(k,0)-RADII OF PETERSEN GRAPH

Martin Knor

Abstract. Let K be a set of k vertices. The k-distance of K is the sum of all
distances between pairs of vertices of K. The (k,1)-eccentricity of a set of [ vertices
L is the maximum k-distance over all sets K, such that L C K and |K| = k.
Finally, the (k,[)-radius of a graph is its minimum (k,)-eccentricity. In this note
we determine (k,[)-radius of Petersen graph for all possible values of k and .

1. Introduction and results

Let G = (V(G),E(G)) be a graph. The distance, d(u,v), between two
vertices u,v € V(G) is the length of a shortest path connecting v with v in G, while
the diameter, diam(G), is the greatest distance in G. The eccentricity, e(v), is
the distance to a vertex farthest from v. Then the radius, rad(G), is the smallest
eccentricity in (G, while the greatest eccentricity is the diameter defined above. L.e.,

rad(G) = Ug/l(%)e(v) = Uér‘l/l(%)(urer%/aé)d(u,v)), diam(G) = Urer‘l/e%)é)(urer%/aé)d(u,v)).

The radius and the diameter are basic invariants in theory of graphs, see [2].
They are very useful, although they do not give a full information about the graph.
This defect can be reduced by inventing distance-related concepts which express the
structure of G in a better way. The most reasonable thing is to consider sets of
vertices instead of pairs. Let £ be a number, 1 < k£ < |V(G)|, and let K be a set of
k distinct vertices in G. Then the k-distance of K, dy(K), is the sum of distances
between all pairs of vertices of K. Observe that the usual distance is 2-distance
in our new notation. The k-diameter, diamy(G), is the maximum k-distance in a
graph, see Goddard, Swart and Swart [1]. Here we recall that, for n = |V(G)|, the
n-distance is called the distance (transmission) of a graph, see Soltés [6].

Now we introduce the key notion of this paper, the (k,{)-radius. Analogously
as for the usual radius, we start with (k,![)-eccentricity. Let k£ and [ be integer
numbers, 0 < [ < k < |V(G)|, k > 0, and let L be a set of [ vertices in G. Then the
(k,l)-eccentricity of L, ex;(L), is the maximum k-distance of a set of &k vertices
K, containing L. l.e.,

exu(L) = nglg‘)/((G)(dk(K)Q K| = k).
Now (k,l)-radius of G, rady;(G), is the minimum (k,!)-eccentricity of a set of [
vertices, see Horvathova [3]. Thus,
radys(G) = min (ee(L)s |L| =) = min ( max _(de(K)s [K| = k); |L| =1).
The notion of (k,[)-radius generalizes the usual diameter as diam(G) = radso(G);
further the radius rad(G) = rady 1 (G); the k-diameter is rady o(G); and the distance
of a graph is radv(q) o(G).
In [4] Horvathova has shown that for almost all graphs G we have

rady(G) = 2@ - (;)
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But up to now, only for complete graphs K,, (whch is trivial) and complete bipartite
graphs K ,, K, (see Horvathova [5]) the (k,[)-radius has been determined for all
admissible values of £ and [. In this paper we determine (k,!)-radius for the most
famous graph, the Petersen graph P, see Figure 1.

Figure 1

Theorem 1. Let | and k be integer numbers, 0 < 1 < k < 10, and let k > 0. Then
the values of (k,l)-radius of Petersen graph are listed in Table 1, where the rows
correspond to values of |, and the columns correspond to k.

ANfl1 23 4 5 6 7 8 9 10
0|0 2 6 12 18 27 36 47 60 75
1 /0 2 6 12 18 27 36 47 60 75
2 |- 1 5 11 18 27 36 47 60 75
3 /- - 4 10 18 26 36 47 60 75
4 |- - - 9 16 25 36 47 60 75
5 - - - - 15 24 35 47 60 75
6 |- - - - - 24 35 47 60 75
7T - - - - - - 34 47 60 75
8 |- - - - - - - 46 60 75
9 |- - - - - - - - 60 75
0(- - - - - - - - - 75

Table 1

As proved by Horvéathova in (3], rady;(G) > rady;1(G) for every graph

G. This explains the values in every column. But what is the behaviour along
rows? To be able to see something, one has to use “normalized” values of rady (P).

-1
Therefore we present the values ('2“) -rady (P) in Table 2. We see that the function

-1
filk) = (g) - rady,;(P) is first nondecreasing and then nonincreasing. Hence, we

state the following problem:
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M1 2 3 4 5 6 7 8 9 10
0 |0.00 2.00 200 2.00 1.80 1.80 1.71 1.68 1.67 1.67
1 [0.00 2.00 2.00 2.00 1.80 1.80 1.71 1.68 1.67 1.67
2 | - 100 167 183 1.80 1.80 1.71 1.68 1.67 1.67
3| - - 133 167 180 173 171 1.68 1.67 1.67
4| - - - 150 1.60 1.67 1.71 1.68 1.67 1.67
5/ - - - - 150 1.60 1.67 168 1.67 1.67
6 | - - - - - 160 167 168 1.67 1.67
T - - - - - - 162 168 167 167
8 | - - - - - - - 164 167 167
9 | - - - - - - - - 167 167
10 - - - - o167

Table 2

Problem. What is the behaviour of fi (k) = (’2“)71 - rady(G) for a general graph
G? Is it similar to that of f p(k)?

In the reminder of this paper we present the proof of Theorem 1.
2. Proof

Proof of Theorem 1. At first we describe all sets of vertices of Petersen’s graph
P. As P has 10 vertices, we have 2! = 1024 possibilities. Of course, we do not
need to distinguish between such sets L and L', for which there is an automorphism
of P mapping L to L'. This reduces our task considerably, since Petersen graph
is 3-arc transitive. It means that for every two directed paths of length three,
say (ug, U1, ug, ug) and (ug, ul,uy, uy), there is an automorphism ¢ of P such that
é(u;) = uj for all 4, 0 <4 < 3.

The sets, which do not contain isomorphic copies, are depicted in Figure 2.
Their total number is 34, which is much less than 1024. Here (L%, ) means that
we have j-th set, we denote it by L%, it contains ¢ vertices of P and z indicates the
number of edges (depicted by bold lines) in the subgraph of P induced by L;

The completeness of our list is easily verified for small numbers of vertices.

Therefore, for i > 6 we made Lj- to be a complement of ng:;l, which means that it
suffices to verify the completeness of the list LY, L}, ... L5,. We let this as an easy

exercise to the reader.

In the next we count the (k, [)-radii for all possible values of k& and [. Observe
that for every pair (L}, x) of Figure 1 we have dZ(Lj) = 2(;) — x, since the diameter
of Petersen graph is 2.

Obviously, for all values of I, 0 < [ < 10, we have rady;(P) = dio(L33) =

2(120) —15 =75, since P has exactly 15 edges. And as P is a vertex-transitive graph,
rado(P) = dg(L};) =2(3) — 12 =60 for all [, 0 <1 < 9.
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Figure 2

Further radyo(P) is the greatest value of di(L¥). Thus, rad; o(P) = d1(L3)
0; radzo(P) = do(LF) = 2(3) = 2 radso(P) = ds(L}) = 2() = 6; radso(P)
di(L1,) = 2(3) = 12; radso(P) = d5(L3,) = 2(3) — 2 = 18; radeo(P) = do(L$,)
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2(5) = 3 = 27; radro(P) = d7(L;) = 2(3) — 6 = 36; and radso(P) = ds(L§;) =
2(2) — 9 =47. Since P is a vertex-transitive graph, rady i(P) = radyo(P) for all £,
1<k <10.

Similarly, rady(P) is the least value of di(L¥). Thus, rady(P)

2(3) =1 =1; rads 3(P) = d3(L3) = 2(3) =2 = 4; radss(P) = ds(L) = 2(5) =3 =9;
rads5(P) = ds(L3) = 2(3) — 5 = 15; radss(P) = ds(LS) = 2(5) — 6 = 24;
radq7(P) = dr(L%,) = 2(}) — 8 = 34; and radss(P) = ds(L$,) = 2(3) — 10 = 46.

Since for every | < 8 the complement of Lz- contains a pair of nonadjacent
vertices, L§, contains a (isomorphic) copy of L}. Therefore rg;(P) = dg(L§;) = 47
for all [ < 8.

Now consider [ = 2. For k = 3, L3 is contained in L} and L3, while L3 is
in all L3, L}, L} and L}. Therefore rads»(P) = e5,(L3) = d3(L}) = 2(5) — 1 =5.
Analogously, rads2(P) = eso(L3) = ds(Li;) = 2(;1) — 1 = 11. However, for k > 4
all L¥ contain both L3 and L}, so that radgs(P) = radyo(P) when k > 4.

Let | = 3. For k = 4, L} is contained only in Lg, L}, and L}, while L}, L2 and
L% are contained in Li;. Therefore rady3(P) = eq3(L3) = duo(L3;)) = 2(3) —2=10.
Since L} and L} are contained in L3y and L} and L3 are contained in L3, we
have rads 3(P) = ds(L3y) = ds(L3,) = 18. For k = 6, L} is contained only in L} for
22 < j < 26, while L3, L and L3 are contained in LS,. Thus, radss(P) = eg3(LE) =
de(LS,) = 2(2) —4 = 26. Finally, as all L2, 5 < j < 8, are contained in Lj;, we have
radz3(P) = d;(L5;) = 36.

Consider | = 4. For k = 5, L}, is contained only in L%,, while L§ and L},
are contained in L}, L1, and L}; are contained in L3, and L}, is contained in L3,.
Thus, rads4(P) = es4(L1y) = ds(L3;) = 2(3) —4=16. For k = 6, L}, is contained
only in L%, 23 < j < 26, while the remaining L}, j # 10, are contained in L3,.
Therefore rads 4(P) = ega(Li) = d(L3;) = 2(5) — 5 = 25. Finally, for k = 7 all
L}, 9 < j < 14, are contained in Lf;, so that rad;4(P) = dz(Lj;) = 36.

Now suppose that [ = 5. Since L, is contained only in LS for k = 6, we have
radss(P) = es5(L35) = dg(LSg) = 24. For k = 7 L, is contained only in Ly and
L3y, while L2, 16 < j < 20, are contained in Lj,. Therefore radys(P) = e7,5(L35) =
d7(Lig) =2(]) — 7= 35,

As the last case consider [ = 6 and k = 7. Observe that L5 is contained
only in Li; and Li;. However, LS, is contained in LI, LS, is contained in LI, LS,
is contained in LIy, LS, is contained in Llg and LS, is contained in LI,. Therefore
radrs(P) = e76(L3) = d7 (L) = 35. 0
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