4u2)). This suggests that the bound (b) in Theorem 6 may be improved slightly.

As regards to (c), we believe that it is far from being optimal.

We will prove Theorems 2 and 3 in Section 4, and Theorems 4, 5 and 6 in Section 5, after a

preliminary result is given in Section 3.

3 Paths in 3-arc graphs

The trace of an edge {u0v0, u1v1} of X(G) is defined to be the edge {u0, u1} of G. It is clear

that, for two adjacent edges of X(G), say {u0v0, u1v1} and {u1v1, u2v2}, the traces {u0, u1}

and {u1, u2} are either adjacent in G (if u0 6= u2) or identical (if u0 = u2). In the former case

we have degG(u1) ≥ 3 as u0, u2 and v1 are distinct neighbours of u1, while in the latter case

we have degG(u1) ≥ 2 as u0 6= v1. In general, if P = (u0v0, u1v1, u1v1, . . . , ukvk) is a path or

walk in X(G), then the traces of {u0v0, u1v1}, {u1v1, u2v2}, . . . , {uk−1vk−1, ukvk} form a walk

(u0, u1, . . . , uk) in G, which we call the trace of P .

The following lemma regarding the trace of a shortest path will be used in the next two

sections. Denote by G× the subgraph of a graph G induced by vertices of degree at least three.

Lemma 7 Let G be a connected graph with δ(G) ≥ 2 and let P = (u0v0, u1v1, . . . , ukvk) be a

shortest path in X(G).

(a) If k ≥ 2, then (u1, u2, . . . , uk−1) is either a path or a cycle in G.

(b) If k ≥ 4, then u2, u3, . . . , uk−2 all have degrees at least three and (u2, u3, . . . , uk−2) is a

shortest path in G×.

Proof First we show that in the trace of P no edge can appear twice except possibly {u0, u1} =

{u1, u2} or {uk−2, uk−1} = {uk−1, uk}. By way of contradiction suppose that {ui, ui+1} =

{uj , uj+1} for some i < j with (i, j) 6= (0, 1), (k−2, k−1). We show that there exists a path in

X(G) between u0v0 and ukvk which is shorter than P . In fact, if ui = uj and ui+1 = uj+1, then

ui 6= vj+1 and vi 6= uj+1, and hence P can be shortened to (u0v0, . . . , uivi, uj+1vj+1, uj+2vj+2,

. . . , ukvk). So we assume ui = uj+1 and ui+1 = uj in the following. If i + 1 < j, then P

can be shortened to (u0v0, . . . , uivi, ui+1vi+1, uj+1vj+1, . . . , ukvk). Hence we may further assume

i + 1 = j so that ui = ui+2. Since (i, j) 6= (0, 1), (k−2, k−1), we have 2 ≤ i+1 = j ≤ k−2.

If ui−1 = ui+1, then ui−1 = uj and ui = uj+1, but this case was already excluded. The case

uj = uj+2 can be treated similarly. If ui−1 = uj+2, then {ui−1, ui} = {uj+1, uj+2}, and since

ui = uj+1 and (i−1) + 1 < j+1, this case was already solved. Hence we may assume that ui−1,

ui+1 (=uj) and uj+2 are pairwise distinct. However, this implies that P can be shortened to

(u0v0, . . . , ui−1vi−1, uiui+1, uj+2vj+2, . . . , ukvk).

Now we prove (a). Suppose ui = uj for some 1 ≤ i < j ≤ k−1 and suppose that

degG(ui) ≥ 3. Then ui has a neighbour x other than ui−1 and uj+1, and so P can be short-

ened to (u0v0, . . . , ui−1vi−1, uix, uj+1vj+1, . . . , ukvk), a contradiction. Hence we may assume

degG(ui) = 2. As 1 ≤ i < k−1, the trace of P contains ui−1 and ui+1. These two vertices must

be distinct from vi, so that ui−1 = ui+1. Consequently, the edge {ui−1, ui} = {ui, ui+1} appears
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twice on the trace and since i < k−1, by previous part of this proof we have i = 1. Analogously

we can prove j = k−1, which finishes the proof of (a).

In fact, we proved more. We proved that all u2, u3, . . . , uk−2 have degrees at least 3. Hence, it

remains to prove that u2, u3, . . . , uk−2 is a shortest path in G×. Let (z2, z3, . . . , zt−2) be any path

connecting z2 = u2 and zt−2 = uk−2 in G×. Denote z1 = u1 and zt−1 = uk−1. Since the degrees

of z2, z3, . . . , zt−2 are at least three, for every i there is a neighbour wi of zi distinct from zi−1

and zi+1, 2 ≤ i ≤ t−2. But then Q = (u0v0, u1v1, z2w2, z3w3, . . . , zt−2wt−2, uk−1vk−1, ukvk) is a

path in X(G). Hence we obtain (b) by taking for (z2, z3, . . . , zt−2) the shortest path connecting

z2 = u2 and zt−2 = uk−2 in G×. 2

4 Proof of Theorems 2 and 3

In the proof of Theorem 2 we use Lemma 7.

Proof of Theorem 2 Let G be a connected graph with δ(G) ≥ 2. Suppose first that G÷ is

connected. We prove that there is a path between any two distinct vertices u1v1 and u2v2 of

X(G).

Consider the case u1 = u2 first. In this case, if degG(u1) ≥ 3, then there is a neighbour

x 6= v1, v2 of u1. Let y be a neighbour of x other than u1. Then (u1v1, xy, u2v2) is a path of length

two in X(G) connecting u1v1 and u2v2, and we are done. So we may suppose degG(u1) = 2.

Let u′
1 and u′′

1 be the two vertices of G÷ obtained by splitting u1. Since G÷ is connected, there

is a path from u′
1 to u′′

1 in G÷. All internal vertices on this path must have degree at least three

in G. Hence there exists a cycle C in G containing u1 such that all its vertices except u1 have

degree at least three in G. Let W0 = (u1, v2, . . . , v1, u1) be the walk in G starting at u1, then

traversing all edges of C and terminating at u1. That is, we prescribe the direction in which W0

traverses C.

Now suppose u1 6= u2. Since G÷ is connected, there is a path W0 in G starting at u1 and

terminating at u2, such that all internal vertices of W0 have degree at least three. Moreover, if

degG(u1) = 2, we may assume W0 = (u1, w1, . . . , u2), where w1 is the unique neighbour of u1

other than v1; if degG(u2) = 2, we may assume W0 = (u1, . . . , w2, u2), where w2 is the unique

neighbour of u2 other than v2.

In both possibilities above, the internal vertices of W0 have degree at least three. Let W0 =

(u1, w1, . . . , w2, u2). From the choice of W0, the case w1 = v1 occurs only when degG(u1) ≥ 3,

and in this case we extend W0 by adding the prefix (u1, x1, u1), where x1 6= v1 (=w1) is a

neighbour of u1. Analogously, the case w2 = v2 occurs only when degG(u2) ≥ 3, and in this

case we extend W0 by adding the suffix (u2, x2, u2), where x2 6= v2 (=w2) is a neighbour of u2.

Let W be the walk obtained this way in these two cases, and define W = W0 otherwise. In the

following we construct a path P in X(G) connecting u1v1 and u2v2 with trace W .

If W differs from W0 at the beginning, then P starts with (u1v1, x1y1, u1z1, . . .), where y1 is

a neighbour of x1 different from u1, and z1 is a neighbour of u1 different from x1 and v1 (=w1).

If W differs from W0 at the end, then P terminates with (. . . , u2z2, x2y2, u2v2), where y2 is a

neighbour of x2 different from u2, and z2 is a neighbour of u2 different from x2 and v2 (=w2).

Denote W0 = (a0, a1, . . . , ak), where a0 = u1 and ak = u2. In all cases it suffices to construct the

part P0 of P whose trace is W0. Note that the end-vertices of P0 are already defined, namely,
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P0 = (a0b0, . . . , akbk), where a0b0 = u1z1 if a1 = v1 and a0b0 = u1v1 otherwise, and akbk = u2z2

if ak−1 = v2 and akbk = u2v2 otherwise. Since degG(ai) ≥ 3, 0 < i < k, there exists a neighbour

bi of ai in G other than ai−1 and ai+1. Let P0 = (a0b0, a1b1, a2b2, . . . , ak−1bk−1, akbk). Then P0

is a path in X(G) with trace W0. Adding the prefix or suffix to P0 whenever applicable, we

obtain the desired path P connecting u1v1 and u2v2. Up to now we have proved that if G÷ is

connected then so is X(G).

Now suppose that G÷ is a disconnected graph. Then, since G is connected, it contains a

vertex u of degree two such that u′ and u′′ are in different connected components of G÷. Denote

by v1 and v2, respectively, the two neighbours of u in G. Suppose that there is a path in X(G)

connecting uv1 with uv2, and denote by P = (uv1, x1y1, x2y2, . . . , xk−1yk−1, uv2) a shortest one.

Observe that x1 = v2 and xk−1 = v1. In the next we consider the trace of P . Since uv1 and

uv2 are not adjacent in X(G), k ≥ 2. By Lemma 7, all x2, x3, . . . , xk−2 have degrees at least

three. If one of x1 and xk−1 has degree two in G then G has adjacent vertices of degree two

and consequently X(G) is disconnected. Hence, we may assume that x1, x2, . . . , xk−1 is a path

connecting v2 with v1 in G×, so that u′′, x1, x2, . . . , xk−1, u
′ is a path in G÷, a contradiction. 2

Possibly due to the relation explained in the introduction, the paths constructed in the proof

of Theorem 3 are very similar to those constructed for 2-iterated line graphs [9] and 2-path graphs

[10].

Proof of Theorem 3 We will use the following version of Menger’s theorem: A graph G is

k-connected if and only if it has more than k vertices and for each pair of nonadjacent vertices

there exist k internally-vertex-disjoint paths connecting them.

Denote k = κ(G). Let x1y1 and x2y2 be distinct and nonadjacent vertices of X(G). We

prove κ(X(G)) ≥ (k − 1)2 by constructing (k−1)2 internally-vertex-disjoint paths connecting

x1y1 and x2y2 in X(G).

Case 1: Consider the case x1 = x2 first. Since δ(G) ≥ k, x1 has k−2 neighbours which

are distinct from y1 and y2. Denote these neighbours by y3, y4, . . . , yk. Further, for 3 ≤ i ≤ k,

yi has k − 1 neighbours, say, zi,1, zi,2, . . . , zi,k−1, which are distinct from x1. Define Pi,j =

(x1y1, yizi,j, x1y2), 3 ≤ i ≤ k, 1 ≤ j ≤ k−1. These are (k − 2)(k − 1) internally-vertex-disjoint

paths in X(G) connecting x1y1 and x1y2. Since k = κ(G), G− {x1, y3, y4, . . . , yk} is connected.

Let P = (a1, a2, . . . , at−1) be a path in G−{x1, y3, y4, . . . , yk} connecting a1 = y1 and at−1 = y2.

Since δ(G) ≥ k, we may choose k−2 neighbours u3, u4, . . . , uk of a1 other than x1 and a2, and k−2

neighbours v3, v4, . . . , vk of at−1 other than x1 and at−2. Define Pi = (x1y1, y2vi, x1yi, y1ui, x1y2),

3 ≤ i ≤ k. These are internally-vertex-disjoint paths, and none of them contains any internal

vertex of any Pi,j. Now we have found (k−1)(k−2) + (k−2) = (k − 1)2 − 1 internally-vertex-

disjoint paths connecting x1y1 and x1y2, so it remains to construct the last one. If degG(x1) > k

then x1 had a neighbour y0 distinct from y1, y2, y3, . . . , yk and we can find another (k−1) paths

of type Pi,j. Hence, suppose that degG(x1) = k. Set a0 = x1 = x2 = at, and for 1 ≤ i ≤ t − 1

choose a neighbour bi of ai distinct from ai−1 and ai+1. Since degG(x1) = k, ai /∈ {y3, y4, . . . , yk},

b1 6= a0 and bt−1 6= at, we have bi 6= x1. Choose a neighbour ci of bi distinct from ai, 1 ≤ i ≤

t − 1. In the case bi = yj for some 3 ≤ j ≤ k, we simply set ci = x1. Consider the walk

W = (a0at−1, a1a2, b1c1, a1a0, a2a3, b2c2, a2a1, . . . , at−1at, bt−1ct−1, at−1at−2, ata1) (noting that

a0at−1 = x1y2 and ata1 = x1y1). This walk is internally-vertex-disjoint with Pi,j ’s and Pl’s

constructed above. It may happen that bici = bjcj for some i 6= j, and so W may not be a
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path. However, by deleting redundant subwalks from W when necessary we can obtain a path

connecting x1y1 and x1y2 as required.

Case 2: Now we consider the case x1 6= x2.

Subcase 2.1: Suppose first that x1 and x2 are not adjacent in G. Since G is k-connected,

there are k internally-vertex-disjoint paths connecting x1 with x2 in G. Denote these paths by

Ri = (ai,0, ai,1, . . . , ai,ti), 0 ≤ i ≤ k−1, where we set ai,0 = x1 and ai,ti = x2. Since k ≥ 3,

we may assume that Rk−1 does not pass through y1 and y2. Since δ(G) ≥ k, for 0 ≤ i ≤ k−1

and 1 ≤ j ≤ ti−1 we may choose k − 2 neighbours bi,j,1, bi,j,2, . . . , bi,j,k−2 of ai,j different from

ai,j−1 and ai,j+1. Define P ′
i,j = (ai,1bi,1,j, ai,2bi,2,j, . . . , ai,ti−1bi,ti−1,j), 0 ≤ i ≤ k−1, 1 ≤ j ≤ k−2,

which are k(k−2) vertex-disjoint paths in X(G). If y1 6= ai,1, then we extend P ′
i,j (1 ≤ j ≤ k−2)

at the beginning by adding x1y1. Similarly, if y2 6= ai,ti−1, then we extend P ′
i,j (1 ≤ j ≤ k−2)

at the end by adding x2y2. There is at most one i with y1 = ai,1 (which is less than k−1

since Rk−1 does not contain y1), and for this i we extend P ′
i,j (1 ≤ j ≤ k − 2) at the be-

ginning by adding (x1y1, ai+j,1ai+j,2, x1ani,j ,1) where the addition in subscript is modulo k−1,

ni,j ≡ i+j+1 (mod k−1) if 1 ≤ j < k−2 and k > 3, ni,j ≡ i+1 (mod k−1) if j = k−2 and

k > 3, and ni,j = k−1 if k = 3. Observe that these prefixes are, with the exception of x1y1,

vertex-disjoint. Similarly, there is at most one i < k−1 such that y2 = ai,ti−1, and for this i

we extend P ′
i,j (1 ≤ j ≤ k − 2) at the end by adding (x2ani,j ,tn−1, ai+j,ti+j−1ai+j,ti+j−2, x2y2)

where the subscripts have the same meaning as above. Denote the extended form of P ′
i,j by

Pi,j . Then Pi,j’s are (k − 1)2 − 1 internally-vertex-disjoint paths connecting x1y1 and x2y2. It

remains to construct the last path, which starts with (x1y1, ak−1,1ak−1,2) and terminates with

(ak−1,tk−1−1ak−1,tk−1−2, x2y2). To abbreviate the notation set q = k−1. Choose a neighbour

cj 6= aq,j of bq,j,1, 1 ≤ j ≤ t1−1. Assuming that the path Rk−1 has no redundant parts, i.e., it is

as short as possible, we get bq,j,1 6= x1, x2. However, it may happen that bq,j,1 = am,n for some m

and n. In this case we choose cj = am,n−1 if n ≤ tm/2 and cj = am,n+1 otherwise. The walk W =

(x1y1, aq,1aq,2, bq,1,1c1, aq,1x1, aq,2aq,3, bq,2,1c2, aq,2aq,1, . . . , aq,tq−1x2, bq,tq−1,1ctq−1, aq,tq−1aq,tq−2,

x2y2) is internally-vertex-disjoint with all Pi,j’s. Therefore, we can obtain from W a path

between x1y1 and x2y2 which is internally-vertex-disjoint with all Pi,j ’s. Altogether we have

constructed (k − 1)2 internally-vertex-disjoint paths in X(G) between x1y1 and x2y2.

Subcase 2.2: Now we deal with the case where x1 and x2 are adjacent in G. Since G is

k-connected, there are k − 1 internally-vertex-disjoint paths of length at least two connecting

x1 and x2. Denote these paths by Ri = (ai,0, ai,1, . . . , ai,ti), 0 ≤ i ≤ k − 2, where ai,0 = x1 and

ai,ti = x2. For 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ ti − 1, let bi,j,1, bi,j,2, . . . , bi,j,k−2 be k − 2 neighbours

of ai,j distinct from ai,j−1 and ai,j+1. Since x1, x2 are adjacent in G and x1y1, x2y2 are not

adjacent in X(G), we have {x1, y1} ∩ {x2, y2} 6= ∅, and hence by symmetry we need to consider

the following two possibilities only.

The first possibility is that y1 = x2 and y2 = x1. In this case, for 0 ≤ i ≤ k − 2

and 1 ≤ j ≤ k − 2, define Pi,j = (x1y1, ai,1bi,1,j, ai,2bi,2,j, . . . , ai,ti−1bi,ti−1,j, x2y2) and Qi =

(x1y1, ai,1ai,2, x1ai+1,1, x2ai+1,ti+1−1, ai,ti−1ai,ti−2, x2y2), where subscripts are taken modulo k−1.

Obviously, these are (k−1)(k−2)+(k−1) = (k−1)2 internally-vertex-disjoint paths in X(G) con-

necting x1y1 and x2y2.

In the second possibility, we may assume y1 = x2 and y2 6= x1. In the case when y2 appears

on some path Ri, we may assume without loss of generality that y2 = a0,t0−1. Consider the

paths P ′
i,j = (x1y1, ai,1bi,1,j, ai,2bi,2,j, . . . , ai,ti−1bi,ti−1,j), 0 ≤ i ≤ k−2, 1 ≤ j ≤ k−2. We
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extend P ′
i,j (1 ≤ i ≤ k − 2, 1 ≤ j ≤ k − 2) at the end by adding x2y2. Then we extend P ′

0,j

(1 ≤ j ≤ k−2) at the end by adding (x2aj,tj−1, aj+1,tj+1−1aj+1,tj+1−2, x2y2) if j < k − 2 and

(x2x1, a1,t1−1a1,t1−2, x2y2) if j = k − 2. (Note that only the latter case applies when k = 3.)

Denote by Pi,j the extension of P ′
i,j obtained this way. Define Qi = (x1y1, ai,1ai,2, x1ai+1,1, x2y2),

0 ≤ i ≤ k − 2, where subscripts are taken modulo k − 1. Then Pi,j ’s and Qi’s are (k − 1)(k −

2) + (k − 1) = (k − 1)2 internally-vertex-disjoint paths in X(G) connecting x1y1 and x2y2.

That the bound κ(X(G)) ≥ (k− 1)2 is best possible was explained right after the statement

of Theorem 3. 2

5 Proof of Theorems 4, 5 and 6

Given vertex-disjoint graphs G1, G2, . . . , Gk, define G1 ∨G2 ∨ · · · ∨Gk to be the graph obtained

from the union G1 ∪ G2 ∪ · · · ∪ Gk by adding all possible edges joining a vertex of Gi with a

vertex of Gi+1, 1 ≤ i ≤ k − 1. Let Kn denote the complete graph on n vertices.

Proof of Theorem 4 Let us prove the upper bound first. Suppose δ(G) ≥ 3 and let x1y1

and x2y2 be vertices of X(G) with dX(G)(x1y1, x2y2) = diam(X(G)). Let z1 be a neighbour

of x1 different from y1, and z2 a neighbour of x2 different from y2. Let (a1, a2, . . . , ak−1) be a

shortest path in G between a1 = z1 and ak−1 = z2. Set a0 = x1 and ak = x2. Since δ(G) ≥ 3,

for each 1 ≤ i ≤ k−1 there exists a vertex bi adjacent to ai and different from ai−1 and ai+1.

Since a1 6= y1 and ak−1 6= y2, (x1y1, a1b1, a2b2, . . . , ak−1bk−1, x2y2) is a path in X(G). Therefore,

diam(X(G)) = dX(G)(x1y1, x2y2) ≤ dG(a1, ak−1) + 2 ≤ diam(G) + 2.

To prove the lower bound we require only that G is nontrivial, since otherwise X(G) is an

empty graph. Let x1 and x2 be vertices of G such that dG(x1, x2) = diam(G). Let y1 be a

neighbour of x1 and y2 a neighbour of x2. Assume that X(G) is connected and denote by P a

shortest path in X(G) between x1y1 and x2y2. Then the trace of P is a walk starting at x1 and

terminating at x2, and the length of this walk cannot be shorter than the distance between x1

and x2 in G. Hence, diam(G) = dG(x1, x2) ≤ dX(G)(x1y1, x2y2) ≤ diam(X(G)).

Let G2 = K3 ∨ K1 ∨ K3, and for k ≥ 3 let Gk = K3 ∨ K1 ∨ K2 ∨ · · · ∨ K2 ∨ K1 ∨ K3, where

there are k − 3 copies of K2 in Gk. Then diam(Gk) = k and diam(X(Gk)) = k + 2, and hence

the upper bound is attained by Gk. (The diameter of X(Gk) is achieved by dX(Gk)(x1y1, x2y2),

where x1 and x2 are from different copies of K3 and y1 and y2 are from copies of K1.) Let

Hk = K3 ∨ K2 ∨ · · · ∨ K2 ∨ K3, where there are k − 1 ≥ 1 copies of K2. Then diam(Hk) =

diam(X(Hk)) = k, and so the lower bound is attainable as well. 2

Proof of Theorem 5 Let Ps = (a0, a1, . . . , as−4) be a path of length s − 4. We add several

vertices and edges to Ps:

(1) First we add two vertices b0 and bs−4, join b0 to a0 and a2, and join bs−4 to as−6 and as−4;

(2) then we add vertices c1, c2, . . . , cs−5 and join ci to ai−1 and ai+1, 1 ≤ j ≤ s − 5.

Denote by Hs the resulting graph.

(3) We then add to Hs some vertices di,j , 0 ≤ i < j ≤ s−4, and join di,j to ai and aj, in the

following manner: We first add di,j (and the corresponding edges) with j − i = 3 . Then
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we add di,j (and the corresponding edges) with j − i = 4, and so on until we obtain a

graph of diameter r.

Denote the resultant graph by Gr,s. First of all, we have to show that adding vertices di,j

successively in step (3) can indeed create a graph of diameter r. In fact, we have diam(Hs) =

dHs(a0, as−4) = s − 4, and at each step of adding a single vertex di,j together with the cor-

responding edges {di,j , ai} and {di,j , aj}, the diameter can decrease by at most one, since we

connect vertices at distance 3 by a path of length 2. Moreover, if we add all possible vertices

di,j with j − i ≥ 3 together with the corresponding edges, then we get a graph of diameter 4.

(As s ≥ 10, we have dGr,s(b0, bs−4) ≥ 4.) Since 4 ≤ r ≤ s − 4, there exists a time at which we

obtain a graph Gr,s of diameter r.

Now we prove diam(X(Gr,s)) = s. Observe that all vertices of Ps have degree at least three

in Gr,s, while all other vertices have degree two in Gr,s. From this one can see that G÷
r,s is

connected. Hence X(Gr,s) is connected by Theorem 2.

Let P be a shortest path connecting two vertices of X(Gr,s), and let W = (u0, u1, . . . , ut)

be the trace of P . Then by Lemma 7, u2, u3, . . . , ut−2 all have degree at least three in Gr,s

and (u2, u3, . . . , ut−2) is a shortest path in G×
r,s. In view of the observation in the previous

paragraph this implies that (u2, u3, . . . , ut−2) is a subpath of Ps, and hence P has length at

most 2 + (s−4) + 2 = s. Since P is an arbitrary shortest path in X(Gr,s), it follows that

diam(X(Gr,s)) ≤ s.

To prove the reverse inequality, consider the distance between a0a1 and as−4as−5 in X(Gr,s).

Since in X(Gr,s) the vertex a0a1 is adjacent only to vertices xy such that degGr,s
(x) = 2, the trace

of any path in X(Gr,s) joining a0a1 with as−4as−5 must start with (a0, x, a0, . . .). Analogously,

since as−4as−5 is adjacent only to vertices zw such that degGr,s
(z) = 2, the trace of such a path

must terminate with (. . . , as−4, z, as−4). Thus, the trace of any path joining a0a1 with as−4as−5

is of the form (a0, x, a0, . . . , as−4, z, as−4). By Lemma 7 all vertices of its subpath (a0, . . . , as−4)

must have degree at least three, so they form a walk in Ps. Consequently the trace of any

shortest path in X(Gr,s) between a0a1 and as−4as−5 must have length at least 2+(s−4)+2 = s,

so that dX(Gr,s)(a0a1, as−4as−5) ≥ s. Hence, diam(X(Gr,s)) ≥ s. 2

Proof of Theorem 6 If diam(G) = 1, then G is a complete graph. Moreover, it has at least

four vertices as X(G) is connected. It can be easily verified that diam(X(G)) = 2.

Now suppose diam(G) = 2 and diam(X(G)) ≥ 8. Then there exist u0v0 and u8v8 whose

distance in X(G) is eight. Let P = (u0v0, u1v1, . . . , u8v8) be a shortest path joining u0v0 and

u8v8 in X(G). By Lemma 7, (u2, u3, . . . , u6) is a shortest path in G×. As u2 and u5 are not

adjacent in G×, they are not adjacent in G. Since diam(G) = 2, we have dG(u2, u5) = 2 and so

there exists a vertex x1 of degree two in G which is adjacent to both u2 and u5. Similarly, there

exists a vertex x2 of degree two which is adjacent to both u3 and u6. Since x1 and x2 do not

have any common neighbour, dG(x1, x2) ≥ 3, which contradicts our assumption diam(G) = 2.

Finally, suppose diam(G) = 3 and diam(X(G)) ≥ 15. Similarly to the above, there exists a

shortest path P in X(G) with length 15 and trace (u0, u1, . . . , u15), say, such that (u2, u3, . . . , u13)

is a shortest path in G×. Since dG(u2, u13) ≤ 3, there exists a vertex x1 of degree two which

allows a “shortcut” between u2 and u13 in G. Then x1 is joined by an edge to u2 or u13. Without

loss of generality assume that x1 is adjacent to u2. Then the other edge incident to x1 connects

x1 with u13 or with a neighbour of u13. Similarly, since dG(u5, u9) ≤ 3, there exists a vertex
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x2 of degree two which is adjacent to u5 or a neighbour of u5 and also to u9 or a neighbour of

u9. In any case, no neighbour of x1 is adjacent to a neighbour of x2. Hence dG(x1, x2) ≥ 4, a

contradiction. 2
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