ON FARNESS- AND RECIPROCALLY-SELFCENTRIC ANTISYMMETRIC GRAPHS

M. Knor¹ and T. Madaras²

Department of Mathematics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 813 68 Bratislava, Slovakia, E-mail: knor@vox.svf.stuba.sk;

²⁾ Institute of Mathematics,
P. J. Šafárik University,
Jesenná 5, 041 54 Košice, Slovakia,
E-mail: madaras@science.upjs.sk.

ABSTRACT. For every integer $k \geq 2$ we find an infinite class of graphs G for which diam(G) = k, the group of automorphisms of G is trivial, and the sum of distances $\sigma_G(u) = \sum_{v \in V(G)} d_G(u,v)$ (as well as the sum of reciprocals of these summands) does not depend on the choice of u.

This is a preprint of an article accepted for publication in Congressus Numerantium ©2004 (copyright owner as specified in the journal).

1. Introduction

Throughout this paper, we consider graphs without loops or multiple edges. We use the standard graph terminology and notation, cf. [2].

Let G = (V(G), E(G)) be a graph. For two vertices, $u, v \in V(G)$, by $d_G(u, v)$ we denote their distance in G, i.e., the number of edges of a shortest path connecting u with v. The eccentricity $e_G(u)$ of a vertex u is $\max_{v \in V(G)} \{d_G(u, v)\}$. We recall that the maximum eccentricity in G is the diameter diam(G) and the minimum eccentricity is the radius rad(G). The vertices u, for which $e_G(u) = rad(G)$, are called central. For various applications, such as locations of fire-stations etc., central vertices are of

¹⁹⁹¹ Mathematics Subject Classification. 05C12.

Key words and phrases. Automorphism group, center, farness, regular graph.

special importance. And, in some situations, it is comfortable if all the vertices of a graph are central. In such a case diam(G) = rad(G) and G is a selfcentric graph.

In social networks, some authors use other notions in the place of eccentricity. The farness of a vertex u is $\sigma_G(u) = \sum d_G(u, v)$ and the reciprocal distances centrality is $\rho_G(u) = \sum \frac{1}{d_G(u,v)}$, where the sums are taken over all the vertices v of G, $v \neq u$. These invariants are frequently used in the social network analysis as a measure of the individuum position inside the network, see e.g. [4] or [6] for farness and [3] for the reciprocal distances centrality. Despite of this, only little is known about their graph-theoretical properties.

Here we are interested in graphs for which the farness (reciprocal distances centrality) of each vertex is the same. We call such graphs farness-selfcentric (reciprocally-selfcentric), due to the obvious analogy to selfcentric graphs, when one replaces the notion of eccentricity by farness (reciprocal distances centrality).

An example of a farness-selfcentric graph is a graph C_{12}^{\times} obtained from a 12-cycle $(x_1, x_2, \ldots, x_{12})$ by adding the edges $x_i x_{i+2}$, where $i \in \{1, 2, 5, 6, 9, 10\}$ (see [1]). To verify that C_{12}^{\times} is farness-selfcentric it suffices to examine the farness of two vertices of C_{12}^{\times} , due to the large automorphism group $Aut(C_{12}^{\times})$ of this graph. However, C_{12}^{\times} is not reciprocally-selfcentric. In [1], there are also other examples of graphs, having special values of graph-theoretic invariants used in sociology; these invariants are discussed also for digraphs.

Obviously, if G is a vertex-transitive graph, i.e., when Aut(G) acts transitively on the vertex set of G, then G is both farness- and reciprocally-selfcentric. In this note we are concerned in the other extremum, when Aut(G) is trivial. In such a case, although G is both farness- and reciprocally-selfcentric, each individuum is recognisable in the network just by its role in it, regardless of the labels. Surprisingly, there exist "totally antisymmetric" farness- and reciprocally-selfcentric graphs. The next section is devoted to their construction. We show that such graphs exist for every prescribed diameter $k \geq 2$.

2. Results

By $n_G^i(u)$ we denote the number of vertices at distance i from a vertex u of G. Hence $n_G^1(u) = deg_G(u)$, i.e., $n_G^1(u)$ is the degree of u. For a set of vertices U, $U \subseteq V(G)$, by $\langle U \rangle_G$ we denote the subgraph of G induced by U.

Let $n \geq 8$. Denote by F_n a forest on n vertices, consisting of one isolated vertex and a tree obtained from a claw $K_{1,3}$ by subdividing one of its edges by n-6 vertices and one other edge by a single vertex. Observe that

 $|Aut(F_n)| = 1$. Assume that the vertex set of F_n is $X = \{x_1, x_2, \dots, x_n\}$.

Now let F'_n be a copy of F_n on the vertex set X, obtained from F_n by cyclic permutation of the endvertices (see Figure 1 for an example of F_8 and F'_8).

Subdivide all edges of F'_n , each by one vertex, denote the new vertices by $Y = \{y_1, y_2, \dots, y_{n-2}\}$, and denote the new graph by H_{2n-2} . Finally, let B_{2n-2} be a graph obtained from a complete bipartite graph $K_{n,n-2}$, with the bipartition X and Y, by adding the edges of F_n and deleting the edges of H_{2n-2} (see Figure 2 for B_{14} obtained from Figure 1; edges that are deleted from $K_{8,6}$ are depicted by dashed lines).

Figure 2

Theorem 1. Let $n \geq 8$. Then B_{2n-2} is (n-2)-regular farness-selfcentric and reciprocally-selfcentric graph of diameter 2 with $|Aut(B_{2n-2})| = 1$.

Proof. Observe that in the complete bipartite graph $K_{n,n-2}$ the degree of x is n-2 and the degree of y is n for every vertex $x \in X$ and $y \in Y$, respectively. Since the addition of F_n followed by the deletion of H_{2n-2} does not change the degree of x and it decreases the degree of y by 2, the graph B_{2n-2} is regular of degree n-2.

Now we show that $diam(B_{2n-2}) = 2$. If $x_a, x_b \in X$, then there is a vertex of Y which is adjacent to both x_a and x_b , since the number of deleted edges of $K_{n,n-2}$ emerging from x_a and x_b does not exceed 5 and

|Y| = n - 2 > 5. If $y_a, y_b \in Y$, then both y_a and y_b are adjacent to the isolated vertex of F_n . Finally, suppose that $x \in X$ and $y \in Y$. If xy is not an edge of B_{2n-2} then either x is an endvertex of F_n , in which case y is connected to the neighbour of x in F_n by the construction of F'_n , or x has two neighbours in F_n , in which case y is connected to at least one of them as only two edges adjacent to y were deleted from $K_{n,n-2}$.

Since $diam(B_{2n-2}) = 2$ and B_{2n-2} is (n-2)-regular, for every vertex u of B_{2n-2} we have $n^1_{B_{2n-2}}(u) = n-2$ and $n^2_{B_{2n-2}}(u) = n-1$. Hence, $\sigma_{B_{2n-2}}(u) = 1 \cdot (n-2) + 2 \cdot (n-1) = 3n-4$ and $\rho_{B_{2n-2}}(u) = \frac{n-2}{1} + \frac{n-1}{2}$. Thus, B_{2n-2} is both farness- and reciprocally-selfcentric graph.

It remains to show that $|Aut(B_{2n-2})| = 1$. To do this, we consider maximal independent sets S in B_{2n-2} . If $S \subseteq X$, then $|S| \le n-3$ as F_n contains at least three independent edges. If there are $x \in X$ and $y \in Y$ such that $x, y \in S$, then x is non-adjacent to at most 3 vertices of Y and y is non-adjacent to at most 2 vertices of X. Hence, in this case $|S| \le 5$. However, if S = Y then |S| = n-2 > 5. Thus, the independence number of B_{2n-2} is n-2 and the unique independent set of vertices of size n-2 is Y. As a consequence, every automorphism of B_{2n-2} maps X to X and Y to Y.

However, $\langle X \rangle_{B_{2n-2}}$ is exactly the graph F_n which has only the trivial automorphism. Thus, every automorphism of B_{2n-2} fixes the set X. And since different vertices of Y are non-adjacent to different pairs of vertices of X, every automorphism of B_{2n-2} fixes the set Y as well. Thus $|Aut(B_{2n-2})| = 1$, as required. \square

In F_n , let us denote by $x_1, x_2, \ldots, x_{n-4}$ the vertices of the longest branch (see Figure 1). Then $deg_{F_n}(x_1) = 1$, $deg_{F_n}(x_{n-4}) = 3$ and in F'_n we have a path $x_2, x_3, \ldots, x_{n-5}, x_{n-4}$. However, ordering the inner vertices of this path in a different way, say $x_2, x_4, \ldots, x_3, x_{n-4}$, will not change the structure of B_{2n-2} very much, because also in this case the diameter is 2. Hence, there are (n-7)! different graphs of order 2n-2 satisfying the conclusions of Theorem 1. (Observe that possible isomorphism between pair of them maps Y to Y, and, consequently, it fixes every $x \in X$; see the proof of Theorem 1.) If we denote m = 2n-2, then we see that there are at least $e^{\frac{1}{2}m\ln(m)-O(m)}$ graphs of even order m satisfying Theorem 1.

Let $n \geq 9$ and let B_{2n-2}^1 and B_{2n-2}^2 be two non-isomorphic graphs of the form of B_{2n-2} (see the analysis above). Let C be a cycle on 2k vertices, $k \geq 3$, which vertices are labelled consequently by $c_0, c_1, \ldots, c_{2k-1}$. Replace c_0, c_1 and c_3 by a copy of B_{2n-2}^1 and replace all the remaining $c_i, i \neq 0, 1, 3$ by a copy of B_{2n-2}^2 . Denote by C_i the graph replacing $c_i, 0 \leq i \leq 2k-1$, and join every vertex of C_i to every vertex of C_{i+1} (the indices are taken modulo 2k). Finally, denote the resulting graph by $CB_{k,n}$.

Theorem 2. Let $n \geq 9$ and $k \geq 3$. Then $CB_{k,n}$ is a regular farness-

 $selfcentric\ and\ reciprocally-selfcentric\ graph\ of\ diameter\ k\ with\ |Aut(CB_{k,n})|=1$

Proof. Obviously, the diameter of $CB_{k,n}$ is k. From the proof of Theorem 1 it follows that $CB_{k,n}$ is a regular graph of degree (n-2)+2(2n-2)=5n-6. Hence, for every $u \in V(CB_{k,n})$ we have

$$\begin{split} n_{CB_{k,n}}^1(u) &= (n-2) + 2(2n-2) = 5n - 6, \\ n_{CB_{k,n}}^2(u) &= (n-1) + 2(2n-2) = 5n - 5, \\ n_{CB_{k,n}}^3(u) &= n_{CB_{k,n}}^4(u) = \dots = n_{CB_{k,n}}^{k-1}(u) = 2(2n-2), \\ n_{CB_{k,n}}^k(u) &= 2n - 2. \end{split}$$

It follows that $CB_{k,n}$ is both farness- and reciprocally-selfcentric with $\sigma_{CB_{k,n}}(u) = (k^2+1)(2n-2) + n - 2$.

It remains to show that $|Aut(CB_{k,n})| = 1$. Denote by X_i and Y_i the vertices of C_i obtained from X and Y, respectively. Then $S_0 = Y_0 \cup Y_2 \cup \cdots \cup Y_{2k-2}$ and $S_1 = Y_1 \cup Y_3 \cup \cdots \cup Y_{2k-1}$ are independent sets of vertices of size k(n-2). If a vertex $v \in V(C_i)$ is in an independent set of vertices S, then no vertex from $V(C_{i-1}) \cup V(C_{i+1})$ is in S (indices are taken modulo 2k). This implies that the sets S_0 and S_1 are maximal. Moreover, by the proof of Theorem 1, there are no other independent sets of vertices of size k(n-2). Hence, every automorphism of $CB_{k,n}$ maps $\overline{Y} = S_0 \cup S_1 = \bigcup_{i=0}^{2k-1} Y_i$ to itself and $\overline{X} = \bigcup_{i=0}^{2k-1} X_i$ to itself.

Let y_a and y_b be two vertices of \overline{Y} , having a common neighbour in \overline{Y} , and such that their neighbourhoods in \overline{Y} are distinct. Assume that $y_a \in V(C_{i_a})$ and $y_b \in V(C_{i_b})$. Then $i_a \neq i_b$, and since $k \geq 3$, the common neighbours are exactly the vertices of $V(C_i)$ for some i. In this way, the sets $V(C_i)$ can be identified, so that for every automorphism ϕ of $CB_{k,n}$ there is a permutation p of the set $\{0,1,\ldots,2k-1\}$, such that ϕ maps $V(C_i)$ to $V(C_{p(i)})$, $0 \leq i \leq 2k-1$. As a consequence, ϕ maps every set X_i to $X_{p(i)}$. But since only $\langle X_0 \rangle_{CB_{k,n}}$, $\langle X_1 \rangle_{CB_{k,n}}$ and $\langle X_3 \rangle_{CB_{k,n}}$ are isomorphic to B_{2n-2}^1 , the permutation p must be an identity. The rest follows from Theorem 1. \square

Analogously as above, for m=2k(2n-2) it can be shown that there are at least $e^{\frac{1}{4k}m\ln(m)-O(m)}$ non-isomorphic graphs of order m satisfying Theorem 2.

3. Concluding remarks

In the social network analysis, there are also other invariants being used for evaluating the individuals positions, see [5]. The *betweenness* of the vertex u in a graph G is $b(u) = \sum \frac{b_{v,w}(u)}{b_{v,w}}$, where $b_{v,w}$ is the number of

shortest v-w-paths, $b_{v,w}(u)$ is the number of shortest v-w-paths passing through u, and the sum is taken over all the pairs of vertices v and w such that $v \neq u$ and $w \neq u$. Also for betweenness we can consider the concept of self-centricity. Again, all vertex-transitive graphs are trivially betweenness-selfcentric. On the other hand, no example of betweenness-selfcentric graph with trivial automorphism group is known.

ACKNOWLEDGEMENT

A support of the Slovak VEGA grants No. 1/0424/03 and 1/2004/05 is acknowledged.

REFERENCES

- [1] K. Benková, Matematika sociálnych sietí, Master thesis (2004).
- [2] A. Bondy, U.S.R. Murty, *Graph Theory with Applications*, MacMillan/Elsevier, London/New York, 1976.
- [3] S.P. Borgatti, M.G. Everett, L.C. Freeman, *Ucinet for Windows: Software for Social Network Analysis*, Harvard: Analytic Technologies, 2002.
- [4] L.C. Freeman, Centrality in social networks. Conceptual clarification, Social Networks 1 (1979), 215-239.
- [5] L.C. Freeman, A set of measures of centrality based upon betweeness, Sociometry 40 (1977), 35-41.
- [6] S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge, 1994.