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Abstract

Face 2-colourable triangular embeddings of complete tripartite graphs
Kn,n,n correspond to biembeddings of Latin squares of side n. We consider
biembeddings that contain any of the five Latin squares derived from the
Cayley tables of finite groups of order 8. Up to isomorphism, we determine
all such biembeddings.
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1 Background

In our paper [1] we discuss, in some detail, face 2-colourable topological embed-
dings of complete regular tripartite graphs Kn,n,n in which all faces are triangular.
Such embeddings are equivalent to biembeddings of Latin squares of side n and,
as proved in [1], the supporting surfaces are necessarily orientable. Up to isomor-
phism, this earlier paper gives all such biembeddings for n = 3, 4, 5 and 6, and
it summarizes the results for n = 7. For n = 4, 5 and 6, there are Latin squares
which do not appear in any biembedding. Another interesting feature is the par-
titioning of the 147 main classes of Latin squares of side 7 into sub-classes of sizes
1, 1, 1, 2, 3, 3, 3, 6, 6, 8, 8, 9, 18, 19, 26 and 33, such that within each sub-class
most of the squares biembed with one another, but there are no biembeddings of
two squares taken from different sub-classes. We refer the reader to [1] for details
of this and for items of terminology.

In the current paper we turn our attention to Latin squares of side 8, where
there are 283 657 main classes [3]. It is computationally infeasible to determine all
possible biembeddings of these squares and here we restrict ourselves to seeking
biembeddings that contain at least one of those squares that arise from the Cayley
tables of groups of order 8. Another reason for considering these particular squares
is that, whilst squares which arise from the Cayley tables of cyclic groups always
appear in biembeddings, those from the groups C2 × C2 and D3 do not. It
is therefore appropriate to consider the Cayley tables of the groups of order 8.
There are five such groups, usually denoted by C3

2 = C2 ×C2 ×C2, C4 ×C2, C8,
D4 and Q. Here Cn denotes the cyclic group of order n, Dn is the dihedral group
of order 2n, and Q is the quaternion group. We take the corresponding Latin
squares as shown in Table 1.

0 1 2 3 4 5 6 7
1 0 4 5 2 3 7 6
2 4 0 6 1 7 3 5
3 5 6 0 7 1 2 4
4 2 1 7 0 6 5 3
5 3 7 1 6 0 4 2
6 7 3 2 5 4 0 1
7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 5 6 7 0 1 2 3
5 6 7 4 1 2 3 0
6 7 4 5 2 3 0 1
7 4 5 6 3 0 1 2

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6

C3
2 C4 × C2 C8

0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 7 6 5 0 3 2 1
5 4 7 6 1 0 3 2
6 5 4 7 2 1 0 3
7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 1 0 6 7 5 4
3 2 0 1 7 6 4 5
4 5 7 6 1 0 2 3
5 4 6 7 0 1 3 2
6 7 4 5 3 2 1 0
7 6 5 4 2 3 0 1

D4 Q

Table 1. Group-based squares of side 8.
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2 Results

There are 3 167 nonisomorphic biembeddings that contain at least one of the
five group-based squares of side 8. Table 2 gives a breakdown of these by the
individual squares and the size of the automorphism group Γ of the biembedding.
The column sums given in the last line of the table exclude duplications arising
from biembeddings that contain a pair of group-based squares.

|Γ| 1 2 3 4 6 8 12 16 > 16
∑

C3
2 23 6 4 6 − 2 2 5 1 49

C4 × C2 1 750 126 19 55 − 7 5 2 − 1 964
C8 568 54 60 − 6 − 1 1 11 701
D4 159 37 18 5 − 3 − 5 − 227
Q 183 16 20 12 − 2 2 1 − 236∑

2 683 235 120 75 6 14 10 12 12 3 167

Table 2. Biembeddings containing a group-based square.

As regards the biembeddings whose groups of automorphisms have orders
greater than 16, there is one of C3

2 with 48 automorphisms, while C8 has one with
24 automorphisms (forming S4), four with 32 automorphisms, one with 64 auto-
morphisms, two with 128 automorphisms, one with 192 automorphisms, one with
256 automorphisms and one with 768 automorphisms. This last biembedding,
which is of C8 with a copy of itself, is the unique regular triangular embedding
of K8,8,8 in an orientable surface (see [1] and [2] for details). The biembedding
of C3

2 with an automorphism group of order 48 is with a non group-based Latin
square, but all 11 biembeddings of C8 are with copies of itself.

The method for obtaining these biembeddings was to select one of the five
group-based squares and to regard its triples of row, column and entry symbols
as triangles with the common clockwise orientation (row, column, entry). In any
biembedding containing this Latin square, the rotation about each point contains
8 known ordered pairs; what remains unknown is the ordering of these pairs. By
considering all possible orderings and rejecting those which give rise to pseudosur-
faces, all biembeddings containing the given square may be determined. Working
through the five squares, each new biembedding was checked for isomorphism
with those found previously. The large number of biembeddings to be checked
required the use of an effective invariant in order to establish the isomorphism
classes. The invariant used was as follows.
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Consider a fixed biembedding of Latin squares of side 8. Denote by ρz the
rotation around a vertex z. Since ρz is a cyclic permutation of order 16, for each
two neighbours x and y of z there are integers m1 and m2 such that y = ρm1

z (x)
and y = ρ−m2

z (x), where 1 ≤ m1,m2 ≤ 15 and m1 + m2 = 16. Put

d(z;x, y) = min{m1,m2}.

Now if d(z;x, v) = d(z; v, y) = 1, and x 6= y, then d(v;x, y) = 2. However if
d(z;x, v) = d(z; v, y) = 3, and x 6= y, then d(v;x, y) can be any even number
from 2 to 8. (Note we cannot use d(z;x, v) = d(z; v, y) = 2 because then v is not
adjacent to either x or y, being in the same vertex partition set.) Let Iv be the
sum of the 16 numbers given by the formula

Iv =
∑

vz∈E(G)

(d(v;x, y) : where d(z;x, v) = d(z; v, y) = 3 and x 6= y).

Now the multiset of 24 elements Iv, together with the number of automor-
phisms, forms a satisfactory invariant for our biembeddings. There is just one
pair of biembeddings for C4 × C2 and two pairs for C8, which represent noniso-
morphic biembeddings, although their invariants coincide.

Up to isomorphism, there are 23 biembeddings where both the Latin squares
are group-based. In Table 3, in each of these cases, we specify a representative
biembedding from the isomorphism class by means of a vector (A,B, p1, p2, p3)
where A,B identify the two squares as in Table 1, and p1, p2, p3 specify permuta-
tions applied respectively to the rows, columns and entries of the second square.
From these, the biembedding may be constructed by taking the two squares ex-
actly as in Table 1 and then applying the permutations to the second square,
finally sewing the resulting triangular faces together along their common edges.
A permutation entry such as p1 = 31267405 is to be read as the permutation(

0 1 2 3 4 5 6 7
3 1 2 6 7 4 0 5

)
, indicating that row 0 of the square from Table

1 is placed in row 3, row 3 is placed in row 6, and so on. We use I to denote
the identity permutation. In no case do we need to permute rows, columns and
entries with each other. We also give information about the automorphism group
Γ of each biembedding with a second vector (M ;m1,m2,m3,m4) denoting that
|Γ| = M and that there are m1 mappings which preserve orientation and colour
classes, m2 mappings which preserve orientation and reverse the colour classes,
m3 mappings which reverse orientation and preserve the colour classes, and m4

mappings which reverse orientation and reverse the colour classes.
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1. (C3
2 , D4, 31267405, 45203617, 35061427), (3; 3, 0, 0, 0),

2. (C4 × C2, D4, 64752103, 32104567, 21034567), (16; 8, 0, 8, 0),
3. (C4 × C2, D4, 53261407, 61204357, 41263057), (4; 2, 0, 2, 0),
4. (C4 × C2, D4, 51302647, 61250347, 40351267), (2; 2, 0, 0, 0),
5. (C4 × C2, D4, 24673105, 12306547, 23561047), (2; 2, 0, 0, 0),
6. (C4 × C2, Q, 54670213, 13024657, 20134657), (16; 8, 0, 8, 0),
7. (C4 × C2, Q, 53601472, 64310257, 03152647), (4; 2, 0, 2, 0),
8. (C4 × C2, Q, 24601573, 64210357, 13254607), (4; 2, 0, 2, 0),
9. (C4 × C2, Q, 21706354, 53420617, 20134657), (2; 2, 0, 0, 0),
10. (C4 × C2, Q, 54601273, 64310257, 14253607), (2; 2, 0, 0, 0),
11. (C8, C8, 12345670, I, I), (768; 192, 192, 192, 192), regular,
12. (C8, C8, 52741630, I, I), (256; 64, 64, 64, 64),
13. (C8, C8, 56341270, 05634127, 45230167), (192; 48, 48, 48, 48),
14. (C8, C8, 16745230, I, I), (128; 32, 32, 32, 32),
15. (C8, C8, 52741630, I, 45230167), (128; 32, 32, 32, 32),
16. (C8, C8, 52741630, 05634127, 45230167), (64; 16, 16, 16, 16),
17. (C8, C8, 12367450, I, I), (32; 8, 8, 8, 8),
18. (C8, C8, 14763250, I, I), (32; 8, 8, 8, 8),
19. (C8, C8, 12547630, I, I), (32; 8, 8, 8, 8),
20. (C8, C8, 16347250, I, I), (32; 8, 8, 8, 8),
21. (C8, C8, 16345270, 01634527, 05234167), (24; 12, 0, 12, 0),
22. (C8, C8, 34561270, 05634127, 45230167), (16; 4, 4, 4, 4),
23. (C8, C8, 34561270, 03456127, 23450167), (12; 3, 3, 3, 3).

Table 3. Biembeddings containing two group-based squares.

Table 4 summarizes these biembeddings where both squares are group-based. The
entries give the number of biembeddings of square A with square B.

C3
2 C4 × C2 C8 D4 Q

C3
2 − − − 1 −

C4 × C2 − − − 4 5
C8 − − 13 − −
D4 1 4 − − −
Q − 5 − − −

Table 4. Numbers of mutual biembeddings of group-based squares.

It can be seen that there are, for example, no biembeddings of two squares
both derived from C3

2 . A very recent result gives a partial explanation for the
partitioning of the squares of side 7 described in our earlier paper and establishes
the non-biembeddability of two copies of Cn

2 for n ≥ 2, as well as other non-
biembeddability results. A paper describing these results is in preparation.
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Finally we give the exceptional biembedding of C3
2 with a non group-based

square and having an automorphism group of order 48. The square C3
2 is taken

as in Table 1, and the other square is as follows.

7 0 1 4 2 3 5 6
6 4 5 2 3 7 1 0
1 2 7 5 0 6 4 3
4 6 0 7 1 2 3 5
5 3 6 1 4 0 2 7
2 5 3 6 7 1 0 4
0 1 4 3 6 5 7 2
3 7 2 0 5 4 6 1

The two squares generate triangular faces that are sewn together along common
edges to form the embedding. The automorphism type is given by the vector
(48; 24, 0, 24, 0).
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