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ABSTRACT. For every integer k > 2 we find an infinite class of graphs G
for which diam(G) = k, the group of automorphisms of G is trivial, and
the sum of distances og(u) = 3 ,cv(g)da(u,v) (as well as the sum of
reciprocals of these summands) does not depend on the choice of u.

This is a preprint of an article accepted for publication in
Congressus Numerantium (©2004 (copyright owner as specified
in the journal).

1. INTRODUCTION

Throughout this paper, we consider graphs without loops or multiple
edges. We use the standard graph terminology and notation, cf. [2].

Let G = (V(G),E(G)) be a graph. For two vertices, u,v € V(G),
by dg(u,v) we denote their distance in G, i.e., the number of edges of a
shortest path connecting u with v. The eccentricity eq(u) of a vertex u
is max,cy(g){da(u,v)}. We recall that the maximum eccentricity in G is
the diameter diam(G) and the minimum eccentricity is the radius rad(QG).
The vertices u, for which eg(u) = rad(G), are called central. For various
applications, such as locations of fire-stations etc., central vertices are of
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special importance. And, in some situations, it is comfortable if all the
vertices of a graph are central. In such a case diam(G) = rad(G) and G is
a selfcentric graph.

In social networks, some authors use other notions in the place of eccen-
tricity. The farness of a vertex u is og(u) = > dg(u,v) and the reciprocal
distances centrality is pg(u) = Y. m, where the sums are taken over
all the vertices v of G, v # u. These invariants are frequently used in the
social network analysis as a measure of the individuum position inside the
network, see e.g. [4] or [6] for farness and [3] for the reciprocal distances
centrality. Despite of this, only little is known about their graph-theoretical
properties.

Here we are interested in graphs for which the farness (reciprocal dis-
tances centrality) of each vertex is the same. We call such graphs farness-
selfcentric (reciprocally-selfcentric), due to the obvious analogy to selfcen-
tric graphs, when one replaces the notion of eccentricity by farness (recip-
rocal distances centrality).

An example of a farness-selfcentric graph is a graph C75, obtained from a
12-cycle (z1,x2,. .., z12) by adding the edges x;x;1 2, where i € {1,2,5,6,9,
10} (see [1]). To verify that C75 is farness-selfcentric it suffices to examine
the farness of two vertices of C5, due to the large automorphism group
Aut(C7,) of this graph. However, CJ5, is not reciprocally-selfcentric. In [1],
there are also other examples of graphs, having special values of graph-
theoretic invariants used in sociology; these invariants are discussed also
for digraphs.

Obviously, if G is a vertex-transitive graph, i.e., when Aut(G) acts tran-
sitively on the vertex set of GG, then G is both farness- and reciprocally-
selfcentric. In this note we are concerned in the other extremum, when
Aut(@) is trivial. In such a case, although G is both farness- and recip-
rocally-selfcentric, each individuum is recognisable in the network just by
its role in it, regardless of the labels. Surprisingly, there exist “totally an-
tisymmetric” farness- and reciprocally-selfcentric graphs. The next section
is devoted to their construction. We show that such graphs exist for every
prescribed diameter k£ > 2.

2. RESULTS

By n% (u) we denote the number of vertices at distance i from a vertex
u of G. Hence n},(u) = degg(u), i.e., nl(u) is the degree of u. For a set of
vertices U, U C V(G), by (U)g we denote the subgraph of G induced by
U.

Let n > 8. Denote by F), a forest on n vertices, consisting of one isolated
vertex and a tree obtained from a claw K; 3 by subdividing one of its
edges by n—6 vertices and one other edge by a single vertex. Observe that
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|Aut(Fy,)| = 1. Assume that the vertex set of F, is X = {z1,za,...,2,}.

Now let F] be a copy of F,, on the vertex set X, obtained from F,, by
cyclic permutation of the endvertices (see Figure 1 for an example of Fg
and FY).
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Figure 1

Subdivide all edges of F},, each by one vertex, denote the new vertices
by Y = {y1,¥2,-..,Yn—2}, and denote the new graph by Ha,_5. Finally,
let By,_o be a graph obtained from a complete bipartite graph K, ,_s,
with the bipartition X and Y, by adding the edges of F;, and deleting the
edges of Hy,_» (see Figure 2 for By4 obtained from Figure 1; edges that
are deleted from Ky ¢ are depicted by dashed lines).
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Figure 2

Theorem 1. Let n > 8. Then B, o is (n—2)-regular farness-selfcentric
and reciprocally-selfcentric graph of diameter 2 with |Aut(Ban_2)| = 1.

Proof. Observe that in the complete bipartite graph K, ,,_o the degree of
x is n — 2 and the degree of y is n for every vertex x € X and y € Y,
respectively. Since the addition of Fj, followed by the deletion of Hs,,_»
does not change the degree of z and it decreases the degree of y by 2, the
graph Bs,_» is regular of degree n — 2.

Now we show that diam(Ba,—2) = 2. If x4,z € X, then there is a
vertex of Y which is adjacent to both z, and xz;, since the number of
deleted edges of K, ,,_o emerging from z, and x; does not exceed 5 and
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Y|=n—-2>05. If y,,yp € Y, then both y, and y; are adjacent to the
isolated vertex of F;,. Finally, suppose that x € X and y € Y. If 2y is not
an edge of Ba,_o then either z is an endvertex of Fj,, in which case y is
connected to the neighbour of z in F;, by the construction of F),, or z has
two neighbours in F;,, in which case y is connected to at least one of them
as only two edges adjacent to y were deleted from K, ,,_».

Since diam(Ba,—2) = 2 and By,_2 is (n—2)-regular, for every vertex
u of Byn_o we have np, _ (u) =n —2and ng _ (u) = n — 1. Hence,
0By, ,(u) =1-(n—2)+2-(n—1) = 3n—4 and pp,, ,(u) = 252 + 251
Thus, Bs,_2 is both farness- and reciprocally-selfcentric graph.

It remains to show that |Aut(Bs,_2)] = 1. To do this, we consider
maximal independent sets S in Bg, 5. If S C X, then [S| <n—3 as F,
contains at least three independent edges. If there are x € X and y € Y
such that z,y € S, then x is non-adjacent to at most 3 vertices of Y and
y is non-adjacent to at most 2 vertices of X. Hence, in this case |S| < 5.
However, if S =Y then |S| =n —2 > 5. Thus, the independence number
of By, _o is n — 2 and the unique independent set of vertices of size n — 2
is Y. As a consequence, every automorphism of Bs,_s maps X to X and
Y toY.

However, (X)p,,_, is exactly the graph F, which has only the triv-
ial automorphism. Thus, every automorphism of Bs,_o fixes the set X.
And since different vertices of Y are non-adjacent to different pairs of ver-
tices of X, every automorphism of By, _o fixes the set Y as well. Thus
|Aut(Bay,—2)| = 1, as required. O

In F,,, let us denote by x1, 3, ..., z,_4 the vertices of the longest branch
(see Figure 1). Then degp, (z1) = 1, degr,(zn—4) = 3 and in F), we
have a path xo, 23, ..., Z,_5,2,_4. However, ordering the inner vertices of
this path in a different way, say x2,24,...,%3, Tn_4, Will not change the

structure of Bs,_s very much, because also in this case the diameter is
2. Hence, there are (n—7)! different graphs of order 2n — 2 satisfying the
conclusions of Theorem 1. (Observe that possible isomorphism between
pair of them maps Y to Y, and, consequently, it fixes every x € X; see the
proof of Theorem 1.) If we denote m = 2n — 2, then we see that there are
at least ezmIn(m)—=0(m) graphs of even order m satisfying Theorem 1.

Let n > 9 and let Bl , and B3, , be two non-isomorphic graphs of
the form of By, _2 (see the analysis above). Let C be a cycle on 2k vertices,
k > 3, which vertices are labelled consequently by cg, c1, ..., cor_1. Replace
co, c1 and c3 by a copy of B, _, and replace all the remaining c;, i # 0, 1,3
by a copy of B3,_,. Denote by C; the graph replacing ¢;, 0 < i < 2k—1,
and join every vertex of C; to every vertex of C;;1 (the indices are taken
modulo 2k). Finally, denote the resulting graph by C By, .

Theorem 2. Let n > 9 and k > 3. Then CBy,, is a reqular farness-
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selfcentric and reciprocally-selfcentric graph of diameter k with | Aut(C By )| =}
1.

Proof. Obviously, the diameter of CBy, ,, is k. From the proof of Theorem 1
it follows that C' By, ,, is a regular graph of degree (n—2)+2(2n—2) = 5n—6.
Hence, for every u € V(CBj,,) we have

”},‘Bk, (u) = (n—2) + 2(2n—2) = 5n — 6,
n¥p, (1) = (n—1) + 2(2n—2) = 5n — 5,
)

It follows that C'By, is both farness- and reciprocally-selfcentric with
0cB,., (1) = (K*+1)(2n—2) + n — 2.

It remains to show that |Aut(CBy,)| = 1. Denote by X; and Y; the
vertices of C; obtained from X and Y, respectively. Then Sy = Yy U Yo U
---UY9,_9 and S; = Y7 UY3U---UY5,_1 are independent sets of vertices of
size k(n—2). If a vertex v € V(C;) is in an independentent set of vertices S,
then no vertex from V(C;_1) UV (C;41) is in S (indices are taken modulo
2k). This implies that the sets Sy and S; are maximal. Moreover, by the
proof of Theorem 1, there are no other independent sets of vertices of size
k(n—2). Hence, every automorphism of C By, , maps Y = SoUS; = U?ialYi
to itself and X = Ufingi to itself.

Let y, and y, be two vertices of Y, having a common neighbour in
Y, and such that their neighbourhoods in Y are distinct. Assume that
Yo € V(C;,) and yp € V(C;, ). Then i, # ip, and since k£ > 3, the common
neighbours are exactly the vertices of V(C;) for some i. In this way, the sets
V(C;) can be identified, so that for every automorphism ¢ of CBy,,, there
is a permutation p of the set {0,1,...,2k—1}, such that ¢ maps V(C;)
to V(Cpaiy), 0 <4 < 2k—1. As a consequence, ¢ maps every set X; to
Xp(i)- But since only (Xo)cB, ., (X1)cB,.,, and (X3)cB, , are isomorphic
to B3, _,, the permutation p must be an identity. The rest follows from
Theorem 1. [

Analogously as above, for m = 2k(2n—2) it can be shown that there
are at least earn™n(m)=0(m) non_jsomorphic graphs of order m satisfying
Theorem 2.

3. CONCLUDING REMARKS

In the social network analysis, there are also other invariants being used

for evaluating the individuals positions, see [5]. The betweenness of the

vertex u in a graph G is b(u) = bowl®) - where by is the number of

bv,w
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shortest v—w-paths, by 4, (u) is the number of shortest v—w-paths passing
through u, and the sum is taken over all the pairs of vertices v and w such
that v # u and w # u. Also for betweenness we can consider the concept of
self-centricity. Again, all vertex-transitive graphs are trivially betweenness-
selfcentric. On the other hand, no example of betweenness-selfcentric graph
with trivial automorphism group is known.
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