SMALL RADIALLY MOORE GRAPHS

Martin Knor

Abstract. In this note we find radially Moore graphs of radius 3 with degrees 3, 4,
5, 6 and 7.

1. Introduction

A digraph is a pair D = (V(D), E(D)), where V(D) is a finite set of elements,
which we call vertices, while E(D) is a set of ordered pairs of V(D), which we call
arcs. Let u be a vertex of D. The number of arcs terminating in u is the in-degree
of u, idp(u), and the number of arcs starting in u is the out-degree of u, odp(u). If
there is a constant ¢ such that idp(v) = odp(v) =t for every vertex v € V (D), then
the digraph D is reqular of degree t. Further, let u be a vertex of D. Then

out-eccentricity of u is e} (u) = max{dp(u,v)|v e V(D)};
in-eccentricity of u is ep(u) = max{dp(v,u)|v € V(D)};
eccentricity of u is ep(u) = max{e},(u), ep(u)};

where dp(z,y) is a distance from z to y in D. The radius, rad(D), is the minimum
eccentricity in D, while the diameter, diam(D), is the maximum eccentricity.
Clearly, a regular digraph of degree ¢ and with diameter s contains at most

MDg;=1+t+t*+...+t°

vertices. If it has exactly M D, vertices, then it is called a Moore digraph. Unfor-
tunately, Moore digraphs exist only for s = 1 or ¢ = 1, namely a complete graph
K;., and a directed cycle Cs,1, respectively. Therefore we have to relax some of
the conditions. There are many papers in which the authors fix the degree and the
diameter and study the problem “how close” to the Moore bound M D; ; we can get.
In [1] a different approach was suggested. Namely, to relax the strong condition of
having diameter equal to s. This attempt was based on the fact that any regular
digraph with degree ¢ and radius s cannot have more then M D, vertices. If it
has M Dy, vertices and its diameter equals s + 1, such digraph is a radially Moore
digraph.

In [1] radially Moore digraphs were constructed for all pairs of positive integers
s and t. Hence, the problem of existence of radially Moore digraphs was solved
positively. Unfortunately, the situation for graphs is quite different.

A graph is a pair G = (V(G), E(G)), where V(G) is a finite set of vertices,
while E(QG) is a set of unordered pairs of V(G), which we call edges. The number of
edges incident with a vertex u is the degree of u, dg(u). If there is a constant ¢ such
that dg(v) = t for every vertex v € V(G), then the graph G is regular of degree t.
Further, let u be a vertex of G. Then

eccentricity of u is eg(u) = max{dg(u,v)|v € V(G)};

where dg(z,y) is a distance from z to y in G. Analogously as in the case of digraphs,
the radius, rad(G), is the minimum eccentricity in G, while the diameter, diam(G),
is the maximum eccentricity.
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A regular graph of degree ¢ and with diameter s contains at most

MGy =1+t+ (=1t + =1 +...+ (=1t

vertices. If it has exactly MG, vertices, then it is called a Moore graph.

Moore graphs exist only for s = 1 (the complete graphs K;,1), t = 2 (cycles
of odd length Cy,,1), and some graphs of radius ¢ = 2. They are the Petersen graph
(for s = 3), Hoffman-Singleton graph (for s = 7), and there can possibly be a Moore
graph of degree s = 57. Analogously as in the case of digraphs, plenty of authors
relax the condition of having MG, vertices and study the problem “how close” to
the Moore bound MG, we can get. But there is a possibility to relax the strong
condition of having diameter equal to s. Any regular graph of degree ¢ with radius
s cannot have more then MG, vertices. If it has MG, vertices and its diameter
equals s + 1, such graph is a radially Moore graph.

There are several mathematicians, who were eager to find a general construc-
tion for radially Moore graphs, but without a success. The only partial result is
that for any positive integer ¢ there exists a radially Moore graph of radius s = 2
with degree t, see [2]. But the problem becomes to be a really interesting one with
radius 3. In this paper we describe for every ¢, 3 < t < 7, one radially Moore graph
of degree t with radius 3. Unfortunately, we are not able to give a construction
covering all degrees.

2. Results

In this part we find radially Moore graph G; of radius 3 and degree t. Let
¢ be a vertex of this graph on which the radius is achieved, i.e., eg(c) = 3. Then
G contains a tree of radius 3 rooted in ¢ whose all interior vertices have degrees ¢
(see Figure 1 for the case t = 4). Our aim was to find a graph in which all branches
emerging from c belong to one single orbit under the group of automorphisms, so
that the corresponding automorphism action is a simple rotation around c. Hence, if
there is an edge joining, say, the first endvertex of branch 1 with the third endvertex
of branch 2, then there is also an edge joining the first endvertex of branch 2 with
the third endvertex of branch 3, etc. (We remark that we do not add edges joinig
endvertices of the same branch.) Then to describe our graph it suffices to give a
permutation for neighbouring branches, then a permutation for branches at circular
distance two, etc. However, if ¢ is an even number, the permutation at circular
distance t/2 must be an involution.

The problem is that if we like to run exhaustively the just described construc-
tion, then for ¢ = 7 we would need to check (36!)® = 5.1 - 10'2* instances, which is
simply too much. Therefore we compose every permutation of (t—1)? elements from
a cyclic shift of (t—1)-touples and a permutation of (t—1) elements. For ¢t = 7 this
gives only (6-6!)® = 8.2-10'° instances. Such a construction creates plenty of small
circles (of length four), but surprisingly, it works. For ¢t € {3,4,5,6,7} in Table 1
we present shifts with the permutations, which determine radially Moore graphs.
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3 1;(1,2)

4: 15 (3,1,2) 0; (2,1,3)

5 0;(3,1,2,4) 1; (1,4,2,3)

6: 1;(1,2,5,3,4) 1; (4,5,1,2,3) 0; (3,5,1,4,2)

7. 5;(6,1,2,3,4,5) 0;(2,1,4,3,6,5) 1; (5,2,1,4,3,6)
Table 1

Just for demonstration, in a more detailed way we describe the case t = 4,
see Figure 1.

The adjacencies of endvertices in the neighbouring branches are encoded by
1; (3,1,2). This means that the vertices 01,02, 03 are joined to 14,15,16 by the
permutation (3,1,2), etc. More precisely, for every i € {0,1,2,3} there are edges
(11, 46), (i2,74), (i3,75), (i4,79), (5, 47), (16, 8), (i7,453), (18,71), (i9,72), where
j=1i+1 (mod 4).

The adjacencies of endvertices in the branches at circular distance 2, which are
opposite in this case, are encoded by involution 0; (2,1,3). Hence, for every i € {0,1}
(the case i € {2,3} defines the same edges as the permutation is an involution)
there are edges (il, k2), (i2, k1), (i3, k3), (i4, k5), (5, k4), (i6, k6), (i7, k8), (48, kT7),
(19, k9), where k =i + 2.
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Figure 1
We remark that the cases t = 6 and t = 7 were not run exhaustively. This is
because for cyclic shifts 0; 0; 0 it is too optimistic to expect a radially Moore graph.

We started the search with the shifts 1; 1; 0 for the case t = 6 and with shifts 5; 0;
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1 for the case ¢t = 7. Then the results were found fast (i.e., in a few minutes).

Though computational evidence shows that there are plenty of radially Moore
graphs of the type, we consider, and though we have some feeling how to choose the
cyclic shifts, we have no idea how to find “good” permutations. Hence, we are not
able to generalize the examples presented here. Moreover, we have no idea of how to
prove that the “good” candidate has diameter only 4. Nevertheless, we think that
our study is a good start to the study of radially Moore graphs.
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